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We consider temperature relaxation in a plasma containing charged particles of one species 
and in a plasma containing two species taking account of the interaction of particles with 
plasma waves. It is shown that the temperature relaxation time in a highly nonisothermal 
plasma can be much smaller than that which is computed neglecting the interaction between 
particles and waves. 

1. INTRODUCTION 

THE temperature equilibration of charged par
ticles in a plasma has been treated extensively [1- 3] 

by means of the Fokker-Planck equation with a col
lision integral in the form given by Landau; [1] in 
this work only the Coulomb interaction between 
particles at distances smaller than the Debye 
radius has been considered. The relaxation time 
for the temperature of an electron gas is given 
by the expression [2] 

-1 5 -./ mT~ 1 
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( L is the Coulomb logarithm). 
Electron-electron collisions play a decisive 

role in the relaxation of the electron temperature. 
Similarly, temperature relaxation in an ion gas is 
determined by ion-ion collisions 0 

t. " y;;l = _2_ 1/ MT~ _1_. 
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(2) 

Finally, we may consider the time for an ion gas 
and an electron gas to come to an equilibrium tem
perature when the particle velocity distributions 
for each species remains an equilibrium distribu
tion during the relaxation process; this relaxation 
time is given by the expression 

The formula above applies only when the following 
conditions are satisfied: 

1)Kogan[2] has obtained Eqs. (1) and (2) by an analysis of 
the relaxation between the longitudinal temperature T 11 and 
the transverse temperature T .L of the gas. These equations 
then represent the time required for the particle distribution 
function to become isotropic. 

(4) 

The first of these conditions is satisfied for any 
Te and Ti; the second reduces to the requirement 

T, I Te < (M / m)'!,= 10. (5) 

If this condition is not satisfied, i.e., if the ion tem
perature is ten times the electron temperature or 
greater, using the kinetic equation with the Landau 
collision integral we find that when the electron 
and ion gases interact the ion distribution function 
does not relax and can differ considerably from the 
equilibrium function. 

The expressions given above for the tempera
ture relaxation time in a plasma (1)-(3) take ac
count only of the near Coulomb interactions. Ac
tually, however, in a true plasma the interaction 
distance can be appreciably greater than the Debye 
radius. The interaction mechanism in this case is 
associated with weakly damped waves that propa
gate in the plasma. This particle interaction will 
be called the remote interaction. It is evident that 
remote interactions will be important in relaxation 
processes only when the plasma can support weakly 
damped waves with phase velocities smaller than 
the particle thermal velocities. A large fraction 
of the plasma particles participate in the radiation 
and absorption of these slow waves (particles 
whose velocities are greater than the phase veloci
ties of the waves) so that the role of remote par
ticle interactions can be enhanced. 

When weakly damped waves cannot propagate in 
the plasma the effect of remote particle interac
tions on relaxation processes becomes negligible. 
As shown in [o1-SJ, taking account of the remote 
particle interactions in an isotropic plasma in 
equilibrium that supports weakly damped waves 
with phase velocities greater than the thermal 
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velocities yields only a small correction (of order 
1/L). 

In a nonisothermal plasma that supports weakly 
damped slow waves, however, it can be shown that 
certain relaxation processes are very sensitive to 
remote particle interactions, in contrast with an 
isothermal plasma. For example, a nonisothermal 
plasma in which the electrons are hotter than the 
ions T e » Ti can support weakly damped slow 
waves whose phase velocities lie between the ion 
thermal velocity and the electron thermal veloc
ity [7] VTi « w/k « VTe· The dispersion relation 
for these waves is 

where w Le and w Li are the electron and ion 
Langmuir frequencies respectively. Almost all 

(6) 

of the plasma electrons interact strongly with 
these waves. Thus in a nonisothermal plasma in 
which Te » Ti the remote interactions can be of 
considerable importance in relaxation processes 
within the electron gas (electron-electron colli
sions). 2> On the other hand, the interaction of the 
main mass of ions with these waves is a weak one. 
Hence, the role of the remote interactions due to 
these waves is found to be insignificant for relaxa
tion processes within the ion gas and also for re
laxation between the electron and ion gases in a 
plasma. 

In the limiting case of a nonisothermal plasma 
in which Ti » MTe /m the weakly damped slow 
waves are described by 

cu=Wu. (7) 

The phase velocity of these waves is between the 
thermal velocities of the electrons and ions vT 
« w/k « VTi· Hence when Ti » MTe/m thesee 
waves have an important effect on relaxation 
processes in the ion gas but do not affect relaxa
tion processes within the electron gas nor between 
the electron and ion gases. 

To investigate relaxation processes in a plasma 
in the absence of strong fields we start with the 
Fokker-Planck equation with a collision integral 
that takes account of both the near Coulomb inter
action as well as the remote wave interaction. 

2) A short presentation of a theory of transport phenomena 
that takes account of the wave interaction in a plasma of this 
kind has been given by Silin and GorbunovJ•] In this work the 
authors determined the conductivity, the diffusion coefficient, 
the thermal diffusion ratio, the electron thermal conductivity, 
and the viscosity for the case in which the remote interaction 
due to the plasma oscillations is stronger than the shielded 
Coulomb interaction. 

This kinetic equation is of the following form ( cf. 
[ 9] and the literature cited therein): 
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where 
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E ij ( w, k) is the plasma dielectric tensor. 
The kinetic equation (8) takes account of re

mote particle interactions due to longitudinal 
plasma waves. To avoid a divergence in (9) the 
integration over k must be cut off at some maxi
mum k = kmax; this procedure corresponds to 
cutting off the particle interaction at some mini
mum distances at which, for example, the classi
cal analysis no longer holds. The integration need 
not be cut off at small k, i.e., an upper limit on 
the interaction is not needed. There is no diverg
ence at small values of k in (9) because we have 
taken account of polarization effects in the plasma. 
If we write I E(w,k)i == 1 in (9) then (8) assumes 
the form of the Fokker-Planck equation with the 
Landau collision integral. In this case the inte
gration over k must evidently be cut off at both 
high and low values. 

It will be shown below that remote particle in
teractions due to slow electromagnetic waves in a 
nonisothermal plasma in which T e > 102 Ti cause 
a considerable reduction in the temperature relax
ation time in the electron gas (the time for the 
distribution to become isotropic ) as compared 
with the expression given in (1); the reduction 
factor is approximately 10-2 Te /Ti· Taking ac
count of the remote wave interactions a noniso
thermal plasma in which Ti » MTe/m, leads to 
a reduction in temperature relaxation time within 
the ion gas (the time for the distribution to be
come isotropic ) as compared with that given in 
(2); the reduction factor is approximately 10-2 
Ti/Te. However, taking account of the remote 
interactions between particles has only a small 
effect on temperature relaxation time between the 
electron and ion gases as compared with that given 
in (3); the reduction factor is approximately 10%. 
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2. TEMPERATURE RELAXATION IN A GAS OF 
CHARGED PARTICLES OF ONE SPECIES 

We consider the time required for an isotropic 
distribution function to be reached in a gas of 
charged particles of one species; we consider the 
relaxation of a small difference between the longi
tudinal and transverse temperatures Tail- T a 11, 
that is to say, the particle distribution function for 
the a particles is taken in the form 3> 

? ? 

N a f maul! maV_l_} (10) 
fa~~ -(-2:n:_m_a_)'_I,-Y Tall T~.l exp l- 2T~ - rr:-~ . 

The temperature difference Tal- Tall decreases 
with time and, in accordance with the kinetic equa
tion (8), 

d (Ta_L- Tan)/ df=- Vaa (Ta_L- Tan), (11) 

where 

In the limit of small differences (Tal-Tall ) the 
quantity Taa = v-a~ is the time required for the 
distribution function for particles of the a species 
to become isotropic. 

We now consider temperature relaxation within 
an electron gas. It is assumed that the electron 
velocity distribution is given by (10) and that the 
ion distribution is Maxwellian. As already noted, 
a strong departure from (1) is to be expected in a 
nonisothermal plasma in which Te » Ti. Although 
the electron relaxation time in such a plasma is 
smaller than that given by (1), the ion relaxation 
time given by (2) still holds. Hence, the assump
tion that the ion distribution function is an equilib
rium function is completely incorrect. 

Electron-electron collisions play a decisive 
role in the relaxation of the electron temperature. 
For this reason we retain only the electron terms 
in the expres~ions for F(w,k) and 1m E(w,k). 

3)It should be emphasized that our analysis applies only 
for relaxation of a small difference in the temperatures T a 1 
and Tan in a bounded plasma; if this requirement is not 
satisfied an instability develops['o] and the temperature can 
relax via other mechanisms. Using the instability criterion 
L'l.T a> k2 c2 T a! w'La we find the critical plasma dimension 

L < (c/ w~a)v' T a! L'l.Ta for which instabilities can not arise. 
On the other hand, if the particle wave interactions consid
ered below are to be important the following inequality must 
be satisfied. 

L > (vTa / wLa lmtn \In [(e7! e2)(T~! T~) (M/ m)j \'/,. 

It is easy to show that in the case of interest here, a non
isothermal plasma, these requirements are satisfied up to 
temperature differences L'l.T a~ T a. 

We must, however, take account of the ion terms 
in E(w, k) because the spectrum of slow waves, 
given by the zeros in E( w, k ), depends sensitively 
on the ion motion. Substituting these expressions 
in (12), after some simple manipulation we obtain 
(for small values of the difference Tel- Tell) 

8 Vit e•Ne -v-
Vee = - 5--- -:-;=={In (kmaxrD) + 2/ee}, (13) 

Jt mn 
where rD is the Debye radius, rr} = L:wtama/T a 
and 

' I e.' T \--1 
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e , T 1 / 

(14)* 

X {e-x', +- e; I ( Te Y:'-. ~~exp ( -- ~ Te x2)) 
e , . T 1 J V m _ '2m T 1 , ( 

The function J + ( x) is given by 

J +(x) = xe-x'/2 -~ dr:e''/2 = -- q/~ xW ( ~2) . 
100 

The function W(x) has been tabulated. [i1] 

The first terms in the curly brackets in (13) 
corresponds to the result obtained with the kinetic 
equation with the Landau collision integral while 
Iee gives the correction due to the interaction of 
electrons with plasma waves. In the case of inter
est to us, high values of Te /Ti, it is a simple 
matter to obtain an analytic expression for lee 
by making use of the asymptotic form of the func
tion J+(x) (cf. for example, C7J). As a result we 
have 

I { 2 3} 1 T e e i _ 1 e i M T e T e "'---/ =-;--1- In 1--- for ---;>I. 
ee 2 T i I e \ e2 m T7 T I 

(15) 

We note, that the basic contribution to the integral 
comes from small values of x; specifically, 

m T i ( e7 M ~!_\ < 2 ____, ~-
M T e ln \ e2 m T7 J X ""-· M • 

In the table we give values of lee obtained by 
numerical integration of (14) and by evaluating the 
approximate formula (15) for I ei I e I = 1 and M/m 
= 1840 (hydrogen plasma). It is evident that the 
approximate formula (15) gives reasonably accu
rate values of Iee when Te > 102 Ti· Furthermore, 
at this temperature ratio lee is larger than the 
Coulomb logarithm [the first term in (13)] which, 
under typical conditions, is approximately 10. 

*arc tg = tan_,. 



942 RAMAZASHVILI, RUKHADZE, and SILIN 

1 10 1 10' 1 10' 1 10' 1 10' 1 

V2 lee from (14) 

I 

0.3 1-0.3:0510,832 3.G1 26.1 196 1670 1.4fl-10 

lf2 lee from (15) - , - I 0,490 3.:33 25.0 201 1680 1 AS-10 

Thus, when Te > 102 Ti the electron relaxation 
time is determined primarily by the interaction 
of electrons with slow plasma waves and is given 
by 

·- .- 5 Y21 e I ~vr;~TeT7 1 I e7 M T~ t r .. => 1_-,-~ ~--.ln\-c-----j. (16) 
n. ce R 1 ei .Tt e4N e \ e2 m TJ 

In the opposite limit, Te < 102 Ti, the correction 
for the interaction with electromagnetic waves in 
the plasma is small; when T e « T the correction 
approaches the asymptotic value lee :::,; 0.3. 

It must be strongly emphasized that everything 
given above refers to the time required for the 
electron distribution to become isotropic. The 
time required for the isotropic electron distribu
tion function to become Maxwellian is given with 
good accuracy by (1), just as in the case of the 
kinetic equation with the Landau collision integral. 
Taking account of remote collisions in this case 
leads to a correction of the same form as (14) ex
cept that the function e-X2 in the integral is re
placed by the function x2e-X2• As a result there 
is a sharp reduction in the contribution to the in
tegral at small values of x and the entire correc
tion becomes small compared with the Coulomb 
logarithm. Specifically, as has been kindly pointed 
out by L. M. Gorbunov, when Te >lOTi the follow
ing relation provides high accuracy: 

A(:rt A)} 1 (Teie;J) -l-- --arc trr- =--- In -- 1- • 
' B 2 "' B 4 f2 T;! e , 

(17) 

Hence, the time required for the isotropic distri
bution to become Maxwellian is given by a theory 
in which wave effects are neglected provided the 
Coulomb logarithm is large compared with :Q/J. 
This situation will always be the case for the 
plasma parameters encountered in practice. 

In a nonisothermal plasma in which the elec
trons are hotter than the ions the time for the 
electron distribution function to become isotropic 
is appreciably smaller than the time for it to be
come Maxwellian. It is of interest, therefore, to 
generalize (16) to the case of arbitrary electron 
distributions. In this case the ion distribution 
function can evidently be assumed to be an equi-

librium distribution. If we take T e to be the 
mean electron energy 

Te = { ~ dpmv2f., 

the time for the electron distribution function to 
become isotropic, which does not differ greatly 
from that of an isotropic distribution, can be 
written in the form ( Te > 102 Ti) 

where a is a numerical coefficient of order unity 
that depends weakly on the electron distribution 
function. 

We now consider temperature relaxation in an 
ion gas. As indicated, one expects the ion tem
perature relaxation time in a highly nonisothermal 
plasma in which Ti » MTe/M to differ from that 
given in (2). Inasmuch as the electron-tempera
ture relaxation time is appreciably smaller than 
the ion-temperature relaxation time, in this case 
the electron distribution function may be assumed 
to be an equilibrium function throughout the relax
ation process. However, the ion distribution func
tion is taken in the form given by (10) and the dif
ference between the longitudinal and transverse 
temperatures is assumed to be small. Finally, 
since the ion-temperature relaxation (time re
quired to reach an isotropic distribution) occurs 
much more rapidly than the temperature relaxa
tion between the electron and ion gases, we can 
neglect this latter relaxation time. The basic 
mechanism in the relaxation of the ion tempera
ture is the ion-ion collision. As a result we have 

sVn e1N; y-
vu ~~ -"'--=={In (kmw:fD) + 2/u}. 

;, V MT~ 
(19) 

The following asymptotic expression holds for Iii 
in the case being considered here, in which Ti 
» MTe/m, 

(20) 

At high values of Ti /T e• Iii is appreciably greater 
than the Coulomb logarithm [first term in Eq. (19)]; 
this result indicates that the relaxation of the ion 
temperature in a nonisothermal plasma in which 



TEMPERATURE EQUILIBRIUM RATE FOR CHARGED PARTICLES 943 

Ti » MTe /m is due primarily to the interaction 
of ions with slow plasma waves. The relaxation 
time (time to achieve an isotropic distribution) 
in this case is 

_ 5 Y2j e; l yMTir; 1 { e" m Tt} ( ) 't·· =V .1 = ---- ----In --- . 21 
" it 8 e :n: e~ N 1 e7 M T~ 

3. EQUILIBRATION OF THE ELECTRON AND ION 
TEMPERATURES IN A PLASMA 

We have shown in the preceding section that in 
a highly nonisothermal plasma that supports weakly 
damped plasma waves with phase velocities smaller 
than the thermal velocities of the electrons or ions 
the relaxation processes are affected, and some
times determined by, contributions due to the in
teraction of particles with these slow plasma 
waves. The situation is different, however, for the 
relaxation of the temperature difference between 
the electron and ion gases in the plasma. As is 
well known, weakly damped waves with phase 
velocities smaller than the thermal velocities of 
both the electrons and ions cannot propagate in a 
plasma. Thus, either the electrons or the ions, 
but not both, interact with the plasma waves; as 
a result the role of the particle-wave interaction 
in the equalization of the electron and ion temper
atures is always a small one and Eq. (3) applies 
to within a small correction. Using (8) and (9) we 
obtain the relation that characterizes the equili-

bration of the electron and ion temperatures in 
the plasma 

d JI (Te- T;) =- v,; (T.- T 1), 

where 

8 ~~ e2e7 (N. + N1) 
Vet = 3 r ~nmM ,1 {In (kmaxrD) + le;}. 

(mT1 + MT.)' 

(22) 

(23) 

The quantity lei• which characterizes the contri
bution due to the interaction of particles with 
plasma waves in the electron-ion collision fre
quency, is given by the expressions 

+ ~( ~ - arc tg ~-)} , 

A= I- ( 1 +I tl;;rl {ReJ+( v/+a) 

+I!__I~ReJ+( xva I}· 
ei Ti y 1 +a I 

-.In( j eiT·)-1 x { [ x" J B= Jl 2 1 + e; Tl V1+a exp -2(t+a) 

I e I T e v- [ x2a J} + e; T~ aexp - 2(1 +a) ' 

where a= MTe/mTi. 

(24) 

Values of lei for various values of Te /Ti are 
given below. 

Te!T 1 : 10-5 10-• 10-3 10-2 10-1 1 101 102 103 104 105 

lei : 1.5 0.85 -0,06 -0.45 -0.45 -0.17 0.71 1.3 1.6 1.7 1.8 

It is thus evident that lei is small compared 
with the Coulomb logarithm which, under usual 
conditions, is of the order of 10. The contribution 
due to the particle-wave interaction in the plasma 
is 10-15% in the electron-ion collision frequency. 
The highest values of lei are reached in a noniso
thermal plasma in which either Te » Ti or Ti 
» MTe/m, that is to say, in a plasma in which 
there are weakly damped slow waves that interact 
strongly either with electrons or with ions. In the 
temperature region m/M < Te/Ti < 1, however, 
lei is not important since the uncertainty in the 
upper limit kmax can be of the same order of 
magnitude as lei itself. 

It should be noted that when Ti > Te(M/m) 113 

[ (5) is not satisfied], the quantity Ei is no longer 
meaningful; just as in (3), the ion distribution 
function cannot relax and differs markedly from 
an equilibrium distribution. The values of lei in 
Table II for this temperature region are given 

only to illustrate the role of the remote interac
tions in collisions between electrons and ions. 
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