
SOVIET PHYSICS JETP VOLUME 16, NUMBER 1 JANUARY, 1963 

ON THE EXPERIMENTAL VERIFICATION OF UNITARY SYMMETRY OF STRONG 

INTERACTIONS 

V. M. SHEKHTER 

Leningrad Physico-technical Institute 

Submitted to JETP editor February 9, 1962, resubmitted March 6, 1962. 

J. Exptl. Theoret. Phys. (U.S.S.R.) 43, 205-215 (July, 1962) 

The possibilities of an experimental verification of unitary symmetry of strong interactions 
are discussed. For this purpose, the relations between the amplitudes of various processes 
are established for each of the two unitary symmetry variants. 

1. INTRODUCTION 

EIGHT of the recently observed resonances in the 
2rr, 3rr, and K + rr systems have strikingly close 
mass values: mp = 750 MeV ( p- rr + rr ), mw 
= 785 MeV ( w- rr+ + rr- + rr0), and mK* = 885 MeV 
( K* - K + rr ). Regardless of the meaning that one 
can ascribe to these resonances as new "parti­
cles," the agreement between the masses appar­
ently points to a certain approximate symmetry in 
strong interactions, higher than isotopic invari­
ance. The relatively small splitting of the masses 
must be ascribed in this case to a less strong in­
teraction, which disturbs the high symmetry, but 
is isotopically invariant as before. By now a 
rather large number of possible high symmetry 
variants have been proposed for strong interac­
tions, but only two of these can be used to explain 
the experimental situation with the resonances. 
Both these variants are based on symmetry under 
transformations of a unitary unimodular group in 
three dimensions, frequently called simply unitary 
group or unitary symmetry. 

Unitary symmetry was first considered in the 
Sakata model by Ikeda, Ogawa, and Ohnuki [t], 

whose paper was followed by many others[?.]. In 
the Sakata model, as is well known, the starting 
point is a triplet of baryons, possibly p, n, and A. 
The remaining particles are regarded as compound 
ones. The unitary symmetry signifies that both in 
the initial triplet and in the "compound" multiplets 
the masses and interactions of all particles are the 
same. In recent papers by Gell-Mann and 
Ne'eman [~] a second variant of unitary symmetry 
was proposed, in which one starts out from two 
triplets of certain "conceptual" particles; in this 
case all eight variants are compound and in the 
presence of unitary symmetry they form a degen­
erate octet. We shall henceforth call these two 

variants of unitary symmetry the 3-symmetry and 
8-symmetry respectively. 

Within the framework of the 3- or 8-symmetry 
one can have, generally speaking, different multi­
plets of mesons or baryons. In both variants, how­
ever, the simplest meson multiplets are singlets 
and octets. It is natural to think that the observed 
septet of rr and K mesons can be classified as an 
octet of this type. Here, obviously, there should 
exist an eighth particle, hitherto not observed, the 
so-called x0 meson (pseudo-scalar in ordinary 
space and scalar in isotopic space). The question 
of the position that this particle occupies in the 
unitary symmetry scheme and concerning its de­
cay properties was considered in many pepers [(]. 
In some papers it was called a a meson. 

Resonances can be ascribed to a second octet 
(it is not very clear whether this octet should 
contain the w0 resonance or the T/ 0 resonance, 
which is similar to the w 0 resonance in the rr+, 
rr-, rr0 system with mass 550 MeV). One can note 
that in transformations of the unitary group the 
law of transformation of particles within the octet 
is the same for both the 3- and the 8-symmetry. 

The masses of the baryons, and particularly 
those of mesons, differ quite strongly from one 
another. This means that the unitary symmetry is 
approximate, if it exists at all. At low energies 
such an approximation should certainly be poor. 
Owing to the differences in the masses it is not 
even clear at what energies various amplitudes 
and cross sections can be compared, a factor es­
sential for the verification of unitary symmetry. 
At high energies the mass difference is not so es­
sential, but the scattering is principally of the dif­
fraction type in this case, and is independent of 
the detailed structure of the interaction. It is pos­
sible just the same that a structure of this type 
does manifest itself in collisions (both elastic and 
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inelastic) accompanied by large momentum trans­
fer. In such nondiffraction processes small dis­
tances are significant, at which a unitarily-sym­
metrical interaction probably predominates. 

If the described situation does indeed obtain, it 
is of interest to establish the relations between 
the cross sections or between the probabilities of 
different processes which follow from the unitary 
symmetry. A direct experimental verification of 
these relations will show the extent to which the 
unitary symmetry is correct and in which of its 
two variants. We shall write down below the 
"unitary" relations between the amplitudes of the 
observed processes of the type meson+ nucleon 
- meson + baryon and baryon + nucleon - baryon 
+baryon. The resultant equations will be com­
pared with the available experimental data. In the 
concluding section we shall discuss (in analogy 
with what was done in [5]) the possible manifesta­
tions of unitary symmetry in lepton decays of 
strange particles. 

2. AMPLITUDES 

In the case of meson + nucleon - meson + 
baryon processes we can write out 27 amplitudes, 
which are independent from the point of view of 
isotopic invariance : 

W1 = (pn+ i pn") = (me Inn-), 

w2 = (pJC I pJC) = (mt+ Inn+), 

Wa = (pK0 I pK0 ) = (nW I nW), 

W4 = (pW I pW) = (nK0 I nK0 ), 

w, = (pK- I pK-> = (nK0 I nK0 ), 

w6 = (pK0 / pK0 ) = (nK- I nK-), 

w7 = (nn° I pn-) = - (pn° [ nn+), 

w8 = (nX,0 I pn-) = <PX0 Inn+), 

Wg = (nW I pK0 ) = (pK0 InK+), 

W1o = (nK0 I pK-> = (pK-1 nK0 ), 

w11 = (AK0 [ pn-) === <AK+ [ nn+), 

W1z = (An+ I pK0 ) = (An- InK-), 

W1a = (An° I pK-) = - (An° I nK0 ), 

w14 = (AX,0 I pK-> = (AX0 I nK0 ), 

W1s = ('12-K+ !pn-) = (J..+Ko Inn+), 

ull6 = (J..-n+ [ pK-) = (J..+n- I nK 0 ), 

wl, = (f:,+K+ I pn+) ~~ (L.-K0 I n:rC), 

w1s = <J..+n-f pK-> = <J..-n+ I nK 0 ), 

W19 = (J..+no I pK0 ) = - (L-n° InK-), 

Wzo = (J..+xo I PK0 ) = o::-xo InK->. 

W 21 = ("L-°K0 I pn-) = - ("L-°K+ [ nn"), 

Wzz = ("L- 0n+ I pK0 ) = - ("L- 0n-[nK-), 

Wza = ('L0n° I pK-> = ('L0n° [ nK0 ), 

Wz<l.= (L0 X0 !PK-) = -(L0 X0 InK 0 ) 

Wzs = (B°K0 [ pK-> =- (B-K+ I nK0 ), 

Wz6 = (s-w I pK-> = - (3°K0 1 nK0), 

Wz7 = (B0W j pK0 ) =- ('E.-K0 InK-). (1) 

Equations (1) do not include amplitudes of re­
actions in which 1r0 or l participate in the initial 
state, since such reactions are practically unob­
servable. 

Analogously, we can write for the amplitudes of 
processes such as baryon + nucleon - baryon 
+baryon 

R1 = (pn I pn) = (np I np), 

R2= (pL.- [pL.-)= (nJ.+ I nJ.+), 

Ra = (pJ..+ I pJ.+) = (n"L--1 n"L.-), 

R 4 = (pB- I pB-) = (nE0 [ nE0 ), 

Q, = (pE0 I pE0 ) = (nB-1 nB-), 

R 6 = (nE0 I pB-) = (pB- I nE0 ), 

Q7 = (J.+L,- I pB-) = - (J.-J.,+ I nE0 ), 

R 8 = (AA I pE-) = - (AA I nB0 ), 

Q9 = ("L,o;:.o I pB-) = - (J..o'Lo I nBo), 

R10 = (AI0 I pB-) = (AL.0 I nE0), 

[~n = (J.OA I pB-) =(L-oA I nSo), 

Ql2= o::+A I pE0 ) =- o::-A I nE-), 

Q13 == o::+J..O I pE0 ) = o::-J.O InS-), 

R14 = (nA I pL.-)= (pA I nJ.+), 

Ru;= (n"L.o [pL.-)=- (p'E.o !n'i.'), 

QJG = (nJ.+ I pA) =(pi-! nA), 

~21, = (n'L + [ p'E.0 ) = - (p'E.- I n'E.0 ), 

R 1R= (pA lpA)= (n,\ [nA), 

n]9 = (p1:.0 I pA) = - (n'L0 InA), 

Q2o = (pA I p'L0 ) = - (nA [ n'L0 ), 

Q21 = (P'i.0 I p'E.0 ) = (n1:.0 I n'E.0 ). 

Equations (2) do not include the amplitude 

(2) 

< pp I pp > = < nn I nn >, since it obviously coin-
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cides with the amplitude of scattering of a proton 
by a neutron in state with isotopic spin 1, i.e., in 
an odd spin-orbit state. 

Any new symmetry, higher than isotopic invari­
ance, will lead to the appearance of several rela­
tions between the written amplitudes. The method 
used to obtain these relations is described in the 
Appendix. The results are presented below. 

3. 3-SYMMETRY 

If 3-symmetry holds true, then only three of the 
first 14 amplitudes are independent. The remainder 
are expressed in terms of these three in accord­
ance with the equations 

Analogously 

Out of the 21 amplitudes 5"li, three are inde­
pendent. The equations relating the Qi have the 
form: 

In analogy with (5), the following equations hold 
true in the case of 8-symmetry 

(nn+n+ I pn+) = (L.+K°K 0 I pl\0 ), 

(nn+;c I pJC) -'' (2: 'Koi(U I pKl'), 

(nWK-1 pn-) = (L.+WK- I pK0 ), 

(pi\-K 0 I ;m-) = (pK-n+ I pK0 ), 

(pnn+ I pp) = (pL.+Ko I pp), 

(n+Jt- IPP) = (1\.°K0 I pp), 

(4) (2n'2JC I pp) = (2K02K0 I flp) (8) 

Relations of the type ( 3) and ( 4) can be obtained 
also for amplitudes of other processes. To find 
the most interesting relations it is sufficient to use 
only the invariance with respect to (A.2). In par­
ticular, the following relations hold true 

(nrr'n+ 1 pn+) = (i\K+K+ I pK+>, 

(nn+n- I pn-> = <AW K- I pK->, 

(nWK- I pn-) = (An+n- I pK-), 

<PK-K0 I pn-> = (pn-Ro I pK->, (pnn+ I PP> =(pAW I pp), 

(n+n- I pp) = <K+K-1 pp), <2n+2n- I pp'> ~ (2K+2K- I pp) 
(5) 

4. 8-SYMMETRY 

In a case of 8-symmetry, only five of all the 27 
amplitudes Wi are independent (this circumstance 
was already noted in [3]). The relations between 
the Wi have the following form (it is convenient to 
regard w1, w 4, w 5,. w 7, and w 8 as independent): 

W3=Wv W2=W6=W1-V2w7, Wg=W17=W4-w1, 

W1o=W1s'=W5 -wl + V2 w,, W11 = (V3w, -w8)/2, 

Wn= V2w13=W2o= V2'w24= -(V3w7 + w~)/2, 
W14 = Ws - W1 + (3V3 w7- 5w8)12V6, 

W15 = W2< = W4 - W1 - (w7 + V:3 u1 8)/2, 

W16=W2o =W5 -wl + (V;3w, -ws) V~, 
(t)l9 =- (l)22 = (w, - v:~f Uls)/2, Wn = (w, + V:3 (tls)/2, 

ul 23 = w,- W 1 + (5w7 - V3w8)/2 V2, . 

(6) 

etc. 

5. COMPARISON WITH EXPERIMENT 

As was already noted, it would be desirable to 
compare relations (3)-( 8) with the cross sections 
of the corresponding processes, accompanied by 
large momentum transfer. At the present time 
there are no such data. The equations obtained can 
therefore be compared for the time being only with 
experiments in which the integral cross sections 
of elastic or inelastic processes, occurring upon 

collisions between mesons or baryons and nucleons, 
were measured at energies on the order of several 
BeV, and also with total meson-nucleon and baryon­
nucleon cross sections. Of course, we cannot ex­
pect good agreement. It is more likely that the 
character of the "disagreement" is of interest. 

At present the most complete data are those 
pertaining to the integral cross sections of meson­
proton interactions. According to [B], in the labor­
atory-system momentum range from 10 to 20 
BeV/c, the total cross section at(rr+p) ranges be­
tween 24.8 and 23.5 mb, while at ( rr-p) ranges 
from 26.9 to 25.6mb. In a similar momentum in­
terval, at ( K+p) remains approximately constant 
at about 18mb, whereas at( K-p) varies from 
~24 to ~22 mbPJ If we compare these figures 
with the 3-symmetry equations w 4 = w 1 and w 5 
= w2, predicted in (3), whence 

(9) 
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we see that the second of these equations is accu­
rate to 10-15 per cent, whereas the first is accu­
rate only to 30 per cent. One must note, however, 
still another circumstance. According to the well 
known theorem of Pomeranchuk [B], the following 
asymptotic equations should obtain at very large 
energies 

(if the cross sections decrease with increase in 
energy E no faster than ( ln e )-1, then (10) can be 
proved rigorously). 

The experimental data presented above for en­
ergies ~10-20 BeV show that the corresponding 
cross sections have a tendency to come close to 
each other. Inasmuch as the approximate equality 
<Tt ( K-p) = <Tt ( 1r-p) already takes place at relatively 
low energy, it is natural to think that in a region in 
which relations (10) will be valid we can approxi­
mately equate also at ( K+p) and <Tt ( 1r+p ). 

The 8-symmetry predicts in (6) the equalities 
w3 = w1 and w6 = w2, from which it follows that 

(11) 

The cross sections of Kn interactions at ener­
gies ~10-20 BeV have not been measured so far. 
Data on K+n scattering are given only for mo­
menta 1-2.8 BeV/c. In this region ut( K+n) 
=18mb, whereas u2 ( 1r+p) ~29mb. For K-n 
collisions data are available in the momentum 
range 2.5-4 BeV/c, where <Tt(K-n) changes from 
22.5 to 20.5 mb[toJ. In the same region, <Tt(7r-p) 
varies slightly about 30 mb. The agreement with 
8-symmetry is poor, but the energies are still 
small. Somewhat better agreement is obtained 
with the 3-symmetry equation w6 = w3, i.e., 
<Tt ( K +n ) = <Tt ( K-n ) . 

The partial cross sections of the different reac­
tions at large energies are likewise still unknown. 
A comparison of elastic cross sections of the 
scattering of K- and 1r- by a proton at 1.5 BeV, 
where u(K- + p- K+ + p) = 8 ± 1.5 mb[to] and 
u(7r- + p- 1r- + p) = 9 ± 1.5 mb[11], shows too 
good an agreement with the 3-symmetry relations 
u ( K- + p - K- + p ) = u ( 1r- + p - 1r- + p ) to be 
regarded as accidental. 

Among the inelastic processes, the most in­
formation can be extracted at the present time ap­
parently from experiments on proton-antiproton 
annihilation. If we select only those cases in which 
each meson emitted upon annihilation has an energy 
which is large compared with its rest mass, then 
the difference in the masses becomes insignificant, 
and we can expect the equalities of unitary sym-

metry to be satisfied, particularly the last relation 
in (5) or ( 8). Experimental data on the 2-meson 
annihilation, which is the most favored from this 
point of view, are available for a momentum 
1.61 BeV /c [t2J. According to these data 
u("p + p- 1r+ + 1r-) = 0.1 ± 0.025 mb, 
u("p + p- K+ + K-) = 0.055 ± 0.018 mb, and with 
90 per cent probability we have u( p + p- K0 + R0 ) 

< 0.05 mb. At the same time, according to (5) and 
(6) we should have 

a (p + p --> rr+ + JC) = a (jj + p----+ K+ + K-) (3-symmetry) 

a (p + p -> n+ + JC) = a (p + p -> K 0 + KO) (8-symmetry) 

(12) 
From this, however, we can still not conclude 

that the 3-symmetry or the 8-symmetry is incor­
rect, since the experimental errors are large and 
the total energy is too small (at a momentum of 
1.61 BeV /c, the c. m. s. energy per meson is 1.14 
BeV, which is merely 2.3 times the rest energy of 
the K meson). 

From the foregoing comparison with the exper­
imental data we see, first, that the data are still 
insufficient and, second, that they agree somewhat 
better with 3-symmetry than with 8-symmetry. 
Some verification of relations ( 3 )-( 8) or their 
analogs will become possible only after the cross 
sections of different processes are measured at 
large energies and large momentum transfers. 

6. UNITARY SYMMETRY AND LEPTON DECAYS 
OF STRANGE PARTICLES. 

It was shown in several papers [5•13 •14] that in 
the presence of unitary symmetry simple numer­
ical relations exist between the nonrenormalized 
constants of the weak interaction responsible for 
the lepton decays of strange particles. Since uni­
tary symmetry is violated in strong interactions, 
the decay constant will change as a result of the 
renormalization. In this case no trace can remain 
of the indicated relations. Nonetheless, there is 
the known case of the axial constant in ordinary 
beta decay, when the influence of renormalization 
is small, although it should appear there because 
of the unitary symmetrical interaction. We can 
therefore attempt to compare the "unitary" rela­
tions between the constants and the experimental 
data. This was precisely the procedure used by 
Kobzarev and Okun' lGJ. We show below that the 
relations between the decay constants is conven­
iently formulated in terms of conserving currents, 
and derive several new relations. 

Unitary 8-symmetry or 3-symmetry corre­
sponds to the vanishing of the divergences of the 
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current (A.1) or (A.3). It can be stated that the 
first (charged) components of this current coincide 
with the current contained in the vector part of 
weak interactions and leading to baryon or meson 
decay with change of strangeness. In the Sakata 
model ( 3- symmetry) this is unavoidable, since the 
theory contains only one iso-spinor current 
NnA [the current (A.1) is its Yukawa version, 
which realizes the same isotopic transformation]. 
In this case the non-renormalized vector con­
stants c~ in the lepton decays of strange particles 
will be related to one another simply as the coef­
ficients of the different terms in the current (A.3) 
or (A.1). 

In the case of 3-symmetry, however, the opera­
tors of the ~ and E hyperons are not contained 
explicitly in the current. It is therefore necessary 
to employ additional considerations here. It is 
natural to think that in the unitary symmetry 
scheme the ~ and E consist of a minimum possi­
ble number of bare particles, i.e., of triplets. 
Then the E are defined uniquely: 

8° = (nAA), s- =- (pAA), (13) 

whereas for ~ we have two possibilities: Either 

1;+ = (npA + nAp)lV2, 1;- = (pnA + pAn)/Jf2, 
1::0 = (ppA +pAp - nnA - nAn)/2, (14) 

or 
1:+ = (npA - nAp)IJI2, 1:- = (pnA - pAn)IJf2, 

1:: 0 = (ppA -pAp - nnA + nAn)/2. (15) 

Relations (13) and (14) pertain to one and the 
same presentation of the unitary group (the so­
called 15-representation), whereas (15) pertains 
to another representation (the 6-representation). 
Therefore in a transition generated by the current 
p 'YA.A or its analog (A.1), the operators (13) are 
transformed into (14), but not into (15). If ~ were 
to realize the representation (14), then by consid­
ering~ and E as "elementary," one could 
ascribe to (A.1) a term 

- V2 [- (~0r~.s-) + Jf2(f+y,.8°)1. (16) 

The current P'nA leads not only to the transi­
tion A - p, the consequence of which is in par­
ticular (16), but also to the annihilation of p and 
A; in the latter case transitions of z- into A will 
take place, and also transitions of ~ 0 and 1:- into 
nucleons. If we denote the vector constant in the 
amplitude of the transition E- - A - fX, then in 
the case of (14) the constants of the transition of 
1:- into n and of ~ 0 into p are respectively equal 
to fX72 and rx/2. In the case of (15) the transi­
tions of the latter type occur, generally speaking, 
with a different constant. 

Decay 
3-symmetry 

[ 0 0 
Cy/(Cv)Id' 

1 
1 
3 
2 

X/2*, y** 
x/4 *, y/2** 

X I 2 *' 0 ** 
4 *' 0 ** 

*Corresponds to relation (14). 
**Corresponds to relation (15). 

8-symmetry 

[C~/(C~)Kl' 

1 
1 
3 
:) 

2 
1 
3 
1 
2 

Jl Experiment 

(v-z·cv ;a>' 

1/30 
1/30 

1/20-1/10 
1/40-;1/20 

The relative values of ( C~ )2 in the case of both 
3- and 8-symmetry have been written out in the 
table. The 3-symmetry relations for the decays of 
K, x. and A were obtained earlier in [ 5•13], and the 
8-symmetry relations in the case of hyperon decay 
have been obtained in [14]. In the table l denotes 
an electron or a muon, while x and y are unknown 
constants. 

The experimental values of the squares of the 
constants in G2/2 units, where G = 1.41 x 10-49 

erg-em 3, are listed in the last column of the table. 
In the case of the K+ decay, the corresponding 
number was obtained in several investigations, 
particularly in [15]. The equality of the constants 
in lepton decays K+ and K0, which already follows 
from the hypothesis of the correctness of the 
.6T = Y2 rules in decays with change of strange­
ness, is confirmed by experiment [16]. The values 
of the vector constants in the decays of the hyper­
ons have been derived from the data of Humphrey 
et al [i7J, and furthermore we put CA = -1.25 Cy, 
inasmuch as within the framework of unitary sym­
metry the relation C A/C~ ::::l -C Alctr should be 
the same as in ordinary beta decay. It is seen 
from the table that the experimental data exhibit 
a barely noticeable better agreement with 3-sym­
metry than with 8-symmetry. 

The author is grateful to V. N. Gribov, I. Yu. 
Kobzarev, and particularly L. B. Okun' for dis­
cussions. 

APPENDIX 

RELATIONS BETWEEN AMPLITUDES 

In establishing relations between amplitudes of 
different processes it is necessary, obviously, to 
start out from transformations with respect to 
which the theory is invariant. In the case of a con­
tinuous group, such transformations are known if 
the generators of infinitesimally small transfor­
mations are specified, or else if one specifies the 
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conserving currents from which the generators 
are constructed. The question of finding various 
symmetry properties in the theory of strong inter­
actions in the Yukawa form and the corresponding 
conserving currents was solved in the papers by 
Behrends and Sir lin [18] and by the author [19], in 
the latter case account being taken of the possible 
existence of the -l meson (there denoted as the p0 

meson). The Yukawa form turned out to be con­
venient, because all the particles are considered 
elementary there and enter directly into the ex­
pressions for the generators or the currents. 

Corresponding to the 3-symmetry is a current 
which can be obtained as a solution of the algebraic 
system (28) written out in [19] in the absence of 1: 
and E interactions, when only d1, d5, d6 , g1, = gN7r• 
g5 = gAK• g9 = gNx; and g10 = gAx are different 
from zero. Such a solution turns out to be unique: 
When 

the current conserved has components 

(j~) 1/, = - }12 (py,_A) - (!(+8,Jt0) 

- }12(J(Oa,_rc) - V3 (K+a"x.0), 

~.m-'t, = - V2 (nr"A) + (K08"n°) 

- V2 (K+a"n+) ~ V3 (K08" x.0). (A.1) 

The letters denote here the annihilation opera­
tors for the corresponding quantities; the symbol 
oA_ denotes the operation 

a m rh aiD, aCll2 m CD2 1cv1 = cv 2--- cv1 . 
· ax1, axA 

One can also note that in case of 3-symmetry 
the theory is invariant with respect to the trans­
formations 

p __. p, n __.A, A _, - n, 
K+ ___.- n+, n- ___. K-, K- ___. -- n-, 

Ko ___.- Ko, Ko __.- Ko. no ->(no + Jl3 'X.o)/2, 

'l = (}13n° - X.0 )/2. (A.2) 

The meaning of (A.2) is as follows. If unitary 
symmetry holds true, then arbitrary unitary and 
unimodular transformations of the triplet p, n, A 
are possible, particularly the spinor transforma­
tions of the pair n, A. Equation (A.2) is equivalent 
to the transformation of this pair ( n - A, A - -n ), 
corresponding to rotation of 180° about the second 
axis in the corresponding isotopic space. The 
"compound" mesons are likewise transformed. 

As regards the 8-symmetry, it corresponds to 
conservation of the current (31) from [19] with 
components 

U~h = V3 (pr"A) + (Pr"-~ 0) _j,- V2 (ny,_~ -) 

+ JI3(Ay"B-) + (~0y,,B-) - V2(~+y~.B 0) --(K'"a,, n°) 

-- V2 (K08"n-) - V3 (WD,,x.0), 

U~l-'/, = V3 (fir,_A) -(nr"~0) + V2 (/Jr"~+) - V3 (Ar"B0) 

+ (~ 0y,,B 0) + }12 (~-y"B-) + (K08A.n°) 

-J12(K+a"n+)- V3(K08"-'X.0). (A.3) 

The relations between the Yukawa constants, 
corresponding to the conservation of the current 
(A.3), have been written out in [19] [the inessential 
sign multipliers £, £', - £", and £"' are set equal 
to+ 1 in (A.3) ]. Gell-Mann [3] also uses the addi­
tional equality gN1r = -gz7T, by virtue of which 
there is additional invariance under the discrete 
transformation 

R== ..... , " _:, ..;...< ~,- ______,.L.J, • {p .-. _ o- 1, .__. RO Y+.-. ,,_ yo "<'O A _.i\ 

K+ <--> K-, K 0 <---> K0 , n+ <---> n-, n° __. n°, 'X.0 -> 'X,0 • 

(A.4) 

In the case of 8-symmetry, the analog of (A.2) 
is the transformation 

The analogy with (A.2) lies in the fact that in 
the Gell-Mann scheme [3] all the particles are 
constructed (in the sense of isotopic structure) 
from three "conceptual" fermions, denoted v, e-, 
and Jl-, and also from an analogous triplet of bo­
sons D0, D-, and s-. Equation (A.5) precisely cor­
responds to the spinor transformation of the pairs 
e-Jl-and D-s- ( e-- Jl-, J.( - -e-, D-- s-, 
s-- -D-), analogous to the transformation of n 
and A in (A.2). In exactly the same way, the dis­
crete transformation (A.4) corresponds to invari­
ance under discrete transformation of the charge­
conjugation type: v- D0, e - D-, Jl-- s-. 

In place of (A.4) and (A.5) it is more convenient 
to use the transformation T2S2RT2 ( T2 denotes 
rotation through 180° in ordinary isospace: p- n, 
n- -p, A- A, 1:±- -1:+, 1: 0 - -1: 0, E0 - E-, 
..... - -o t ) . t!t - - 1:!. , e c . , 1.e . , 

p ->p, 

A ___. - (}13~0 + A)/2, 
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g- ~ s-, 
Jto ---+ (no - V 3x")/2, 

y,, ---->- (Y3J-co + X0)/2, 

For example, to obtain relations between the 
amplitudes (1) in the case of 8-symmetry we can 
use the invariance of the theory with respect to 
(A.6). Application of this transformation yields 
immediately 

W12 = - (wu + V3 ffi2r)/2, ffi22 = (-V3 w11 + w21)/2, 

ffi19 = (w7- Jl3ws)/2, Wzo = -(w7V3 + ros)/2, 

Wra =ffi24 = V3(w14 -wd/2. (A.7) 

Analogously, in the case of 3-symmetry it follows 
from the invariance with respect to (A.2) that 

In order to find the remaining relations between 
the amplitudes, it is necessary to consider the 
arbitrary transformations II' e-' /l-' D0' D-' s-' 
or p, n, A. We can use instead a different method. 
It is easy to see that the vanishing of the diverg­
ences of the second components of the currents 
(A.3) and (A.1) is equivalent to the conservation of 
the operators 

-2Ns, + 2Ns, + NA, -NA,+ Nn,-NB, 

K+ and 1r+ with protons, we have to write out the 
eigenvalues of the operator (A.9) in the AiLj sys­
tem. These quantum numbers are respectively 
equal to 2, 0, 0, and- 2 for A1L1 , A?L2, A2L1, and 
A2L 2• Hence 

(A 1L1 !A 1L2) = (A 1L1 !A 2L1 ) = (A 1L1 !A2L2) 

(A.13) 

Denoting in the amplitudes of the reactions that 
are allowed with respect to strangeness by 

al = (pn' i pn+), a" = <pK+ I pK+), a3 = o:,+K+ I pn+), 

a4 =(prr+il:+K+), a" =(L+n+!L+n'), a6 =(l:+K"il:+K+) 

(al = wv a2 = w4, aa = wd, (A.14) 

we can reduce (A.13) to the system 

(A.15) 

(A.15) is solved in elementary fashion 

i.e., 

The last equation is given in (6). We can obtain in 
a similar manner the remaining relations in 

+ N L, - N L, - 2N M (A.9) (3)-(8). 

(8-symmetry) or 

- Np, + Np, + NL,- NL,- 2NM 
(3-symmetry), where 

n±A 
Rr,2 = yz · S _ Q2 ± N2 

1.2- -vz . 

(A.10) 

A+ V3~0 
Nt = 2 , 

N - ~0 - V3A A - p ± ~+ 
2 - 2 , 1.2 - -vz . 

~- + 2;­
Bl.2 = Y2 , K++:n:+ 

Ll,2 = V2 , 
0 X0 + y3 ;tO 0 :n:O - vsxo K 0 + K0 

rr = 2 , rz = 2 , K~.2 = iz , (A.11) 

and the particle number operators are defined for 
baryons 1/J, and bosons cp as 

fil . ., =\'I)+ (x) tP (x) d3x, fJ '-P = - ~ cr+ (x) a4cp (x) d3x. 

(A.12) 

Using (A.9)-(A.11) we can obtain the remaining 
relations between the wi. Considering, for exam­
ple, in the case of 8-symmetry the interaction of 
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