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The propagation of converging waves in a cylindrical plasma pinch is analyzed on the basis of 
the equations of magnetohydrodynamics, taking nonlinearity and absorption into account. The 
analysis is carried out by simplifying the initial set of equations. This approximation is valid 
for small initial perturbations, small dissipation, and cylinder radii which are large compared 
with the wavelength. The formation and gradual "disintegration" of the fronts in a converging 
cylindrical magnetic-sound wave are studied and the dissipation energy is determined as a 
function of the radius of the cylindrical plasma pinch. 

1. INTRODUCTION 

A great deal of attention is given at the present 
time to the study of magnetic-sound waves in a cy
lindrical plasma pinch, for example, in connection 
with problems of the heating of a plasma by a high
frequency electromagnetic field. If two longitudinal 
magnetic fields are applied to a cylindrical plasma 
pinch-a static field H0 and a variable field h, then 
the ponderomotive force j x H0 /c (j = annular cur
rent density) arising during the growth of h com
presses the plasma. In this case, a magnetic-sound 
wave arises, transferring the perturbation inside 
the plasma. The mechanism of transfer of the per
turbation is the same here as in ordinary sound. 
The method of heating the plasma was first sug
gested by Frank-Kamenetskil. He also gave a 
theoretical description of the phenomenon of 
magnetic-sound resonance in a cylindrical plasma 
pinch within the framework of the linear approxi
mation.[!] However, the nonlinear effects are sig
nificant, as experimental investigations of magnetic
sound oscillations in a cylindrical plasma pinch 
have shown,C 2J even for small amplitudes of the 
high-frequency magnetic field. Therefore, the 
study of the nonlinear problem of the propagation 
of cylindrical magnetic-sound waves, although not 
directly connected with the phenomena of magnetic
sound resonance, has significant interest, for ex
ample, in clarifying the specific nonlinear absorp
tion of energy and its distribution along the radius 
of the cylindrical plasma pinch. 

In the present work, cylindrical magnetic-sound 
waves of finite amplitude are considered on the 
basis of an approximate method.[3J The nonlin-

earity of the medium and the dissipation of energy 
in it are considered to be small. In this case, the 
set of equations of magnetohydrodynamics can be 
reduced to a single nonlinear partial differential 
equation of second order, the solution of which 
allows us to consider the simultaneous effect of 
nonlinear and dissipative effects. The solutions 
carried out in second approximation allow us to 
follow the spatial scales of distortion of the wave, 
to study the mechanism of formation and "disinte
gration" of shock waves, and to study their fronts. 
These solutions make it possible to consider the 
energy dissipation in the region of shock wave for
mation, with account of the finite thickness of the 
shock fronts. 

2. FORMULATION OF THE PROBLEM AND 
DERIVATION OF THE APPROXIMATE 
EQUATION 

Let us consider a cylindrical plasma pinch lo
cated in a longitudinal constant magnetic field of 
intensity H0 • A variable magnetic field h, coin
ciding in direction with H0, leads, as was noted 
above, to the generation of converging magnetic
sound waves during the growth phase of the field. 
By working with this model, it is possible in what 
follows simply to consider as given some pertur
bation of the radial component of the velocity 
v = v (t) on the surface of the plasma cylinder r 0 • 

The initial set of equations are the equations of 
magnetohydrodynamics. The problem is to find 
for these equations cylindrically symmetric solu
tions that describe the propagation of converging 
magnetic-sound waves. 
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In the case of weak nonlinearity and weak dissi
pation in a cylindrical plasma pinch region which 
satisfies the condition kr » I, where r is the run
ning radius of the cylinder and k is the wave num
ber, the magnetohydrodynamic equations are greatly 
simplified. Actually, if we neglect the dissipation 
terms of the equations of magnetohydrodynamics 
generally, then, following Kaplan and Stanyuko
vich,[4], we can reduce the problem of magnetic
sound wave propagation to the following equations: 

ar 1 a 
at + r ffr (rpv) = 0, (I) 

_a~ + v _iJ1)_ - - ~__a_ (P + _IJ_2_ 2) at ar - p ar 8n p • (2) 

Here p is the density, P the pressure, b = Hlp 
= const. Equation (2) differs from the equation of 
motion of ordinary gas dynamics only by the change 
in the equation of state 

b2 
P* (p) = p (p) + 8n p2, (3) 

such that the role of the sound velocity is played 
by the quantity c0 = ...; u& + H2 I 4trp, where 
u0 = ( aP I op )112 is the ordinary sound velocity. 

The velocity of propagation of the perturbation 
c0 in the general case depends on both the acoustic 
pressure Pg and the magnetic pressure PH. Two 
regions of sound propagation are possible, depend
ing on the relation between Pg and PH. These 
regions are limited by the number of collisions or 
by the frequency. In the case PH» Pg, only 
charged particles take part in the motion. By the 
density p is meant the density of charged particles. 
For a large number of collisions, the neutral par
ticles are carried along by the motion, and p de
notes the total gas density (for further details, 
see [i J ). Without neglecting the dissipation terms 
of the equations of magnetohydrodynamics, it is 
possible, in a way similar to that previously de
scribed[3] for plane magnetic-sound waves to 
combine the equations under the condition that 
the absorption over one wavelength is small. Then 
Eq. (2) takes the form 

av , av 1 a ( b2 o' 61 (a"v , 1 av v') • 
at 7 V Jr = - p fi( p + 8:t p-) -/- p ar' T r Dr - fF . 

Here the coefficient 
(4) 

(4a) 

takes simultaneous account of the effect of the bulk 
and shear viscosities (?;, 77 ), thermal conductivity 
K, magnetic viscosity {3 = c 2pl4tra, where a is the 
conductivity of the medium; y = cplcv, where Cp 
and cv are the specific heats at constant pressure 
and volume, respectively. 

By considering small velocities v, small deri
vations of the density p' and of the magnetic field 
intensity h from their equilibrium values Po and 
H0, it can be assumed that vlc0, p'/Po and hiH0 

« I or, introducing the small parameter /)
explicitly, we have 

v p' 

Co ' Po' 
h 
Jf~l-l-

0 

(5) 

The dissipation coefficients are also assumed to be 
small quantities of first order in smallness, i.e., 

l), (;,X,~ ~j-l. 

The quantity I/kr is also assumed to be a small 
quantity of the first order of smallness: 

1/kr ~ 1-l· 

(6) 

(7) 

Taking the conditions (5) - (7) into account, one 
can describe Eqs. (I) and (4) with accuracy up to 
small quantities of second order of smallness in
clusive. The equation of state (3) in this case must 
be replaced by an approximate equation of state, 
also with accuracy up to small quantities of second 
order, inclusive: 

H2 ,, ff2 p'' 
p - p + u2 ' + _o ' + ( - 1) u2 ~ - _o - (8) 

- o oP 4np 0 P y o, 2po 4npo 2po' 

The foregoing'analysis of the order of smallness 
of the quantities makes it possible to assume that 
the set of Eqs. (I), (4), (8) has (in second approxi
mation) a solution in the form of a traveling wave, 
but the profile of this wave changes slowly with 
the distance r .C 3J In this connection, it is natural 
to transform to a new "traveling" set of coordi
nates r = t + r/c0 and r' = JJ-r, where the intro
duction of the small parameter JJ- denotes a slow 
change of the profile of the wave in its propagation 
in the medium. It is convenient to make this tran
sition after reduction of Eqs. (I), (4) and (8) to a 
single equation. This is easily achieved, either by 
transition to Lagrangian coordinates or, in a fashion 
similar to that used for plane waves _[3] In the new 
coordinates r' and r, the problem reduces to the 
investigation of a single equation, all the terms of 
which are small quantities of second order: 

(9) 

where 

1 { (2- r) H5) 
a=:----2 (r+1)+-.,--1·. 2c0 c0 4np0 

In Eq. (9) and below, the prime on r is omitted. 
Assuming the perturbation of the velocity 

v = v0 sin (wt + kr) as given on the surface of the 
cylinder, we rewrite the latter in the new coordi
nates r' and r: for 
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v=v0 sinwT. (10) 

The problem now consists of finding for arbitrary 
value of r a solution of Eq. (9) with boundary con
dition (10), which is periodic in T and describes 
traveling converging cylindrical waves. 

3. SOLUTION OF THE APPROXIMATE EQUATION 

The solution of (9) and (10) can be carried out 
in steps. Considering the case of large values of 
the magneto hydrodynamic analog of the Reynolds' 
number 

Re = CJ.U0/2wo:::::::: avv"jov"' >- 1, (11) 

which is the case of greatest practical interest, we 
can neglect the dissipative term 6vTT in Eq. (9) 
for the first stage in the propagation of a magnetic
sound wave of finite amplitude. The exact solution 
of Eq. (9), without the viscous term and with the 
boundary condition (10), has the form 

roT= arcsin 1D- 2Z0 (1 - y rjr 0 ) ID, (12) 

where 

ID = v Yrjv0 y.,-;;-;- Z0 = awv0r0 • (12a) 

Equation (12) can be analyzed graphically. If 
the value of ci> is plotted along the abscissa and 
WT along the ordinate, it is easy to see that the 
wave profile, which is represented, in accord with 
(12), as the sum of two functions, the arcsine and 
a straight line with slope 2Z 0 (1 - .../ r/r0 ), becomes 
distorted as the wave progresses. When the slope 
is less than unity, the distortion of the profile of 
the magnetic-sound wave is slight. If the slope of 
the straight line is of the order of unity, the dis
tortion is great, and if the slope is larger than 
unity, then the function becomes many-valued. In 
this case, the solution (12) is no longer valid. The 
function q. ( T), without account of dissipative proc
esses, becomes discontinuous, and the value r 1 at 
which the discontinuity is formed can be deter
mined from the condition that the slope be equal 
to unity: 

2Z0 (1- Yr1jr 0 ) = 1 or 2Z0 (1- Y ZIJZ0 ) = 1, (13) 

where Z1 = awv0r 1 has the meaning of a dimen
sionless coordinate of the discontinuity. 

The condition (13) is not always satisfied in a 
converging cylindrical wave, but only for suffi
ciently large values of the dimensionless coordi
nate Z0 = awv0r 0, which is proportional to the run
ning radius of the plasma cylinder and to the ampli
tude of the initial perturbation. Thus, for z0 = 0.5, 
the discontinuous solution, in accord with (13), is 

formed at the point r = 0; for Z 0 < 0.5, it is not 
formed at all, i.e., for Z 0 < 0.5 the cylindrical 
magnetic-sound wave converges without developing 
into a "discontinuous" shock wave. 

We note that consideration of the point r = 0 

on the basis of Eq. (12) is generally incorrect 
[ Eq. (9) was obtained under the assumption that 
kr » 1]. One must consider a certain small co
axial cylindrical region kr which satisfies the 
condition kr » 1. In converging to this cylinder, 
it is all the more true that the cylindrical magnetic
sound wave is not converted to a shock wave. As 
the magnetic-sound wave converges to the axis of 
the cylindrical plasma pinch, the phenomenon of 
"inversion" of the magnetic field may be observed, 
since the variable component of the magnetic field 
h carried along the wave increases [in the given 
approximation as h = h0 ( r 0 /r )112 ]; at the point de
termined by the condition 

(14) 

it reaches a value of the order of H0. Upon further 
convergence of the wave, h can become larger than 
H0• The ponderomotive forces j x h/c and j x H0 /c, 
which act in opposite directions, are quantities of 
first order in the region determined by the relation 
(14). 

Putting Z 0 » 1 in what follows, one can assume 
that a discontinuity is formed at some point Z 1 in 
accordance with the relation (13), and beginning 
with the values 

(15) 

the wave acquires a sawtooth form. The amplitude 
of the jump in such a wave varies as 

v Yr = nv0 Y~/2 [1 + 2Z0(1- Yr/r0 )]. (16) 

The structure of the resulting discontinuities 
can be investigated, on the basis of the solution of 
the auxiliary problem of the propagation of a soli
tary shock, either by numerical integration of 
Eq. (9), or by finding a quasi-stationary solution. 
We shall consider the latter method. 

Making the substitutions x = 2.../ r/r0 and 
w = v.../ r/r0 in Eq. (9), we get 

OWjOX- rJ.WOWiOT = (bxj2r0 ) 02WjOT 2 • (17) 

The quasi-stationary solution of Eq. (17), which is 
valid if 8w/8x is small compared with the remain
ing terms of (17), has the form 

*th =tanh. 

[ :!W0T J W = W 0 th-,- . 
uX,.fo 

(18)* 
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In this case, the term aw/ax can be neglected 
when 2r0 ( aw0 ) 2/26 » 1, which can be rewritten in 
terms of the nondimensional parameters as 

(19) 

It is easy to see that in the case Z0 > 0.5, when 
the formation of shock waves is possible, and con
dition (11) is satisfied, the relation (19) is always 
valid, i.e., use of the quasi-stationary solution (18) 
is legitimate. 

Turning now to the problem of the propagation 
of the wave, which is given in the form (10) on the 
surface of a cylindrical plasma pinch, one can de
scribe the configuration of the wave in the region 
- 1!" ::s WT ::s 1!" by the following relation 

~~~ 1Wo V~ . ( 1 th WT) v r r- -wT 1 :rt -
- 2 [1 +2Z0(1- Yr;ro)J 1::!. ' 

where ~ has the meaning of the dimensionless 
thickness of the shock front: 

Vr/r0 ~~--
!1 = :n• Re [1 + 220(1- r rjr0 )]. 

(20) 

(21) 

Relations (20) and (21) were obtained by match
ing the quasi-stationary solution with the sawtooth 
solution. They are valid in the region r ::s r 2 ~ r 1 

(15), which it is possible to establish by direct 
substitution of (20) in (9). Equation (9) is approxi
mately satisfied in this case, while the necessary 
condition for approximate satisfaction of (9) coin
cides exactly with the condition of applicability of 
the quasi-stationary solution (19). 

4. THE STRUCTURE OF A SHOCK WAVE AND 
ENERGY FLOW INTO THE MEDIUM 

The width of a shock wave, as follows from 
analysis of Eq. (21), does not remain stationary, 
for two reasons. In the first place, a "diffusion" 
of the shock front takes place, brought about by the 
decrease in its amplitude because of absorption, so 
that ~ increases in proportion to 
1 + 2Z 0 (1 --./ r/r0 ). This diffusion mechanism 
is completely analogous to the corresponding 
mechanism which acts in the case of plane waves, 
where the growth in the wave front takes place ac
cording to a linear law.[3] In the second place, ~ 
decreases because of convergence (the factor 
-./ r/r0 < 1 ). 

By plotting the dependence of the front thickness 
on the dimensionless coordinate Z, which is pro
portional to r (Fig. 1 ), it is not difficult to show 
that ~. which is equal to the quantity %1!"Re at the 
point Z2 ~ Z1, increases at first, in accord with 
(21), reaching a maximum at the point Zmax 
= ( 1 + 2Z 0 ) r 0 /16Z 0, which is equal to 

1 .... ---.... 

~"' lj?;rrRe 

z 

FIG. 1. Dimensionless front thickness !'!of a converging 
magnetic-sound wave as a function of the distance, mea
sured from the location of the initial disturbance. Curves 
1, 2, 3 correspond to cylindrical plasma pinches of radii 
r01 , r02 , r03 , such that r01 >> r02 >> r03 • 

( 1 + 2Z 0 ) 2/87r 2ZoRe. Thereafter, it decays as the 
wave is propagated in the medium, and approaches 
zero as r- 0. Thus, a shock wave is always 
formed in a converging cylindrical magnetic-sound 
wave if only the initial radius of the cylindrical 
column is chosen sufficiently large or the initial 
amplitude of the variable magnetic field h is not 
infinitely small, i.e., it is necessary that Z0 be 
much larger than unity, otherwise the magnetic 
'sound wave converges before discontinuities are 
formed. 

Curves 1, 2, and 3 in Fig. 1 correspond to dif
ferent values of the dimensionless coordinate Z0• 

In the case Z0 » Re (curve 1 ), an interesting 
phenomenon is observed: a shock front is formed 
twice in the converging magnetic sound wave. 
Actually, the maximum dimensionless shock front 
thickness ~max can be shown formally to be 
greater than or equal to 11", in accord with Eq. (21). 
Equation (20) is valid only in the limits ~ ::s 1!". 
Curve 1 does not have physical meaning in the re
gion [z<1>, z< 2>] where the points z<i) and z< 2> 
correspond to the value ~ = 1!" as noted in Fig. 1. 
In this case, the amplitude of the magnetic-sound 
wave calculated by Eq. (20) is shown to be 
~v0 /27r~e. i.e., it is a small quantity of second 
order, in accord with (11). This means that the 
propagation of converging cylindrical waves in the 
region [Zw, z< 2>] of the cylindrical plasma pinch 
can be described by the formulas of the linear 
theory of magnetic sound, although the increase in 
the wave amplitude as a consequence of conver
gence does not exceed the decrease in the ampli
tude resulting from dissipation. This takes place 
in the region Z < Z <2>, where the thickness of the 
shock front decreases rapidly, approaching zero. 

The maximum width of the front is reached at 
the point Zm =:: Z0 /4, so that for Z0 » Re one can 
assume Zmax = Z 0 /4, and the coordinate of maxi
mum thickness of the front is shifted to the right 
upon decrease in Z0 (curves 2, 3, Fig. 1 ). With 
decreasing Z0, the maximum achieved shock front 
thickness ~max after formation of the discontinuity 
is simultaneously decreased. Thus, in the case Z0 
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= R1, the maximum thickness of the front reaches 
a value of the order of 0.05, which is significantly 
larger than .6-min = %1rRe (curve 2, Fig. 1 ) . For 
z0 equal, say, to 5, the difference between .6-max 
and .6. at the point Z2 is unimportant. Simul
taneously, the coordinate Zmax approaches the 
dimensionless coordinate of discontinuity formation 
Z1 ~ Z2 (curve 3, Fig.1). 

It is interesting to consider the amplitude of the 
converging cylindrical magnetic-sound wave as a 
function of the nondimensional coordinate Z. The 
amplitude increases up to the value Z 2 ~ Z1, at 
which point a periodic shock wave is formed which 
brings about a change in the amplitude as a result 
of the strong dissipation, while the increase in am
plitude because of convergence does not outweigh 
the dissipation losses. The discussions that have 
been given are illustrated by a curve (Fig. 2) 
constructed in correspondence with Eq. (20) for 
the case Z0 » Re. The dashed curve represents 
the amplitude obtained from the linear theory. 

V, em/sec 

\ 
\ 

', 
' ' ........ .......... ......__, 

--z 

FIG. 2. Dependence of the amplitude of the velocity (or of 
the variable component of the magnetic field intensity h) of a 
converging cylindrical magnetic-sound wave on the distance 
from the location of the initial disturbance, with account of the 
nonlinearity and dissipation. The dashed curve corresponds 
to the linear theory, without absorption. 

The problem of the energy flow in a cylindrical 
plasma pinch is of great importance. The energy 
density of the wave, as is well known, is determined 
by the expression E = (p0v2)/2 with accuracy up 
to small quantities of second order. The expres
sion for E, in the case of converging cylindrical 
magnetic-sound waves, even without consideration 
of dissipation and nonlinearity, does not remain 
constant, but increases in proportion to r 0/r, i.e., 
Er = E 0 ( r 0 /r ), where E0 is the initial energy den
sity of the wave. With account of dissipative and 
nonlinear·effects, the energy density E'r can be 
calculated on the basis of Eq. (20), which deter
mines the amplitude of the velocity of converging 
magnetic-sound waves in the region Z ::::: Z 2 ~ Z1, 
where the nonlinear and dissipative effects are sig
nificant. Obviously, the difference Er - Er also 
determines the loss (absorption) of energy in the 
r section of the cylindrical plasma pinch. Er is 

computed by elementary means if the region of in
tegration is divided into three intervals [ -1r, -E], 
[-E, +E] and [+E, +1r), replacing tanh(wT/.6.) in 
each of these intervals by -1r, wT/.6., and 1r, re
spectively. Then the energy absorption is deter
mined by the formula 

E - £' - E [1 - n (n- ill J (22) 
r r- r L, [1 + 2Z0(1- Vr/ru)J" · 

The expression in the curly brackets in Eq. (22) 
depends essentially on the running radius of the 
cylindrical plasma pinch. For such small values 
of r at which the wave assumes a sawtooth form 
because of convergence, the usual limiting damping 
law for shock waves holds. The velocity amplitude 
v decreases in proportion to 
1/ [ 1 + 2Z 0 (1 - v r/r0 ) ]. When the finite shock 
thickness .6. in each r section of the cylindrical 
plasma pinch is taken into account, the energy ab- . 
sorption is greater than the energy absorption ob
tained in accord with the limiting law of decrease 
in the amplitude of the shock wave .6., so that the 
relative energy absorption (Er- E'r)/Er is maxi
mum in the region .6. = .6-max· 

Thus, although the dissipation of energy is also 
proportional to the energy density of the wave Er, 
this proportionality cannot be described by the ab
sorption coefficient ow 2 = const, in contrast to the 
linear approximation. 

CONCLUSION 

The problem of the propagation of converging 
magnetic-sound waves of finite amplitude in a cy
lindrical plasma pinch has been considered in 
connection with the analysis of the mechanism of 
energy absorption in heating of the plasma at the 
expense of the high frequency electromagnetic field. 

The equations of magnetohydrodynamics in sec
ond approximation reduce to Eq. (9) or, in terms of 
Eq. (17), to the problem of the propagation of plane 
waves in a medium with a linearly decreasing vis
cosity. The solution of Eq. (9) has made it possible 
to separate the entire region of wave propagation 
into three parts. In the first of these ( r 0 - r 1 ) 

the dissipation processes are negligibly small, 
while the nonlinear effects lead to the transforma
tion of the sinusoidal wave into a wave of nearly 
sawtooth form. In the second, the front thickness 
of the shock wave being transformed increases be
cause of the dissipation. In the third, the increase 
in the amplitude of the wave from convergence de
creases the growth of the shock front generated by 
the dissipative effects. The wave again takes on a 
sawtooth form. 
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In accordance with the solutions obtained, the 
density of energy absorption in the r cross section 
of a cylindrical plasma pinch is determined by 
Eq. (22). Its relative value is maximum in the re
gion of maximum thickness of the wave front. 

Equation (9) can also be used for the analysis of 
a diverging cylindrical wave. 

I express my deep gratitude to R. V. Khokhlov 
for direction of the work. 
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