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A statistical derivation is given for the hydrodynamic equations that describe the motion of a 
charged particle in a weakly ionized plasma. Among the hydrodynamic functions required for 
the description of the motion of the charged particle in a weakly ionized plasma are the space 
correlation functions. The interaction of charged particles with neutral particles is described 
by the introduction of an effective collision number. Several solutions of the equations are 
given. 

IN deriving the hydrodynamic equations for a 
highly ionized plasma one can use the kinetic equa
tions for the charged-particle distribution func
tions _[t] The kinetic equations can be used for a 
highly ionized plasma because when J.L = e 2/rdkT 
« 1 the time required for establishing the mo
mentum equilibrium state is given by T ~ 1/ WLJ.L 
» 1/wL. This time is appreciably greater than the 
correlation time for distribution functions 
gab ( q, q', p, p', t) that describe initial states of 
the plasma that do not deviate greatly from equili
brium states i.e., T » Tcor· For this reason the 
plasma correlation functions gab (here a and b 
are subscripts denoting the particle species) can 
be expressed in terms of slowly varying distribu
tion functions. By slowly varying we mean 8fa/ at 
« fa/Tcor and 8fa/8q « fa/rcor· 

In turn, the use of the kinetic equations leads 
to a closed system of equations for the hydrody
namic functions, which do not change greatly even 
in a time T » Tcor· 

The situation is different in a weakly ionized 
plasma. Here, the plasma frequency WL is 
smaller than, or of the order of, the collision 
frequency for collisions between charged particles 
and neutrals, i.e., WL::::, 11. But WLJ.L « 11. This 
condition is then the criterion for a weakly ionized 
plasma. When it is satisfied the time required to 
establish a local Maxwellian distribution over the 
charged particles ( ~1/ 11) is found to be smaller 
than, or of the order of, the time required for 
establishing the equilibrium correlation function, 
the Debye function. For this reason, in this case 
the correlation functions gab ( q, q', p, p', t) can 
not be expressed in general form in terms of the 
initial distribution functions; thus one cannot ob-

tain closed equations for the initial distribution 
functions ( the kinetic equations for the charged 
particles). 

In a weakly ionized plasma it is sometimes 
possible to use a method for obtaining the hydro
dynamic equations that was developed by Bogolyu
bov, Gurov, and Born and Green [2], in which one 
starts out with a chain of equations for the distri
bution functions. In the present paper we present 
another method .for deriving these equations; our 
method is based on the equations that describe the 
random phase densities.C3J 

The equations obtained below differ from the 
usual hydrodynamic equations:[4J in our case, in 
addition to the equations describing the density 
and velocity of charged particles there is also an 
equation for the space correlation functions. By 
using this system of equations one can also pro
vide a hydrodynamic description of non-equilibrium 
processes in cases in which the basic effect is the 
temporal change of a spatial spectrum while the 
average velocity and density remain essentially 
constant. Appropriate examples will be considered 
below. We first derive the equations, using the 
notation 

Na(q, p, I)= 2; 6 (q -q; (t)) 6 (p- p;(t)), 

N n (q, p, t) = 2; 6 (q - q, (t)) 6 (p -- p, (t)) 
I<.t<..Vn 

to denote the phase-space density of the charged 
particles and neutrals respectively. Here, the 
subscript a refers only to the charged particles; 
Na and Nn are the total numbers of particles of 
the corresponding species. 

In the presence of an external electric field 
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E 0 the equation for the functions Na is of the form 

iJNa iJNa iJNa 
~ 7 v ----aq- · eaEo ap 

__ i)a ~ \ I eaeb' I Nb(q', p', t)dq' dpl i)i)Na =Sa. (1) 
Q b •. q-q p 

The right side of this equation 

a "1:' \" i)N 
Sa= -0 L; \ L'an(q, q')Nn(q1

, p', t)dq'dp' -0 a 
q ll • p 

(2) 

describes the effect of neutrals on the charged 
particles while Dan is the potential energy of the 
interaction between particles of species a and n. 
Below we shall also introduce equations for the 
functions 6Na = Na - Na. The bar denotes an av
erage over an ensemble. 

When 1-1 = e 2/rdkT « 1 we can neglect the devia
tion 6Na6Nb - 6Na6Nb. We also neglect the term 
containing the mean internal field in the plasma 
since this term is usually small compared with 
others; we then obtain the equation 

(3) 

Equations for the functions fa and gab can be 
obtained from (1) and (3). Account must be taken 
of the fact that 

Na (q, p, t) = nafa (q, p, t), 11a = N a!V, (4) 

oN a (q, p, t) bNb (q',p', t) 

(5) 

Using (1) and (3) we can write an infinite system 
of equations for the hydrodynamic random func
tions (defined as the moments J ViVj ... Na 
x ( q, p, t) dp) and their deviations from the mean 
values. We have 

rJ_\·v,)N dp- -,Ja. ·.\. v,vJWadp- · ~E ("oN dp 
dl . I a qt • lila O' .\ a 

etc. These equations are used for the derivation 
of the hydrodynamic equations. 

It has been noted above that in a weakly ionized 
plasma one can not express the correlation func
tions for the charged particles in the plasma in 
terms of the initial distribution functions to obtain 
the kinetic equations. As a consequence, in the 
hydrodynamic approximation the system of equa
tions that describes the motion of the charged 
particles not only contains equations for the hy
drodynamic functions Pa and ua, but also contains 
equations for the space correlation functions 
'Yab(q, q', t). 

In order to see explicitly the difference in the 
hydrodynamic approximation for a weakly ionized 
plasma we shall treat the case in which the density 
and temperature of the neutral particles have fixed 
assigned values while the mean velocity is zero. 
Since the collision frequency v » wL p, = 1/ T it 
may be assumed that the momentum distribution 
of the particles is approximately Maxwellian. Thus, ' 
in the first approximation we have 

[ 1 ]"', [ (p-mau" (q, t))"] 
nafa (q, p., t) = Pa (q, t) 2rtmae exp - 2m e ' 

a 

(10) 
Here 

Yab (q, q', t) =\'gab dpdp 1
, W~ (q, q', f) = - 1- \ vgaudpdp' 

~ lab J 
Q 1 ~ I d d I Wu '=- V f.[ab p p . 

lab , 
(11) 

To obtain equations for the functions Pa and 
(6) ua we multiply (6) and (7) by na and average. The 

result is 

+ Nb (q', p1
, t) dq'dp' N dp 1 i) ~ ~ eaeb ~ tn; dC/; , I q - q' I 

(7) 

etc. Correspondingly, the deviations are given by 

(12) 

Here t:0 is the dielectric constant of the neutral 
component. The system of equations is not closed 
since the function 'Yab appears everywhere. Mul
tiplying (8) and (9) by 6Nb(q, q', t), integrating 
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over p', and averaging, we obtain the correspond
ing equations for the b component, the functions 

'Yab• and w~: 

or ab ' a b . a ( a) 0 --ar-T Tq (YabWa) _,_ aq' YabWb = ' 

a ( a ' a ( I> (; ~'a E Tt \ YabWai T aq; r abWaiWaj) c_-, m;; ~ iY ab 

_ J_ _a_ ( e)_ ~_a_ eaeb 
//Ia oqi Ya/J lla/IIJI/lu aq, eo I q- q' I 

1 "V a \.. e, CIJ I ( , ") d " b 
-- Lnc -::;-- -

1 
-,

1 
Ybc q , q q - VaYabWai 

rna c vqi ,Eoq--q 

and an analogous equation for the function w~. 

(14) 

(15) 

The relations that have been obtained then give 
a closed system of equations for the functions Pa• 

a b d a If u , 'Yab• wa an wb. 

in (13) and (15) and the terms containing Paufuj 
and 'Yabw~iw~j are small, we can eliminate the 

functions ua, w~ and w~ and obtain a closed sys
tem of equations for the functions Pa and 'Yab; 
these coincide with the corresponding equations of 
the classical theory of electrolytes.[5J 

In the derivation of (13) and (15) it has been 
assumed that the microscopic force exerted on a 
charged particle of species a by the neutral par
ticles is proportional to the velocity of the charged 
particle, that is to say, 

Sa'= :q ~ \ U an (q, q') N n (q', p', t) dq'£ip' a~a 
n • 

Here va is the corresponding collision frequency. 
This approximation is a good one if, as assumed 
above, the neutral particles are characterized by 
a local Maxwellian distribution and their mean 
velocity is zero. 

Using this formula we obtain the expression 
appearing on the right side of (13) 

~ vSadP = - ~ :q ~ U an (q, q'} N n (q', p') N a (q, p) dq'dp' dp 

In the derivation of (15) we have utilized the 
fact that 

~ vbSabNadpdp' = -- ~ VaV [N a (q, p) N b (q', p') 

-Na (q p) Nb (q',p')]dpdp' 

=- Va ~ vbNabNbdpdp'. 

Using (5) in (15) we obtain the term -Va'Yabw~. 
As an example we shall treat a uniform elec

tron plasma with a positive background Pe = ne, 
Eo= 0. Using (14) and (15) and neglecting the 
'Yabw~iN~j terms we obtain the equation 

" 2w2 · ar (r, t) + i!=l_ _ 2 (~ _ 2 ) _ _ L 6 ( ) (16) 
V dl atz - Se y X y ne r • 

Here 

s! = 261m., 

For any initial deviation from the Debye distribu
tion the spatial Fourier components of the corre
lation function y( r, t) can be written in the form 

r (k, t) = ~ _J_ ~ ' c ,t .. ~ [Ak cos YJI -:- Bk ~in YJI ] • 
n, k· T X COSh YJi Sin h YJI 

1]2 = 1 s; (k2 + x~) - v2/4J. (17) 

It is evident from the solution that has been 
obtained that the establishment of the equilibrium 
correlation De bye function y<0> ( k) = -Ko/ne (k2 + K2) 

depends on the ratio of the frequency WL to the 
frequency v and the initial distribution over wave 
number. For the particular spatial spectrum in 
which the condition wL + eko/me > v2/8 is satis
fied equilibrium is established in a time of order 
1/v and is accompanied by oscillations. The os
cillatory mode is sharply expressed if the coeffi
cients Ak and Bk differ from zero when k » K. 

If wl.. + ®k2/me < vo/8 equilibrium is established 
aperiodically and slower than for a Maxwellian. 
If the initial functions Ak and Bk differ from 
zero only when k ~ K and if WL « v, then the 
equilibrium correlation function is established in 
a time T~el'""' vlwi- This time corresponds to 
the relaxation time in the theory of strong elec
trolytes of Debye and Falkenhagen.C5J 

We now consider the behavior of a weakly 
ionized uniform plasma in a weak alternating 
electric field E = E 0eiwt. We introduce the func-

tion 'Y ~~ ( r, w ) = 'Y ab ( r, w ) - 'Y ~~ ( here 'Y ~~ ( r ) 

is the equilibrium correlation function, 'Y ~~ 

« 'Y ~b). We obtain an equation for 'Y ~~ from (14) 

and (15): 

r~~> (r) l· 
(18) 
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When e 2 = -e1 = e the solution of (18) is 

I- -+iw- , w2 v1 ] 
wl wi 

and it is assumed that m 2 » m1. 
The intensity of the electric field acting on the 

charged particles in the plasma is given by 

E iwt[ 1 e2 
X J (20) Eg = 0e - tieo8 1 + ct, _ • 

The second term in this expression arises since 
we have taken account of the correlation between 
charged particles in the plasma. Using (20) we can 
easily obtain an £(w) = £'(w) + i£"(w) in a weakly 
ionized plasma taking account of the correlation 
of charged particles. In view of the uniformity of 
the plasma and (20) we can write (13) in the form 

i)ua - l'a iwt I c2 X ) a 
----rfr - ma Eoe \ I - oe08 1 + ct - VU · 

Eliminating the function ua by means of the 
equation for the total current we obtain the follow
ing expressions for £'(w) and £"(w): 

[ wz wi_ e2x 
F'(w)=e 1------- ---
- o "~ + w' ' vi + w2 tieo8 

1 

x(Re - 1 -- ~ Im - 1-)J 1j-ct (J) 1+ct, 

I -- Re ---- - Im -- . ' e2x 1 we2x 1] 
X l oe08 1 + cr v1 6eo8 1 + ct, 

(21) 

(22) 

If the correlation effects are neglected (21) and 
(22) become the usual hydrodynamic expressions.[4J 

At low frequencies (w « v1) the conductivity 
a= w£"/41T coincides with the corresponding for
mula from the theory of electrolytes.[s] When 
w « v1 (21) differs from the corresponding ex
pression for £' in the theory of electrolytes by 
virtue of the term -wL/v~. 

The terms due to the interaction in (21) and 
(22) are important when wL ( vi + w2 ) ~ 1. It 
should be kept in mind, however, that the equations 
given here are valid under the condition that the 
collision frequency is not small compared with 
WL· When v1 « WL additional dissipation proc
esses associated with Landau damping can be im
portant. 

In the example considered here the use of the 
equation in (12)-(15) leads to the appearance of 

additional terms in (20)-(22) that arise because 
correlation is taken into account. These additional 
terms are of order £ ~ eo/rd® and are not impor
tant in most cases. For instance, we could have 
used the usual hydrodynamic equations (12) and 
(13) with the term containing the correlation 
function omitted. The additional equations (14) and 
(15) for the correlation functions in (12)-(15) are 
important when the effect on the plasma is such 
that it is important to take account of the temporal 
change in the space correlation function. An ex
ample is the problem of establishment of the sta
tionary state when an external fixed electric field 
is switched on. The same problem in electrolytes 
has been treated by Khalatnikov. [s] 

Here we shall treat another example: assume 
that the plasma is subject to a uniform (this is 
possible at low frequencies) random electric field 
E 0 whose average value is zero; however, E~ -.c 0. 
Thus, 6E 0 = E 0 ( t ). In this case it is convenient to 
start with the equations for the random deviations 
of the functions j v6NadP and oE. We write these 
equations taking account of the uniformity of the 
plasma and using the total-current equation in 
place of Poisson's equation. In the linear approx
imation we obtain the following expressions for 
oj and oE: 

abj _ ~ e~na bE ~.. aE _ 4 . + 4 ~. at- ...:.J m;; -Vuj, -Tt- :itbj :ltuj0 • 

a 

(23) 

Here, oj 0 = -(47T)-1 BoE 0/at is the fluctuation of the 
external "transverse" current. Using (23) we find 

(24) 

At low frequencies ( w « v) and when WL « v 

e (w) = e' + i~;" = 1 -j- iwUvw = I < i/T~e1 w. (25) 

In (24) ( oEoE )w is the time spectral function of 
the electric field in the plasma. 

If ( oE0oE0 )w is taken to mean the spectral func
tion of the transverse field, or the equivalent effect 
of the thermal motion, then 

(oE 0oE 0)w =-c ~ ~;" (w) kT 
(!) 

and (24) becomes the Nyquist formula. 
If ( oE0oE0 )w is the spectral function of the 

external field, whose strength is greater than the 
thermal effect, using (25) we have 

(wT1 rf v 
(6EI\E)"' = r~ . (6E0oE.,)w, T~el ~, , (26) 

i+(w-rrel)' wf 
whence it follows that the reduction in the energy 
density of the external field due to plasma polari
zation is 

(27) 
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If the function ( oE 0oE0 ) w is independent of fre
quency (white noise) the right side of (27) becomes 

(oE0oE0)!16rtT~l· 

Thus, in a weakly ionized uniform plasma the 
energy of the external field can be converted into 
heat by relaxation processes; the corresponding 
relaxation time is T ~el· 
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