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Octahedral complexes of transition metals are considered with a degenerate electron term 
that leads to several equivalent equilibrium configurations with a large potential barrier 
between them. The electron oscillation problem for each configuration is solved in an adia­
batic approximation, while the interaction between them is taken into account by perturbation 
theory. The system is then found to possess a number of close stationary levels (inversion 
splitting). The problem is solved for electron terms of the type Eg and T zg (for tetragonal 
and trigonal distortions of the octahedron in equilibrium configurations). Parameters of in­
version levels are determined, formulas for the absolute value of splitting are obtained, and 
examples of numerical calculations are given. A quantitative criterion is established for the 
applicability of the theory. 

1. INTRODUCTION 

FREE complexes of transition metals with a de­
generate electron term have certain singularities 
which were investigated by several workers. Fore­
most among them is the Jahn-Teller effect-devia­
tions of the equilibrium configuration from the 
maximum symmetry (internal asymmetry) -and 
the presence of several equivalent equilibrium 
configurations [i,Z]. In the case when the potential 
barrier between the equivalent configurations is 
low, the specific effect in the complex, connected 
with the presence of electron degeneracy, reduces 
to a special kind of interaction between the electron 
motion and the oscillatory motion [3, 4]. If this bar­
rier is sufficiently large, however, each equilib­
rium configuration can be regarded approximately 
as a separate entity, and the interaction between 
them should lead then to an additional level split­
ting. 

The possibility of transitions between equiva­
lent configurations of an octahedral complex was 
first noted by Van Vleck[5J. However, this prob­
lem, as far as we know, has not yet been solved .1> 
On the other hand, an account of the interaction be­
tween these configurations discloses additional 
stationary states with close-lying energy levels, 
which undoubtedly should be manifest in many 

1>1n our previous communication [ 6] we considered the oscil­
latory interaction between three minima without account of the 
associated electron states. The results obtained in this man­
ner have, in the light of the present paper, a limited applica­
bility. 

optical, magnetic, and thermodynamic properties 
of the system. In the present communication we 
present a general solution of this problem for the 
cases of greatest interest (without account of in­
teraction with the rotations). In the future we 
plan to use these results for an investigation of 
the aforementioned physical properties of the sys­
tems under consideration. 

2. GENERAL THEORY 

A. We consider an octahedral complex of the 
type MX6, where M is an atom or ion of a tran­
sition metal and X is a diamagnetic particle 
(atom, ion, or molecule) for which the electron 
term is l-fold degenerate in the configuration of 
the regular octahedron. In the general case the 
Hamiltonian of the system has the form 

H = H q + H Q + V (q, Q), (1) 

where Hq and HQ are the electron and oscillatory 
Hamiltonian, and V(q, Q) is the operator of inter­
action between the electron motion and the oscilla­
tory motion. 

We assume for simplicity that the internal 
closed electron shells of the metal M form to­
gether with the nucleus an effective core, and the 
detailed electron structure of the particle X can 
be disregarded. Then q denotes the aggregate of 
the coordinates of the outer d-electrons, and HQ 
includes the interaction of the core M with X, ap­
proximated with the aid of the force constants ( Q 
denotes the aggregate of the normal coordinates 
of the regular octahedron). This assumption is 
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not limiting, for in principle we can obtain analo­
gous results also by using the molecular orbital 
approximation method. 

B. The specific singularities of the electron­
oscillation problem connected with the presence 
of the electron degeneracy, manifest themselves 
in the solution of the electron equation. This is 
given in several papers, and we refer here to 
Opick and Pryce [2] and to our earlier paper C7J. 

We expand the operator V in terms of the 
normal coordinates Q: 

p 

V = V (q, 0) + "~1 U%Jo Qcx +.. .. (2) 

The Z-fold electron degeneracy is obtained with 
account of the zeroth term of this expansion. We 
assume the linear term to be a small perturba­
tion. 2> Then the adiabatic potential can be deter­
mined from the solution of the secular equation. 
Its l roots-multidimensional surfaces-cross 
at the point Qa = 0 (a = 1, ... , p) corresponding 
to the configuration of the regular octahedron. 
Outside this point these surfaces diverge, gener­
ally speaking, although in some regions some of 
them may coincide. Usually this splitting of the 
surfaces of the potential energy is the result of 
interaction with only a certain definite type of 
oscillations-tetragonal or trigonal and the equi­
librium configuration of the system is a tetrago­
nally or trigonally distorted octahedron (internal 
asymmetry or the Jahn-Teller effect). 

C. Of greatest importance to what follows is the 
conclusion that there is not one but several ( N) 
such equilibrium configurations ( or minima of 
the adiabatic potential), and that they are all equiv­
alent to one another. 

We denote the normal coordinates of the system 
in the i-th asymmetrical configuration by Qi. We 
can then write for the electron wave function near 
the minimum 

(3) 

i = 1, 2, ... , N. In the zeroth approximation 1/Ji is 
a linear combination of the initial d-electron func­
tions and is determined by the secular equation. 

D. Proceeding to the solution of the oscillation 
problem, it is necessary to introduce a definite 
assumption concerning the size of the interaction 
between the equilibrium configurations. If this in­
teraction is sufficiently strong, the adiabatic ap­
proximation cannot be used, generally speaking, 

2)The quadratic terms of this expansion, combined with the 
corresponding terms of the core, are contained in HQ. 

in its ordinary form [B]. An analysis of this case 
is the subject of the cited papers by Moffitt et 
al. [3, 4] In contrast with these papers, we assume 
that the interaction between the equivalent config­
urations is sufficiently small. A quantitative cri­
terion for the fulfillment of this assumption is 
given below. 

Assuming the interaction between the states of 
the minima to be small, the system is described 
near each of the minima in the zeroth approxima­
tion by the usual form of adiabatic approximation 
with the aid of the wave function 

p 

<D;x = 'lJt{ql, • • ., qm; QL · • ., Q~) II Xncx (Q~). (4) 
IX=! 

Here m is the number of d-electrons of the tran­
sition metal, x( Q) is the wave function of the har­
monic oscillation, and K is shorthand for the set 
of quantum numbers n1, ••• , np characterizing 
the oscillating state of the system. 

E. As a result of the equivalents of all the min­
ima, the system energy calculated with the aid of 
(4) is independent of the index i and consequently, 
in the approximation considered, the system is N­
fold degenerate. This degeneracy is lifted by tak­
ing account of the interaction between the equilib­
rium configurations. The regular zeroth-approxi­
mation functions have the form 

N 

1¥kx = 2J cJ<Dix, k =I, 2, .... N. (5) 
i=I 

It is appropriate to emphasize here that only lJtkK 
(and not <I>iK ) describe the stationary states of the 
free complex. 

The form of the perturbation energy, namely 
the interaction between the equilibrium configura­
tions, can be determined from a more accurate 
solution of the electron-oscillation problem. For 
this purpose we substitute the function (5) into the 
Schrodinger equation for the Hamiltonian (1), mul­
tiply it from the left by 1/Jf, and integrate over the 
electron coordinates. Taking (3) into account, we 
can obtain a system of equations for the oscillation 
functions x': 

N p 

~ c7 [H Q + Wt(Q~) + U,i- Ex] Sti fiX~'" (Q~) = 0, (6) 
i=l a.=l 

j, k = 1, 2, ... , N. Here Sij is the overlap integral 
of the functions 1/Ji and 1/Jj, while Uij is the elec­
tronic matrix element of the operator 

where A is the nonadiabaticity operator, i.e., the 
operator containing derivatives of the electronic 
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function with respect to the nuclear coordinates. 
In what follows this operator is immaterial, since 
its matrix elements either vanish or are small 
compared with the contribution of the other terms 
in (7). 

Putting Uij = 0, we find that solutions of the 
system (6) are the oscillator functions contained 
in (4) which describe the system without interac­
tion between the equivalent configurations. We 
can therefore conclude that the operator U de­
scribes the interaction between these configura­
tions. 

F. Irrespective of the form of the operator (7), 
we can obtain relatively easily all the qualitative 
characteristics of the level splitting resulting 
from the interaction between the minima, on the 
basis of symmetry considerations. Tables I and 
II list these characteristics for the cases N = 3 
(tetragonal distortions) and N = 4 (trigonal dis­
tortions), respectively. We see that when N = 3 
two levels are obtained, of which the ground level 
A1 is nondegenerate (U12 < 0, see below), and the 
excited level E is doubly degenerate. For N = 4 
these levels are A1 and T, of which the latter is 
triply degenerate. 

The splitting pattern for these cases is illus­
trated in Figs. 1 and 2. In both cases the amount 
of splitting is determined in first approximation 

Table I. Inversion levels in systems 
with three minima (tetragonal 

internal asymmetry) 

k 

1 

2 

3 

Wave-function 
coefficients 

Energy Sym-
metry 

ck 

I 
k 

I 
ci 1 cz 

elx = 2U~2 At 1;y3 t;y3 t;y3 
82x = -Ut2 }£ 2/ -v 6- -t;y6 -t;y6 
8 3x =-VIz 0 t;y2 -1!V2 

Table II. Inversion levels in sys­
tems with four minima (trigonal 

internal asymmetry) 

Wave .. function 

Sym- coefficients 
k Energy me try I c~ I I ct c~ ck 

3 

1 elx = 3U!Z At '/z 1/2 t/2 '12 
2 8 2x =-Utz ) ''• _1,. _t" 1/2 

3 e,x =-Utz ~T t/2 -'/• '!. -'12 
41 e4x=-Ut~ J 1/2 •;. _.,. _.,. 

----<\p== E 

'----A, -c:. 
FIG. 1 FIG. 2 

by the matrix element U 12 of the perturbation (7), 
calculated with the aid of the functions (4): 

This value depends naturally on the oscillatory 
state under consideration. 

(8) 

G. The results obtained enable us to establish 
a quantitative criterion for the applicability of the 
theory. The main premise of the theory is that the 
operator U is a small perturbation. Obviously, 
for this purpose the condition to be satisfied is 

(9) 

where tiw is an oscillation quantum near one of 
the minima. We shall show below that for the sys­
tems considered here the criterion (9) is well sat­
isfied. 

Inasmuch as the considered level splitting 
clearly corresponds to system transitions from 
one asymmetrical equilibrium configuration to 
another equivalent configuration, we have used 
the designation "inversion" in analogy with the 
similar phenomenon in ammonia. 

3. ELECTRONIC STATE Eg 

A. Let us consider the application of the general 
theory to complexes for which the electron term 
in the regular-octahedron configuration is the 
Eg term ( l = 2) or the T2g term (l = 3 ). These 
two terms cover practically all the interesting 
cases of high-spin transition metal complexes 
with electron configurations d1 and d6 (ground 
state T 2g, first excited state Eg) and d4 and d9 

(ground state Eg, first excited state T2g). 3> 

In all these cases the state of the free atom 
(or ion) of the metal corresponds to a five-fold 
degenerate D term, which can be described ap­
proximately by five hydrogen-liked-functions cp 1, 
cp2, cp3, cp4, and cp 5; we choose these functions to 
be real. The angle parts of these functions cor­
respond in Cartesian coordinates to the factors 
xy, xz, and yz ( T2g symmetry) and 3z2- r2 

2 2 ' x -y (Eg symmetry). In the octahedral com-

3)The T lg terms are also important for the electron con­
figurations d2 , d', d7 , and d', but the internal asymmetry for 
these terms is so sman[•] that the criterion (9) for the applica­
bility of the theory is not satisfied. 
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plex the D term splits into T2g and Eg, the dif­
ference between them amounts to a quantity on the 
order of several thousand em -i, so that in most 
cases in the analysis of one of these terms one 
can neglect the influence of the second term. 

B. Under this assumption, the electron state 
Eg in the complex is described by the functions 
cp 4 and cp 5 (in the zeroth approximation). The 
twofold degeneracy of Eg is lifted only upon inter­
action with the tetragonal oscillations. This leads 
to the presence of three equivalent minima of the 
adiabatic potential, corresponding to equilibrium 
configurations, in which the octahedron is elongated 
(prolate) along one of the three tetragonal axes. 
Along with them, there are also three equivalent 
equilibrium configurations, corresponding to fore­
shortened (oblate along one of the diagonals) 
octahedra. However, the latter are not equivalent 
to the former [!OJ, since their energy is higher, 
and will therefore not be considered here. 

Near the three minima, the wave functions 1/Ji 
satisfying Eqs. (3) are in the zeroth approximation 

'lj.'l = (jl4, 
1 ¥3 

\1'2 = - 2 cp4 + 2 cp •• 

particle X. We note that the parameter A is quite 
simply related with the quantitative characteristic 
of the internal asymmetry ~ == 2 I R01 - Ro2 I, ( dif­
ference between the lengths of the two diagonals of 
the tetragonally distorted equilibrium octahedron), 
A== KaU5, which we introduced earlier C7J and 
which was approximately calculated in [s]. 

The difference in the energies of the complex 
in the regular octahedron configuration and in the 
equilibrium configuration -the height of the poten­
tial barrier between the minima-is 

(13) 

C. The inversion levels for this case are shown 
in Table I and in Fig. 1. For the value of the in­
version splitting we can obtain from (8) (neglecting 
the contribution of the nonadiabaticity operator) 

(14) 

where yK denotes the overlap integral of the oscil­
latory functions of the two equilibrium configura­
tions in the oscillating state K: 

p p p 

r" = ~ li Xn~ (Q~ll) 11 Xn" (Q;?l) II dQ". 
a=l a=l a=l 

(15) 

(10) For the ground state n1 == n2 == ... == np == 0 we 
readily obtain [with account of (11)] 

and differ from one another only in their orienta­
tion in space. 

The oscillating states near each of the minima 
are characterized by a set of harmonic oscillators, 
of which those corresponding to the oscillations of 
Q~ and Q~ (in the normal-coordinate notation of 
Van VleckC1J) have displaced equilibrium posi­
tions compared with the analogous oscillations 
of Q2 and Q3 of the regular octahedron: 

Yo= exp (- 311Ea12nwa). (16) 

The values of y K depend only on the quantum 
numbers of the displaced tin this case-tetragonal) 
oscillations. For the excited state corresponding 
to the excitation of one quantum of the oscillation 
of Q2 (n2 == 1, n3 == 0, the remaining n arbitrary), 
we have 

(17) 

Q~l) = Q2, Q~1l = Qa- Q0 , and for the excited quantum of the oscillation of 

Q(2) - 1 Q . y3 Q 
2 -2 2 -t- 2 3• 

Q~2l=-{Qa+ ~3Q2 -Qo, Q3 (n2 =0, n3 =1) 

Q(3) 1 Q v3 Q 
2 = -2 2 +-z 3• 

Here 

Q~3) = -{ Qa _ ~3 Q2 _ QO. 

(11) 

A= (~~~t =- 14 Y:3 [12F~ (R0) + 5F~ (R0)], 

c;' ,n 
F n (R) = ~ R,:1 f2 (r) r 2 dr, 

0 > 
(12) 

where f( r) is the radial part of the hydrogen-like 
function of the d electron, e is the effective nega­
tive charge of the particle X, R0 is the average 
distance between M and X, and Ka == J.tWi is the 
forced constant of the normal oscillation of Q2 or 
of Q3 of frequency wa, while J.t is the mass of the 

(17') 

In averaging over the different oscillating states 
in the substance, the parameter yK is found to de­
pend on the temperature. 

Table III lists examples of numerical calcula­
tions of the inversion splittings in some complexes 
in accord with the formulas given. Since the oscil­
lation frequency wa is not known exactly, we have 
made the calculations for the three frequencies 
closest to the true one. 

D. Let us check the fulfillment of the criterion 
(9) for the applicability of the theory. With the aid 
of (14) and (13) we can show that condition (9) goes 
over into 
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(18) 

which, as can be readily verified with the aid of 
the data of Table III, is well satisfied in the con­
sidered cases. 

Table III. Examples of numerical results for 
the inversion splitting ( Eg states) 

Complexes I A, I Wa, I 8o, 
I 

8,, 8,, 
I atomic units cm""1 I cm-1 cm""1 cm""1 

I 
f 250 I o.ooJ 0.04 0.1 

Cu(H20):+ 3.lll·JO-Z :iOll i I .5 G.O 17 
\ 3;)0 '17 (i7 t.5S 

I 
f 250 15 .w-s G.O.J0-112·10-• 

Mn(H20):+ 4.13·l0-2 I ::~oo 0.003 0.03 0.06 
:i50 1 0.4 2 G 

4. ELECTRONIC STATE T2g 

In this case asymmetrical configurations of both 
the tetragonal and trigonal type are possible [2]. We 
consider each separately. 

A. The minima of the adiabatic potential with 
account of the interaction with the tetragonal oscil­
lations correspond to oblate octahedra. The wave 
functions of the electronic states near the minima 
are in the zeroth approximation 

'¢1 = <Jll• (19) 

The displacements of the tetragonal normal co­
ordinates are determined by formulas (11), with 

and 6E is determined by (13). 
B. The parameters of the inversion levels are 

given in Table I. However, the absolute value of 
the splitting vanishes in accordance with (8) and 
consequently, there is no splitting in the first ap­
proximation. The second approximation is obtained 
by solving the system of oscillation equations (6) in 
the first approximation in U. Separating the vari­
ables in these equations, we obtain for trigonal os­
cillations of Q 4, Q5, and Q6 (which in the zeroth 
approximation are not displaced) equations of the 
type 

(21) 

B = (av12/0Q4) 0 = (e/21R0) [9F2 (Ro) - 5F (RolL (22) 

where 'YK is determined as before by formula (15). 
Solutions of these equations are also harmonic 

oscillators displaced by Q<O> = ± B-yK/Kb, where 
K = J..tWb, wb is the frequency of the trigonal os­
cillations, and the sign depends on the inversion 
level k. 

Using the first approximation wave functions 
(for which both the tetragonal and the trigonal os­
cillations are displaced), we can obtain for the in­
version splitting in the second approximation of 
the perturbation theory: 

(23) 

These formulas contain already two frequencies 
of the oscillations of the complex-tetragonal Wa 
and trigonal Wb· Unlike the case of Eg, Eq. (23) 
contains the square of the parameter 'YK· There­
fore the condition for the applicability of the the­
ory is even less stringent here than in (18). 

C. For trigonal distortions of the complex, four 
equivalent minima of the adiabatic potentials are 
possible. Therefore the parameters of the inver­
sion levels are determined by Table II. The zeroth 
approximation electron wave functions and the dis­
placements of the equilibrium positions of the tri­
gonal oscillations can be found for each of the 
minima in the cited paper by Opick and Pryce L2J. 
The height of the potential barrier is 

11Eb = --- 282/3/(0 , (24) 

and for the inversion splitting we can obtain 

(25) 

where calculation of 'Y K by formula (15) yields for 
the ground state 

(26) 

The criterion for the applicability of the theory 
does not differ here from (18). Some examples of 
numerical calculations on inversion splitting, ob­
tained from these formulas, are listed in Table IV. 
We do not know the exact values of the frequencies 
wa and Wb, as for the complexes of Table III. 

D. It is also of interest to determine, using the 
data of our calculations, which asymmetrical con­
figurations of free complexes with electronic state 
T 2g are the more stable, tetragonal or trigonal. 
This can be done by comparing the depths of the 
minima [2] in these two cases in accord with for­
mulas (24) and (13). It is obvious that the trigo­
nally distorted octahedron is more stable if 

8 2 I A2 > 3w~ I 4w~ ; (27) 

in the opposite case the tetragonally distorted octa­
hedron is more stable. As can be seen from Table 
IV, A and B are of the same order of magnitude. 
Therefore the solution of this problem is possible 
only if the frequencies wa and Wb are exactly 
known. For the frequencies used in Table IV, the 
trigonal distortions lead to more stable configura· 
tions. 
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Table IV. Examples of numerical results for the 
inversion splitting ( T 2g states) 

I I I 
00 , cm-1 

A, B, Complexes 
'atomic units I atomic units 

Wa, cm-1 Wb, 

I N~4 cm·1 

I 
N~3 

I 100 0.004 0.03 
Ti(H20):+ 1.51·10-2 I 0.63-10-2 250 { 200 

I 125 3.0 4.7 
30:) 150 40 31 

100 3.2 1.7 
Fe( H20):+ 1.0·10-2 0,87-10-2 250 

{ 200 125 36 .58 

In conclusion I express my gratitude to A. M. 
Prokhorov for a discussion of some of the aspects 
of this problem. 
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