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It is shown that the imaginary part of the scattering amplitude A1 ( s, t) in the channel where 
s is the energy and in the nonphysical region of momentum transfer t > 0 is positive, and 
all its derivatives with respect to t are positive, up to its first singularity determined by 
the Landau curve t = t 0( s ). It then follows that for the Regge pole with maximum Re l one 
has in that region oft values dl/dt > 0. The dependence on t of Z(t) for t- 4~-t2 is inves­
tigated [Eqs. (13a) and (13b)]. It is proved that for t > 4~-t2 the curve Z(t) moves into the 
upper half of the l plane. All these results are obtained without assuming the existence of 
a Hamiltonian. Various possibilities, for the t dependence of l as t - oo are discussed. A 
discussion is presented of the question whether or not the poles corresponding to "elemen­
tary particles" are continuous functions of l. In the Appendix it is demonstrated that in the 
calculation of the spectral density function p( s, t) the condition for neglecting all singulari­
ties in the l plane except for the pole with maximum Re l is s ( t- 4~-t2 ) » J-L 4• 

IN recent years the development of the theory of 
strong interactions has proceeded mainly along 
the lines of studying the analytic properties of 
amplitudes for various processes as functions 
of energy and momentum transfer. The main 
achievement in this field has been the discovery 
by Mandelstam [i] of the double representation 
for amplitudes for processes corresponding to 
the transformation of two particles into two. 

The Mandelstam representation made it pos­
sible, in particular, to investigate in more de­
tail the question of the asymptotic behavior of 
scattering amplitudes at large energies. 

It became clear from such investigations [2] 

that the usual diffraction picture for high energy 
scattering could not be made in a simple way to 
agree with the Mandelstam representation. In a 
simple way diffraction agrees with a slowly fall­
ing cross section. At the same time, thanks to 
the work of Regge, [3] it became clear that in the 
nonrelativistic theory the scattering amplitude is 
for large momentum transfers a rapidly varying 
function of the form f( t) sZ<t) ( t = energy, s = mo­
mentum transfer). Here l = l (t) is the position 
of the pole in the partial wave amplitude as a func­
tion of the angular momentum l. 

With the help of the Mandelstam representation 
it was then shown [4] that also in field theory the 
partial wave amplitudes are analytic functions of 
the angular momentum l and may have poles. L5] 

The asymptotic behavior of the scattering ampli-

tude for large momentum transfers cari then have 
the same form as in the nonrelativistic theory. 
However in the relativistic theory the region of 
negative energies t and large momentum trans­
fers s is at the same time the physical region 
of another reaction at high energy s and finite 
momentum transfer t (the ''diffraction peak'' 
region). In this way the possibility arises that 
the asymptotic behavior of the scattering ampli­
tude at large energies is of the form f(t) sl(t). 
Such behavior differs substantially from the usual 
diffraction scattering. As was discussed in detail 
in [G] it corresponds to the scattering by a system 
whose radius increases with energy. This asym­
ptotic behavior has also been discussed in the re­
cent note of Chew and Frautschi. C7J 

In this paper we first establish (Sec. 1) a cer­
tain exact property of the scattering amplitude, 
valid at all energies. In Sec. 2 we discuss in de­
tail the possible behavior of l ( t) -the position of 
the pole in the partial wave as a function of t. In 
Sec. 3 we show that the experimental study of the 
cross section for the scattering of pions on nucle­
ons at large angles and of the cross section for 
two-meson annihilation can decide the question 
whether or not the position of the partial wave 
pole corresponding to the neutron is a continuous 
function of the angular momentum. The existence 
of such a possibility was indicated in the note of 
Chew and Frautschi. [7] 
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1. GENERAL PROPERTIES OF THE IMAGINARY 
PART OF THE ELASTIC SCATTERING AM­
PLITUDE 

Let us show that the imaginary part of the 
scattering amplitude At ( s, t) in the channel where 
s is the energy and in the nonphysical region of 
momentum transfers t > 0, is positive and has 
all its derivatives positive, up to the first singu­
larity determined by the Landau curve t = t 0( s ). 
As s- oo t 0(s)- 4J..L2 (J..L =mass of the pion). 

We write At ( s, t) as a sum over partial waves 
and ignore at first the spin variables: 

A 1 (s, t) = ~a~ (s) (2n + 1) Pn (z), (1) 
n=O 

z = 1 + 2stj[s2 - 2s (mr + m§) + (mr- m§)2 J. (2) 

As a consequence of unitarity 

a~= Iman>O. 

The series (1) converges uniformly up to the first 
singularity of At ( s, t). The proof is based on the 
fact that for t > 0, i.e., z > 1, 

Pn(Z) > 0. 
(3a) 

N 

P~ (z) = ~ (2n- 4k + 3) Pn-2k+l (z) > 0, (3b) 
k=l 

where N = n/2 for n even, N = ( n + 1 )/2 for n 
odd. Differentiating Eq. (1) an arbitrary number 
of times and making use of Eq. (3) we conclude 
that At ( s, t) is positive and has all its deriva­
tives positive in the region t > 0 up to the first 
singular point. 

Let us consider now the amplitude for the 
elastic scattering of pions on nucleons. In the 
barycentric frame it may be written in the form 

fr (s, t) + i (a [k2k1l) k-2f2 (s, t), (4)* 

where kt and k2 are the momenta of the pions 
before and after scattering and k~ = k~ = k2• The 
partial wave expansion of ft ( s, t) and f2( s, t) is 
of the form 

00 

fr(s,t)= ~~ [fn+(s)2(n+1)+fn-(s)2n]Pn(z), (5a) 
n=O 

f2(s, t) = ~ Un--fn+)P~(z), (5b) 
n=O 

where fn± are the partial wave amplitudes corre­
sponding to orbital angular momentum n and total 
angular momentum ( n + Yz) and ( n- Yz) respec­
tively. 

Since 1m fn± > 0, by virtue of the unitarity con-

* a [k,k,] = u · k, x k,. 

dition, we can go through the same considerations 
as above and arrive at the conclusion that 1m ft ( s, t) 
-the imaginary part of the scattering amplitude 
without spin flip-is positive and has all its deriva­
tives positive in the nonphysical region 0 < t < t 0(s). 

It is easy to derive the corresponding statement 
for the elastic scattering of particles with arbi­
trary spin. If the scattering amplitude f is viewed 
as a matrix with respect to the spin variables then 
it can be shown that 

F=Spf=~Pz(z)~(2J+1)fi1 , (6) 
I JS 

where f~z is the amplitude for the scattering with­
out changing orbital and spin angular momentum 
in the state with total angular momentum J, orbi­
tal angular momentum l, and total spin S. 1m f~z 
> 0 and consequently 1m F( z) has the above de­
scribed properties. To verify the validity of Eq. 
(6) it is sufficient to write the matrix element of 
f between states with spin projections At, A2 and 
Ai, Az in the form 

<A-~, A-; If I A-1, A-2> = ~ C (S1, S2, S'; A-;, A-;) C (S1, S2, S; A-1, A- 2) 
1/'SS' 
mm' 

x C (S', l', j; 11-m', m') C (S, l, j; 11-m, m) Yrm' (p') 

X Y;m (p) <i, S', l' I j, S, l). 

Setting in the above expression At = Ai and Az = Az, 
summing over At and A2, and taking into account 
the orthogonality of the Clebsch-Gordan coeffi­
cients we obtain Eq. (6). 

We have stopped to give such a detailed presen­
tation of this simple theorem because we shall 
make use of it below, and also because it may turn 
out to be useful in the analysis of possible asym­
ptotic behaviors of the scattering amplitude. It 
should be noted that the expression for the scatter­
ing amplitude obtained by Lovelace [S] violates the 
theorem and is therefore incorrect. 

2. THE TRAJECTORY OF THE PARTIAL WAVE 
POLE IN THE COMPLEX l PLANE 

It was proposed in [6] that the asymptotic be­
havior of the scattering amplitude at large ener­
gies is determined, in analogy with nonrelativistic 
theory, [3] by the pole in the partial wave in the 
channel where the momentum transfer is the en­
ergy. For the case of pion-pion scattering this 
asymptotic behavior is of the form 

A1 (s, t) = f (t) s1·<tl, f (t) = :rtf (21 + 1) (t-4 2)-1,(1) (t) 
f2(L+1) !.l fo • 

(7) 

Here Z0( t) is the position of the pole in the par­
tialwave fz(t) inthe t channel, and r 0(t) is the 
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residue of the partial wave at that pole. 
Let us discuss in more detail the properties of 

the function Z0 ( t ) • Since At ( s, t) and its first de­
rivative are positive, f(t) > 0 and dZ0/dt > 0 in 
the interval 0 < t < 41}. In what follows we assume 
that the only t-dependent singularities of fz( t) in 
the l plane are poles. The likelihood of this as­
sumption being correct is argued in detail in [ 5]. 

Then the l plane may be split into two parts by 
the line Re l = v in such a way that for Re l > v 
fz(t) has only poles. v < 1, if it is assumed that 
the asymptotic behavior of the scattering ampli­
tude is of the form, Eq. (7). 

In order to clarify the behavior of Z0 ( t) in the 
neighborhood of t = 4J,t2 we make use of the uni­
tarity condition, which, as was shown in [4•5J, 
must be satisfied by the partial wave amplitude 
in the t channel for 16J,t2 > t > 4J.t2: 

(1M) lfr (t)- f;. {t)] = (kfw) fz (t) f;. (t). · (8) 

fz( t) coincides for even l with the usual partial 
waves of the symmetric part of the amplitude for 
pion-pion scattering. The quantity ftl, which in­
terpolates the partial waves of the antisymmetric 
part, has analogous properties but we shall not be 
interested in it. 

As a consequence of the unitarity condition (8) 
fz(t) cannot have poles on the real axis for t > 4J,t2, 

and therefore for t > 4J,t2 the function Z0 ( t) must 
become complex 

10 (t) = l~ {t) + il~ (t). 
Let us find the general expression for a func­

tion that satisfies the condition (8) and has a pole 
in the vicinity of the real axis for l = Z0(t ). This 
problem is equivalent to the problem of finding a 
general expression for a partial wave in the vicin­
ity of a resonance (the Breit-Wigner formula). 
Going through the usual considerations that result 
in the Breit-Wigner formula we obtain 

f _ ~ { 2; 111 (t> I- I~ (t) + il~ (t) _ I} (g) 
1 - 2ik e I - I~ ( t) - il~ \ t) ' 

where 17 z ( t ) is real for real l and has no pole at 
l = Z0( t). 

As was shown in [ 4J when t - 4J,t2, fz( t) 
(t-4J,t2 )Z. If for fixed l >"- Z0(4J,t2) t approaches 

4J.t2 then in order that fz(t) approach zero like 
( t- 4J,t2 )Z it is necessary that 

TJr (t) = mt + r (t - 4f.12/+'~•. (10) 

w I~ (t) 
fz (t) = k 1-10 (t) • (11) 

In order that fz should behave for l near to Z0 like 
( t - 4J.t2 ) l it is necessary that 

(12) 

Assuming that the point t = 4J,t2 is an isolated 
singular point of the function Z0(t) we may, obvi­
ously, with the help of Cauchy's formula obtain the 
real part Z0(t) in the vicinity of t = 4t-t2 from the 
imaginary part Z0. In that way we obtain, setting 
l ( 4t-t2) = A., 

n, 4 2 ).+'/, 
l (t) = '), + "" C (t- 4n2)n- oc ( 11 - t) (13a) 

0 .LJ n r cos nA. ' 
n=O 

A. - 1'2 < no < A. + 1'2, A.+% not equal to an integer, 
A.+t; > 0· 12 , 

).+'/, 
10 (t) =A + ~ Cn (t - 4f.12)n- ~ (t - 4f.12)A+'/, In (4f.12 - t) , 

n=o (13b) 

A. + 1'2 an integer, arg ( 4J,t2 - t) = 0 for t < 4J.t2, 
A.+t/2 > 0. 

From Eq. (11) it follows easily that a in Eq. 
(12) must be larger than zero. Indeed, continuing 
Eq. (11) into the region t < 4J,t2 we find that near 
t = 4J.t2 the residue at the pole is 

(14) 

Thus the positive function f( t) entering Eq. (7) 
is given by f = 2J,tmrr ( 2A. + 1 )/r2( A.+ 1), i.e., a > 0, 
and consequently the pole moves into the upper 
half-plane for t > 4J,t2• 

For the considerations that follow it is of ex­
ceptional importance to know whether the pole re­
mains in the upper half-plane for arbitrary real 
t > 4t-t2, as is the case in the nonrelativistic the­
ory. [3] To this end it is necessary to clarify 
whether the trajectory can cross the real axis for 
t > 4J,t2• In view of the unitarity condition fz( t) 
cannot become infinite for real l and t and con­
sequently the pole can cross the real axis only if 
simultaneously the residue vanishes. 

In order to understand what such a possibility 
means let us investigate fz( t) as a function of t 
for real Z. fz( t) has a pole in the t plane of t 
close to 4J,t2 when l is close to A.. In order to 
clarify the behavior of this pole in the t plane 
one must solve Eqs. (13a) and (13b) for t. For 
A.+% > 1 the position of the pole is given in first 
approximation by the condition 

Therefore for small t- 4J,t2 the quantity e 2i1JZ may z = '), + c1 (t _ 4f.12), 
be approximated by unity and fz( t) may be written 
in the form i.e., t- 4J,t2 = ( Z- A. )/ct. If A.+%< 2 we obtain in 
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the next approximation 

(15) 

On passing above the point l = A. (i.e., l = A.+ i E) we 
find that (A. -l)A.+1f2/c1 = e-i7r(A.+1/2)(Z- A.):\+1/2/ci 
for l > A., i.e.,* 

t- 4 2 - l- /, . c:t (l- ")1.+•;. + ct t ').. (l- ")1.+'/, 
1.1 -~-tc;:- ~ c;:-cg:n 4 . 

Because a and c1 are positive the pole moves to 
the lower half-plane, crossing the real axis to the 
right of the point t = 4J..t2 (Fig. 1); this means that 
the pole moves onto a nonphysical sheet in the t 
plane. On passing below the point l =A. (i.e., 
l =A.- iE) the pole moves into the upper half-plane 
but also on a nonphysical sheet. 

(t} 

t \ 

c, 

FIG. 1. c1, c2 , t = t 0(l) for real l. 

When A.+% » 2 the term c2( t- 4J..t2 )2 must be 
taken into account, which however does not change 
the results since this term is not singular at t 
= 41-'2· 

When 0 < A. +% < 1 then 

4 2 t ("- l ')1/(1.+'/,) !1 - = -ct- cos :It/\ • 

In this case, too, the pole moves to the right of 
the singular point t = 4J.'2, i.e., moves onto a non­
physical sheet. If A.+% is an integer Eq. (13b) 
leads to the same results. 

c' 
I 

h. ' 

\c; 
I 

A" I 

' / 
...... __ ,.,.. 

FIG. 2. c,, c 2 , l = l,(t) for real t. 

The fact that for real t > 41-'z the pole moves in 
the l plane (Fig. 2) into the upper half-plane (a > 0) 
thus leads to the result that for real l > A. the pole 
moves in the t plane off to a nonphysical sheet. If 
as t increases Z0( t) does not cross the real axis 
then the singularities of fz in the t plane lie on 
nonphysical sheets for arbitrary real Z, i.e., the 

*ctg =cot. 

partial wave amplitudes have the same properties 
(no complex singularities) for integer and non­
integer Z. In the nonrelativistic theory [3] this 
property is insured by the hermiticity of the 
Hamiltonian for real Z. 

If for some l = A.' (Fig. 2) the pole crosses 
the real axis, then in the t plane the pole reenters 
the physical sheet at t = t' (Fig. 1). Since for suf­
ficiently large Z, determined by the number of 
subtractions in the dispersion relation in s, fz(t) 
has no complex singularities (see L4• 5J) for some 
l =A." the pole must return to a nonphysical sheet 
in the t plane (Fig. 1) and, consequently, for some 
t = t" into the upper half of the l plane (Fig. 2). 

We remark that if the interval A.' < l < A." con­
tains l = 2n then the fact that the physical partial 
amplitude fzn(t) has no complex singularities is 
not obvious and results from involved compensa­
tions. 

So far we have been considering the pole which 
determines the asymptotic behavior of A1 ( s, t) in 
the region of the diffraction peak, and which is, by 
hypothesis, first in the sense that l = Z0( t) for 
t < 41-'2 has the largest value in comparison with 
other poles. If we were to consider other poles 
Zi ( t) we would, obviously, arrive at the conclusion 
that they behave in the same way as Z0( t) in the 
vicinity oft= 41-'2, if A.i = Zi(4J..t2) > v. In Eqs. (13a) 
and (13b) it would only be necessary to replace A. 
by A.i. We would not, however, be able to prove 
that these poles move for t > 4J..t2 into the upper 
half of the l plane, since these poles do not con­
tribute substantially to A1(s, t). We would only 
be able to verify that if it is required that fz(t) 
have no complex singularities for real l then all 
the poles t > 4J..t2 must move into the upper half of 
the l plane and must remain there. 

In connection with what has been said above it 
becomes most attractive to hypothesize that the 
poles of fz( t) for t > 41-'2 and Re l > -Y2 may lie 
only in the upper half of the l plane. It would be 
most interesting to investigate the consequences 
of such a hypothesis. One of the consequences is 
as follows. Let us consider the properties of Z0( t) 
in the complex t plane. This function has singu­
larities on the real axis t > 4J..t2. It cannot have 
singularities connected with the left cut of the 
function fz(t) (t < 0) since the jump in fz(t) 
across the left cut has in general no singularities. 
[ 5] Generally speaking Z0 ( t) may have singulari­
ties at values of t which are not singular points 
of fz ( t). Such points could be those values of t 
for which Z0( t) coincides with the position of 
some other pole (intersection of poles). 
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The behavior of Z0(t) for t- oo is substan­
tially restricted by the condition that sZoCt> has 
no essential singularities at infinity in the complex 
plane cut for t > 4112• This means that Re Z0 

is bounded. Re Z0 < c is determined by the num­
ber of subtractions in the Mandelstam represen­
tation. This condition gives rise to the inequality 
IZo(t)l < Bltlq for It I- 00 , q < 1. The latter 
means that the dispersion relation for Z0(t) re­
quires no more than one subtraction. If we as­
sume in addition that no intersection of singulari­
ties occurs, i.e., that Z0(t) has singularities only 
on the real axis t > 4112, then we arrive at the 
following dispersion relation 

t ri dt'l~ ( t') 
lo (t) = lo (0) + il ~ t' (I'_ t) , 

4p.' l 
(16) 

Assuming that Z0(t) = Im Z0(t) > 0 (pole lies in the 
upper half plane ) it then follows that for t < 4112 

all the derivatives of Z0(t) are larger than zero. 
Since a bound state of two pions with angular 

momentum l = 2 does not exist it follows that 
lo ( 4112 ) < 2. Therefore 

l~ (0) < [/ (4ft2)- L (0)J/4fl2 < 1f4fl2 , 

since Z(O) is assumed equal to unity. Consequently, 
the index in the exponent that determines the angu­
lar distribution within the diffraction peak [SJ 

(r = t~ (O)). 

Another consequence of Eq. (16) is the fact that 
if Z({(t)- 0 as t-oo so that Jz"(t)dt/t < oo, 
then as t - ± oo Z0 ( t) tends to the constant limit 

oc 

Lo(O)- ~ ~ l~ (t) t!j-
"~'-' 

-the pole "freezes" as t- ± oo. We remark that 
in the nonrelativistic theory the pole behaves in 
precisely this way if the potential goes at small 
distances like rk ( k > -2, k not equal to an even 
integer) and the value that Z0 ( t) approaches is 
given by-% -k/2. If Jz0(t')dt'/t' = oo, then 
Z0(t) tends to - oo as t--oo -the pole disap­
pears. Such a behavior of Z0(t) in the nonrela­
tivistic theory takes place if at small distances 

00 

the potential is of the form 6 cnrm, i.e., r = 0 
n=o 

is not a singular point of the potential and small 
distances play no role in the scattering. 

To conclude this section we discuss the behav­
ior of Z0(t) for t < 0, without assuming the valid­
ity of Eq. (16). If Z0(t) continues to decrease with 
decreasing t for t < 0 we have the following pos­
sibilities for the behavior of Z0( t) and, conse-

quently, for the asymptotic behavior of A( s, t) 
and A1(s, t) as s- oo. 

1. Z0(t)- C ~ 0 as t--oo. A(s,t) tends 
to infinity for any finite t. 

2. Z0(t) goes through zero for some finite value 
of t = t 1• If the residue of the pole does not vanish 
at t = t 1 it is necessary, in order that the physical 
amplitude for s-wave scattering have no pole at 
t = t 1 (this would mean the existence of a particle 
with imaginary mass), that this amplitude not co­
incide with fz( t) for l = 0. In order for this to be 
possible it is necessary, at least, that the real 
part of A ( s, t) not decrease as s - oo for arbi­
trary t. If A( s, t) were to approach zero as 
s - oo we could write for it a dispersion relation 
in s without subtractions and show that the ampli­
tude for s-wave scattering coincides with f0(t ). 
If we compare the behavior of Z0(t) in these two 
cases with the possible behaviors of Z0( t) in the 
nonrelativistic theory we arrive at the conclusion 
that in the first case the interaction has singulari­
ties at small distances with no nonrelativistic ana­
log, since the pole freezes for l > 0, and in the 
second case the singularity must be at least of a 
delta-function like nature. 

3. If Z0( t) passes through zero in such a way 
that at t = t 1 the residue at the pole vanishes, then 
A( s, t) may decrease as s - oo arbitrarily rapidly 
for sufficiently large t. This case corresponds to 
the situation when small distances play no role in 
the scattering even at high energies. Let us note 
that in nonrelativistic quantum mechanics the 
residue at the pole cannot vanish. Therefore this 
case of course has no nonrelativistic analog. 

3. ARE THE POLES, CORRESPONDING TO 
"ELEMENTARY" PARTICLES, CONTINUOUS 
FUNCTIONS OF l ? 

In a recent note Chew and Frautschi have re­
marked on the experimental possibility of clari­
fying the question whether the properties of the 
poles corresponding to "elementary" particles 
are the same as of the poles corresponding to 
bound states of nonrelativistic quantum mechan­
ics. We would like to discuss this question in 
more detail. 

We consider the amplitude for the scattering 
of pions on nucleons. The invariant amplitude 
has the form 

f A A 

a (u,t) + 2 (k1 + k2)b (u,t), (17) 

where k1 and k2 are the four-momenta of the pion 
before and after scattering. We have used u to 
denote the square of the energy in the barycentric 
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frame, and t -the momentum transfer-is related 
to the scattering angle by 

t =-} u-I [u2- 2u (m2 + 1-12) + (m2 - 1-12)2] (1 - z). 

To analyze the partial wave amplitudes it is 
convenient to write the scattering amplitude in 
the barycentric frame in two-component form, 
Eq. (4): 

fi (u, t) + i (a [ki, k21) k-2 { 2 (u, t), (18) 

ft ( u, t) and f2( u, t) are simply related to the func­
tions a( u, t) and b( u, t) and have, as functions of 
s, the same analytic properties: 

{2 =~:rei [(w- m)2 -!-121 [a- (w + m) b], 

fi- zf2 = - 3~ :rei [(w + m)2 -!-121 [a+ (w -m)bl, 

where w = fU. The partial wave expansion of 
ft ( u, t) and f2 ( u, t) differs from the Eqs. · (5a) 
and (5b) only in the replacement of s by u. 

In a manner analogous to that used in [4] par­
tial waves with complex l may be introduced by 
making use of the dispersion relation in s. If a 
dispersion relation in t for ft, 2(u, t) is written, 
for example with one subtraction, in the form 

00~ dz' f(I) (u z') "'? dz'f(2) (u z') 
f (u z) - f (u 0) + !._ 1. 2 ' + _!___ \ 1.2 ' 

1.2 ' - 1, 2 ' n z' (z'- z) n .) , z' (z' + z) ' 
Zo -z, (19) 

then it is easy to show that oo 

1 \ Fn(u) = fn+(u) (n + 1) + fn- (u) n = n ~ Qn(z) fi1l (u, z) dz 
Zo 

8 

+ (- 1 t + ~. Qn (z) fi3) (u, z) dz, (20a) 
z, 

00 z 
1 (' \ f(l) , dz' 

Hn(u) = fn-- fn+ =n ~ Qn(z) zdz J 2 (u, z) 7 
Zo Zo 

00 00 

+ (- 1 t -k- ~. Qn (z) zdz ~. f~3 ) (u, z') ~:· • (20b) 
zo zo 

where Qn ( z ) are Legendre functions of the second 
kind. No formulas corresponding to Eqs. (20a) and 
(20b) exist for n = 0 and n = 1. If a larger number 
of subtractions is necessary, then Eqs. (20a) and 
(20b) exist starting with larger values of n. 

Equations (20a) and (20b) make it possible to 
introduce analytic functions F'f ( u), Hy ( u), which 
coincide with Eqs. (20a) and (20b) for even and 
odd n (see [4•5J). Explicit expressions for Fy 
and H'f are obtained from Eqs. (20a) and (20b) 
by replacing Qn ( z ) by Qz -the Legendre function 
of the second kind defined for arbitrary values of 
l -and by replacing ( -1 )n by ± 1 respectively. 

By repeating the same considerations as in l4, 5J 
one sees easily that F'f, H'f satisfy the same uni­
tarity condition as F n• Hn, for real values of l. 
Fy and Hy possess all the properties as do the 
partial waves with complex l for spinless par­
ticles discussed in [4, 5]. 

The functions ft ( u, z ) and f2 ( u, z ) may be ex­
pressed in terms of the functions Fy ( u) and Hy ( u) 
in the form 

1 m, 

fi'(u,z)=2 ~ F;i'(u)[1±(-ItJPn(z) 
n~o 

i a,+ioo dlF{' (u) 
+ 4 ~ sinln [Pz(-z)±Pz(z)], (21a) 

a1-ico 

'1 m, 
fi(u, z)= '2 ~ H;i= (u) [1 ± (- ItJ P~ (z) 

n=I 

i a,+iet:! dlH[' (u) , ' 
+ 4 ~ Sii1Tit [ -Pz(-z)± Pz(z)J, (21b) 

a1.-ioo 

where tf ( u, z ) , q ( u, z ) are the symmetric and 
antisymmetric parts of ft ( u, z) and f2( u, z); mt 
and m 2 are determined by the number of subtrac­
tions, at >fit, a 2 > m 2• 

We have given these formulas to be able to for­
mulate more precisely the question raised in the 
title of this section. The partial wave ft- ( u) has 
a pole at u = m 2, corresponding to the nucleon. 
The functions F t ( u ) and H t ( u ) have the same 
pole. 

If the functions Fz and Hz , when analytically 
continued in l to the point l = 1, where generally 
speaking Eqs. (20a) and (20b) are not applicable, 
coincide with the true partial waves then one may 
assert that Fz and Hz should have for fixed l a 
pole in u at u = u( l), such that u(l) = m 2• In 
that case we would say that the nucleon pole is 
a continuous function of l. If the functions Fz and 
Hz, when analytically continued in l to the point 
l = 1, do not coincide with the true partial waves 
then they cannot have a pole corresponding to the 
nucleon, and in that case we would say that the 
nucleon pole is not a continuous function of l. 

A continuous dependence of the pole on l arises 
naturally if the pole corresponds to a bound state 
(the centrifugal barrier changes the binding en­
ergy). In application to a pole due to a particle 
which is thought to be elementary such a depend­
ence seems somewhat unexpected, however since 
the concept of elementarity has no precise mean­
ing in the presence of strong interactions it is 
possible that all particles are elementary to the 
same degree and that their corresponding poles 
are continuous functions of l. 
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The question whether the poles depend on l 
continuously may be decided experimentally. This 
has to do with the fact that if in a certain range 
of variation of u the amplitude f2 ( u, z ) tends to 
zero as z - ± oo, and ft ( u, z ) increases slower 
than z, then for such u we may write a disper­
sion relation with no subtractions for f2( u, z) and 
with one subtraction for ft(u, z ). At that Eqs. 
(20a) and (20b) are valid for n = 1, i.e., in that 
interval of u the functions Fz and Hz, when 
analytically continued in Z, coincide with F! 
and Hi. In view of analyticity in u they coin­
cide for any u, and consequently the position of 
the nucleon pole varies continuously with Z. 

The interval of variation of u, within which 
the functions f2( u, z) and ft ( u, z) have the in­
dicated properties, may turn out to be the inter­
val u < 0. For s - oo and u < 0 we enter into 
the physical region for large angle scattering of 
pions on nucleons ( s being the energy ) . For 
s - -oo we enter the physical region for two­
meson annihilation ( t being the energy). It is 
not difficult to see that if the differential cross 
sections for these reactions tend to zero as 
s - oo, u = const and t - oo, u = const re­
spectively, then ft and f2 have the above de­
scribed properties and, consequently, the neutron 
pole is a continuous function of l. 

other processes may be investigated in an 
analogous manner and conclusions arrived at 
about poles corresponding to other elementary 
particles. In particular, the processes enumer­
ated in [9] could be so utilized. 

Let us emphasize that even if the position of 
the neutron pole is a continuous function of l and 
the differential cross sections for annihilation 
and large angle scattering tend to zero this does 
not mean that 

f; (u,s) ~ stn<u>-1 (22) 

as s - oo and u < 0, where ln ( u) is the position 
of the neutron pole, since for Re l < 0 the func­
tions Fz and Hz may have singularities other 
than poles. 

If it is assumed that the imaginary part of 
Zn(u) is larger than zero for u > (m +td2 and 
that a dispersion relation of the form of Eq. (16) is 
valid, then it is easy to obtain an inequality for 
Zn(u) in the physical region u < 0, by making use 
of the fact that in that case all the derivatives of 
Zn ( u) are larger than zero. Since there does not 
exist a stable particle with l = 3 and baryon num­
ber equal to unity it follows that Z[(m+J.t) 2 ] < 3. 
Consequently 

Since l~ > 0, Zft < 1/mJ.t also for u < m 2• Hence 

ln (0) = - m/11 + 1. 

In conclusion we express gratitude to I. Yu. 
Kobzarev, L. B. Okun', and K. A. Ter-Martiro­
syan for numerous interesting discussions of the 
results of this work. 

APPENDIX 

Let us consider the problem of evaluating the 
spectral function p( s, t) starting from an asym­
ptotic form of At ( s, t ) of the type 

( s )1(1) 
r ( t) t - 4~t• . 

To that end it is necessary to calculate the differ­
ence At(t +iO) - At(t- iO) for t > 4J.t2• Starting 
from Eqs. (7), (13a), and (13b) it is easy to show 
that for A. +% not equal to an integer 

(A.1) 

When (t-4J.t2 )A.+t/z Ins« 1, Eq. (A.1) goes over 
into 

p = consHs (t- 4f12)l" Yt- 4f12 Ins. (A.2) 

A. is the value of the right-most pole for t = 4J.t2• 

Suppose the next pole occurs for A.t < A.. Then the 
contribution to p, due to this pole, will be in anal­
ogy to Eq. (A.2) given by 

const · [ s (t - 4f12)f''Vt---= 4f12 Ins. (A.3) 

On comparing Eqs. (A.2) and (A.3) we see that 
whereas the condition for ignoring all singulari­
ties in At (and A) except l = A. is the statement 
s » J.t2, in evaluating p an entirely different con­
dition is involved: 

(A.4) 

For t- 4J.t2 = const • J.t2 Eq. (A.4) reduces to s » J.!2• 

The condition (A.4) apparently means that an asym­
ptotically pole-like regime serves to determine p 
only if a large number of Landau singularities 
contribute to p, as was to be expected. An analo­
gous result is obtained also when A.+ Y2 is equal 
to an integer. 
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