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The equations for isentropic one-dimensional motions of an ultrarelativistic gas are extended 
to the case of adiabatic motions. The number of particles can be variable or constant. Inves­
tigation of shock waves turns out to be possible in this case. In particular, consideration is 
given to the attenuation of a traveling shock wave which interacts with a simple rarefaction 
wave overtaking it. 

IN the study of multiple particle production, one of 
the methods of investigation is that of relativistic 
gas dynamics, where the motions of an ultrarela­
tivistic gas are usually considered. One particular 
and very thoroughly studied case is the study of the 
one-dimensional motions of a medium under the 
assumption that the chemical potential J.L = o·, inas­
much as the total number of particles is a variable. 

As has already been shown by Khalatnikov[1], 
exact solutions of the one-dimensional motion of 
the ultrarelativistic gas can be found for J.L = 0. 
The problem reduces to the solution of the Riemann 
equation 

azx ax a'x 
3 all" = 2 ay + ay' , y= lnT, TJ = arctha, (1)* 

where T is the temperature, a the velocity; the 
function X = X ( 71; y) is connected with x and 
T = t by the relations (the velocity of light is 
taken to be unity) 

T = e-Y (~ ch TJ - ~ sh TJ) ay a11 • 
x = e-Y (~ sh TJ - ~ ch TJ) • ay a11 

(2) t 
When J.L = 0, p = const· T4, where pis the pressure. 

Equation (1) was recently obtained by the author 
(independently of Khalatnikov) in another way .c 2] 

Khalatnikov considered the isentropic motion of 
the medium and investigated the properties of the 
rarefaction wave reflected from the plane of sym­
metry. Traveling (simple) waves, as is well 
known, are studied on the basis of the particular 
solution of the equation of relativistic gas dynamics, 
which can be written in simple analytic form. 

One can easily show that the set of equations (1) 
and (2), with J.L = 0, describes not only isentropic 
but also adiabatic motions of the medium, inasmuch 
as the law da/dT = 0 holds, where a is the entropy 

*arctha = tanh_, a. 
t ch = cosh; sh = sinh. 

per particle; here, p = const · T4• It can also be 
easily proved that the set (1) and (2) describes 
isentropic motions for J.L ¢ 0, inasmuch as 
p = const · T4 in this case, too. 

In the collision of a nucleon with a nucleus, a 
situation can arise in which a simple traveling 
rarefaction wave, moving from the position of the 
light particle, overtakes the stationary shock front 
moving along the heavier particle and begins to 
weaken the latter. In this case the shock wave 
becomes nonstationary. Its subsequent motion re-
quires investigation. 

Belen'kil and Milekhin [a] considered the prob-
lem of the entropy change in the region of a non­
stationary shock wave for J.L = 0, i.e., in the case 
when the Khalatnikov equation describes adiabatic 
motions. The entropy change was calculated from 
the moment of approach to it of the rarefaction 
wave up to the moment of its escape to the edge of 
the heavier particle. The problem of the motion 
of the shock wave was not considered by them in full. 

We shall show below that the Khalatnikov equa-
tion permits extension to the case in which J.L ¢ 0, 
which permits us to solve the problem for both a 
variable and a constant number of particles by the 
same method. This is significant, for example, in 
the study of the motion of particles after their for­
mation, and in a whole series of other cases. We 
shall also show how it is possible to solve the 
problem of the motion of a shock wave attenuated 
by a rarefaction wave. 

By furnishing the equation p = ( k - 1) E for 
the ultrarelativistic gas, and using the equation 
aTik/axk = 0, where Tik = (p + E) UiUk + OikP, 
we get a complete set of equations in which the 
value of J.L does not appear. In the case of adia-
batic one-dimensional motions, we quickly arrive 
at Eqs. (1) and (2) if we set 
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Y = In p<k-1)/k, k = %0 

We note that the law da/dT = 0 will hold both for 
iJ. = 0 and for iJ. "' 0. 

Inasmuch as the particular solutions have the 
form 

Y3 y = ± 3 'I] + const, _ th TJ± Y3;3 F 
X- 1 ± Y3 th I 3 1' + ('I]), 

1] (3)* 

it is easy to show that on the line of intersection 
(on the characteristic) of the general solution 
(compound wave) with the particular solution 
(simple wave) 

dx=- F ('IJ) eu ch 'IJ [1 ± J/3 th '1]/31 d'IJo (4) 

If 

(5) 

we can then set x = 0 without loss of generality, 
since dx = 0. By introducing cp = xeY, Eqo (1) can 
be written in the form 

(6) 

where 

1 [Y3 + ] 1Xl.2 = 2 3 'I] - y 0 
(7) 

We proceed to the study of shock waves. Two 
cases of shock wave propagation are possible. In 
the first, the shock wave moves along the usual un­
heated gas; in the second, the wave is propagated 
along the heated relativistic gas. In this case, we 
consider the effect of attenuation of the shock wave 
moving along the ultrarelativistic gas in the inter­
action of it with the overtaking (simple) rarefac­
tion wave. We note that even the traveling shock 
wave cannot be described by the particular solu­
tion, inasmuch as the conditions on its front 
[ Pn = p ( a 0 )] are not consistent with the first 
equation of the solution (3)o 

In a coordinate system in which the medium is 
at rest behind the shock front we have[4J 

Du = dxfdr: = 1j3a0 , (8) 

where a 0 is the rate of flow of the undeformed me­
dium at the shock front (shock velocity), Dy is the 
velocity of the shock front (the indices 1 and 2 re­
fer to parameters in front of and behind the front) 0 

Let the rarefaction wave begin in the cross sec­
tion x = 0 at the time T = 0, and let the front of 
the shock have the coordinate x = lo The simple 
wave is described by the equations 

_!l_ =('1-a)2Jf3;3 
P2 ,1 +a ' 

*th =tanh. 

a+V3!3 
X= 1 +V3a;3 1:; (9) 

the rarefaction wave front will move according to 
the law x = 13 T/30 This front overtakes the 
shock wave front in the cross section 
x = l3l/ ( 13- 1/a0 ) at 

1' = 3!/(J/3- 1ja0 )o (10) 

Inasmuch as a 0 = 1 - ~ and we are considering a 
strong wave in which ~ « 1, we have in the limit 
when a 0 = 1, 

x = (3 + J/3) l/2, (11) 

We now formulate the conditions under which it 
is necessary to seek a solution of the equation 
82cp/8a 1aa 2 = - cp, which describes the nonsta­
tionary shock wave formed after the rarefaction 
wave overtakes the front. In the coordinate system 
in which the medium ahead of the shock front is at 
rest to the left of the characteristic 

we have 

dx a- Y3;3 
dT 1-V3aj3 

x a+ V3!3 
T = 1 + V 3a/3 ' 

(12) 

where a 0 is the rate of the flow behind the shock 
front; here, cp = 0. Consequently, 

(jJ =0, 

where Yo = y 20 On the shock front, the motion of 
which is .still unknown, we have 

dx/d-r = Dy = (3a~ + 1)/4a0 =(3 th2'1] 0 + 1)/4 th '1] 0 , (13) 

p2/e1 = (3ag + 1)/3(1 - ag) = ~ [4 sh2 'IJo + I] =e4Yo/e10 

(14) 

As is well known, the simplest solution of the equa­
tion a2cp I aa1 aa 2 = - cp in quadratures can be ob­
tained if the line a 1 = af (1J* ), a 2 = a~ (1J*) is 
given, where 17* is a parameter, and along this 
line we are given 

(15) 

Let 17* = 1Jo and the function cp = cp* ( 1Jo) also be 
given. Then, inasmuch as 

Cl1.2 = + [ J/3'1]/3 ± y], 

we have on the shock front 

Yo= }In [-}ed4sh2 '1Jo+ 1)], 

o:;, 2 occ + [J/3'1]0/3 ±fIn [-} e1 [(4 sh 2 11 0 + 1 )]j 0 (16) 

Let the motion of the shock wave be given in the 
form T = To (1Jo ). Then, since 

dx/d't = (3 th2 '1] 0 + 1)/4 th '1] 0 , 

we have 



144 K. P. STANYUKOVICH 

_ ~· 3 th2 't]o + 1 dTo 
Xo = 4 th d- d11o = Xo (11o)· 

• l]o 't]o 
(17) Inasmuch as, for the simple wave, 

Further, since 

then 

,- = e- 2"• [(atp/ay- <p) ch 11o- sh11oa<p/a111 =To ('llo), 

x = e-2Y• [(atp/ay - <p) sh 11o - ch11oa<f;a111 = Xo (rJol· 

Since 

where 

then 

dcp _ acp afjl dy _ , 
dt] - dri + ay d1J - <p ' 

dyldrJ = y~ = 2 sh11 0 chrJ0/(4 sh2 11o + 1), 

T0 = e-2Y• [(ch 11o + y~ sh 11o) a<p/ay- (<p ch 11o + <p' sh 11o)], 

Xo = e-2Y• [(sh rJo + y~ Ch 11o) atp/ay- (<p Sh 11o + tp' ch 11o)J. 

Hence we have 

dtp = Toe2Y• +•<Jl ch l]o + tp' sh 't]o = xoe2Y• + lp sh 't]o + tp' ch 't]o • (18) 
dy ch 't]o + y~ sh 't]o sh 't]o + y~ ch 't]o 

After simple transformations, we get for cp the 
linear ordinary equation 

:~ - tp :~: = e2Y" [ T0 ( sh 11o + :~: ch llo) 

- X0 ( ch 11o + :~~ sh 11o) J · 

Solving this equation, we find 

Further, we find ocp/oy0 and ocp/BT/o = dcp/dT/o 
- y0ocp/oy0 and thus determine 

(19) 

It is now easy to write the solution of the equa­
tion a2cp/oa1aa2 = - cp in the form 

1 - -
<p (£1; ;;2) = 2 [(<p<p)Q, + (cp<p)Q,] 

Here J 0 is the Bessel function of order zero. 
b = a 2 at the point Q1 on the line a 2 = a 2 (a1 ); 

and ~ 1 = a 1 at the point Q2; the line a 2 = a 2 ( a 1 ) 

is given; by the point Q1 is meant the initial point 
on the shock wave; the coordinates of the point Q2 

are arbitrary. 
This solution must be continued from the shock 

front until we get a junction with the simple wave. 

Y =Yo+ Y3 (11 -11o)/3 
or 

(22) 

we get, substituting a 2 = b = a 20 in the solution 
thus found, 

<p = <J!l (£1) = fPl ( C(l)­

It then follows that 

(23) 

X= <p1e-Y = tp1e"'-"" = <Jl1 exp (- 2C(20 + Y311/3). (24) 

Further, we find 

dx = e-Y [dfPlfdTJ + V3 <f1/3J d11 . (25) 

Comparing this expression wi.th the condition on 
the characteristic 

dx. = F (n) e-v ch 11[1 + Y3 th 11/3] d11, (26) 

we find that 

F ( ) = dcpdd1] + V3 lpl/3 
11 Ch1][1+V3th1];3], 

(27) 

which determines the arbitrary function F ( 7J) for 
the simple wave. It is always possible to choose 
T = r 0 ( 7Jo) so that F ( 7J) = 0, which also solves the 
stated problem completely. 

We note that the case worked out here of the 
exact solution for a nonstationary shock wave, and 
in general, the possibility of solving the problem of 
adiabatic motion of the medium exactly, do not have 
a classical analogue. Classical shock waves in 
gases and adiabatic motions do not yield exact solu­
tions. 

It is not difficult to generalize the method thus 
developed to a medium with the more general equa­
tion of state p = (k- 1)E, where 1 < k::::: %. 

In conclusion, we consider the possibility of 
studying continuous adiabatic currents. Since 
(dO"/ d T >xo = 0 in Lagrangian coordinates, then 

(28) 

where x0 is the Lagrangian coordinate and 0' is 
the entropy. By knowing <I> (a, x, T) = 0, where 
a= ( dx/dr)x0• and integrating this equation for the 
condition that x = x ( T) = x 0 in the front of any 
wave, we get 

'¢ (x, X0 , T) = 0, (29) 

whence, for (28), by eliminating x0, we find 
f (0', x, r) = 0. Knowing <I> 2 (p, x, r) = 0, we find 
<I> 2 (V, x, r) = 0, which also solves the problem at 
hand completely. 

For example, in the case of simple waves, it is 
easy to get the final solution by simple procedures. 
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Inasmuch as here 

_a-tVk-1 'F() X- T-- a 
1 ± Vk-1a 1 

' 

then, by differentiating with respect to T, we get 
the equation 

± vk-1 (1- a)' 

1±Vk-1a 
_ ~ [• 2- k + dFJ 

ih (1::t:Vk-1)2 da ' 

whence 

dr: 2-k r: 

da ± V k- 1 (1 - a2 ) (1 ± V k- 1a) 

dF 1 + Vk=ia 
da ± V k -1 (1- a2) ' 

T =(I± Vk- I a) (I+ a)!±(k-1l-'1•+ll2 (I- a)f±(k-ll-'1'-1]/2 

X [<D(xo)-~dd~ (I ±Vk- laf1 

x (I + a)f±(k-1l--'/,+ll2 (1 _ a)l±(k-1)-'h-I]i2 da J. (30) 

In the special case in which F (a)= 0, we get 

T = 1 ± Vk=ia =(I ± V k- Ia) (1 + a)f±(k-1)-'1'tll/2 

a±Vk-1 

(31) 

Since x = ± ~ T = x0 and a = 0 on the 
characteristic, we have <I> (x0 ) = ± x0/~; we 
introduce z = x/T= (a±~)/(1±..fk=la), 
and then (31) takes the form 

'2 = ( 1- z 1 ± vk=l )±(k-1)-';, 2- k ~ (32) 
l+.zt+Vk-1 k-1 1-z • 

whence 

o k-1( 2 2 ) [r:+x 1±Vk-1J±(k-1)-'i. x- ~ -- T - X -- ----'-== 
0 2-k r:-x 1±Vk-1 

(33) 

Knowing u = u (x0 ), we find 

a = a(x, <), (34) 

which solves the given problem. Furthermore, it 
is easy to find V = V (x, T), inasmuch as 

p = consL [(1 + a)/(1- a)Ji-''12Yk-1 , pVk = Ci (x,T). 

It remains to determine the number of particles. 
For all cases, if the number of particles in the en­
tire system is constant, then n- 1/V. If the num­
ber of particles is variable, then we have the 
equation 

dn !!_ (~ -L ~) _ _!i_l!_ 
dl: T 6' ax I a or: - V*dr:' (35) 

where N is the total variable number of particles 
in the entire volume V*. This number of particles 
must be determined from the "kinetic" conditions 
of their creation and annihilation. 
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