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The possibility of existence of dynamic resonances in the solutions of the Low equation for 
some renormalized and non-renormalized field theory models is analyzed. It is shown that 
the constraint imposed on the coupling constant by the condition of analyticity of the ampli
tude precludes the appearance of dynamic resonances in the renormalized cases. The be
havior of the S-phase shift in the nonrenormalized model of scalar charged mesons is sim
ilar to that of the P-phase shift in the Chew-Low model. 

1. INTRODUCTION 

MucH attention is paid recently to the occur
rence of resonances in the scattering of interact
ing particles. On the one hand, attempts are being 
made to attribute some of these resonances to the 
existence of new unstable particles which partici
pate in the interaction U •2]. (Resonances connected 
with unstable particles are called kinematic.) On 
the other hand, resonance solutions of the disper
sion equations are investigated under the assump
tion that there are no unstable particles and that 
the resonances are due to the dynamics of the 
process (dynamic resonances). Attempts at a dy
namic explanation of resonances have met so far 
with limited success, since no exact solutions have 
been obtained as yet for the dispersion equations. 
It is therefore of interest to consider simple field
theory models for which these equations can be 
solved exactly. 

In the present article we consider the possible 
existence of dynamic resonances in the solutions 
of the Low equation for certain field-theory models, 
under the assumption that there are no contribu
tions from the unstable particles. We show that 
resonant solutions are possible only for nonre
normalized models of field theory, while renor
malized models have no such solutions. This con
clusion agrees with the investigations of Shirkov, 
Efremov, and Chu [3] on resonance in the 7!"7r sys
tem. 

Resonance occurs even with the scattering S
phase in non-renormalized models. The energy 
behavior of the S-phase agrees qualitatively for a 
scalar charged model with derivative with the be-

havior obtained by Salzman [4] for the P-phase in 
the Chew-Low model. 

2. RENORMALIZED MODELS OF FIELD 
THEORY 

Castilleja, Dalitz, and Dyson [5] obtained a solu
tion of the Low equation for the scattering ampli
tude ha ( w ) of scalar charged mesons on a fixed 
nucleon (where a= 0 for positive mesons and 
a = 1 for negative ones). The solution has the 
form1) 

ha. (w)= ~ei5 a.(w) sin ba. (w) 
k 

= { ( -1)a. ( ~: rl- 1 - v:---==--<Oi -(- t)a R(w) rl. (1) 

The function R ( w ) , as shown by Dyson [s] and by 
Klein [7], takes into account the contributions made 
by the unstable particles to the amplitude. If we 
require that the solution of (1) expanded in powers 
of g2 coincide with perturbation theory, we must 
have R ( w) = 0. 

From the condition that the amplitude has in 
the unobservable region only a one-nucleon pole 
(for details see [5•8J), we obtain the limitation 
g2/27r < 1 on the coupling constant. This limitation 
excludes the possibility of resonance in the solu
tion of (1). Indeed, with g2/27r > 1 we would have, 
on the one hand, an additional "nonphysical" pole 
in the unobservable region w0 < 1 and, on the other 
hand, Re ha ( wres ) = 0 for a = 0, where wres 
= g2/27r. This conclusion is illustrated in Fig. 1. 

A similar situation obtains also in the other 

!)We put everywhere n = c = p. = 1. 
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FIG. 1. The figure shows that the line tjJ(w) = (g2/277)-1 

crosses the curve Re[(-v'l- w2 )/w] always at two points, 
W0 < 1 and Wres > 1. Therefore the resonance at Wres is 
always connected with the presence of a nonphysical pole 
at Ulo• 

exactly-solvable renormalized model. The scalar 
mesons interact with the fixed nucleon, which can 
be in two states (proton, neutron) of different 
mass, mp = mn + ~. where we must put ~ < 1 if 
we consider in the problem only stable particles. 
The Low equation and its solution for this model 
are written in the form 

co 

- 6Ng' [ (Jl l ul J \ k'dw' I h lw') 12 
lzN (w) - --? (Z J" _A_ ~- -;;~ + 4nw w'2 N _ 

'-' Jt L.l. (!) L.l. I (I)-

i 

>/ _!____ ~~-[ 1 1 J 
' w'-w-ie 1 w'-i-w ' 

wf'. 
hN (w) = 2n' (w'- fl.') 

r r g" ~-1 fl. Vf=W"- v~,-~ 
X ,- 0N l,-4.rr ) _! ~ (2) 

1 .. Jfi-.0. 2 V1-w2 +Vi-L'.'J' 

where 
, _ 1 1 for N = p (proton) 
<·:\' --- l- 1 for N ~ n (neutron) 

The R function is likewise discarded here. 
Efimov and the author [s] have shown that 

(3) 

If condition (3) is not satisfied, the amplitude will 
have an additional pole in the interval 0 :::::; w :::::; 1. 
Condition (3) simultaneously with the nonphysical 
pole excludes the possibility of resonance in solu
tion (2), for in this case we always have 

( 
fl. 1/1- (1)2- -v 1- f1.2 ) ' g' )-1 

Re Vi-f1.2Jf1-w2+V1-f1.2 <(;;;:r . 
Thus, in all the renormalized interaction cases 
discussed above, the resonance is excluded by the 
limitation on the coupling constant, which follows 
from the analytical properties of the amplitude. 2) 

2 )Khalfin[to] has shown that the specified analytical 
properties of the amplitude lead to a limitation on the coup
ling constant in the case when the amplitude is restricted to 
a finite number of partial waves (in all the models considered 
here there is one S or P wave). 

3. NONRENORMALIZED MODELS 

Nonrenormalized models are obtained from 
those considered above by introducing in the inter
action the time derivative of the meson operators. 
For example, for charged mesons we consider in 
place of 

2 

g ~ T; \ dxrp; (x,t) o (x) 
i=1 ~ 

an interaction Hamiltonian in the form 

2 
\ a(jl;(x,t) 

f ~ TL dx at p (x), 
i:-:::1 • 

p (x) = ~ eikxv (k), 
k 

where p( x) is the form factor of the nucleon. 
(For further calculations we put v(k) = Lo/(L2 + k2), 
where L is the cutoff momentum.) In view of the 
presence of a derivative in the interaction, the Low 
equation for these models will contain under the 
integral sign an additional factor w2, as compared 
with the renormalized case. Besides, unlike (1), 
we have ha ( w) = sin 6aexp [ i6a] v2( k )/kw. 

For charged mesons we now have in place of 
(1) 

f' h,(w)=(-J)a.-
2:n: 

The solution without the R function has the 
form 

h~ (w) =[(-I)' ( ~~ r -1 (w)r, 
L5w 

l(w)= 2(L+1J2 (L+V1-w2) 2 

(4) 

(5) 

As in the first example [renormalized model 
(1)], we obtain from the properties of the amplitude 
for 0 :::::; w :::::; 1 the inequality 

f"/2n -~ (2/L) (1 + 1/L)2 • (6) 

In the nonrenormalized model considered here, 
however, this limitation on f2 does not exclude the 
possible existence of resonance in the solution (5). 

Figure 2 shows the behavior of the function 
Re I( w ). It is seen from this figure that if condi
tion (6) is satisfied the equation Re ha-t ( w) = 0 
has for a= 0 (positive mesons) two roots 
1 :::::; w1res :::::; L/ .f6 and L/ .f6 :::::; w2res :::::; Vr::L--;;2-+~1, 

i.e., there are two resonances. For sufficiently 
large L ( L » ft), the second resonance at the 
point w2res lies in the region of large energies, 
where the static nucleon and the one-meson ap
proximation cannot be employed. At the same 
time we can, by suitable choice of the coupling 
constant f2, locate the first resonance in the low 
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FIG. 2. Behavior of the function ReI ( w). We see that the 
line t/Ja(w)=(-)a(f 2 /2rr)-1 cancrossthecurve Rel(w) both 
at the points w 1 res > 1 and w2 res > L/V6 when a = 0, and 
at the point W,res > VL 2 + 1 when a= 1. 

energy region 1 < w1res < 2. From the form of 
the function Rei ( w) shown in Fig. 2 it follows that 
resonance is possible also when a = 1 (negative 
mesons). This resonance, however, lies at very 
large energies w3res > .J L2 + 1. 

An interesting fact is the qualitative agreement 
between the curves* 

(f2/2n) R e h~1 (ro) = (f/2n) kwv2(k) ctg fla. (a= 0,1), 

obtained from formula (6), and the curves of 
Re gaa ( w) (a = 3, 1 ), obtained by the Salzmans[4J 
for the P-phases in 1rN scattering from the solu
tions of the Chew-Low equation. (The discrepancy 
in the case of large energies is due to a different 
choice of the form factors.) In the solution of (6), 

we have v(k)=L2/(L2 +k2), whereas in[(] v(k) 
= e-k/L Thus, the presence of the S or P wave 
in the scattering is immaterial to the character of 
the solution of the Low equation. The decisive 
factor for the presence of resonant solutions is the 
nonrenormalizability of the interaction (the connec
tion with the derivatives). 

By way of another example of a nonrenormalized 
model we consider the Kemmer scalar symmetrical 
theory with derivative in the interaction 

3 \' aq>, (x, t) 
H1 = f -~ 'tt.) dx at p(x). 

l=1 

Although it is impossible to obtain an exact solu
tion of the Low equation in this case, for we have 
here a system of equations for two amplitudes 
ht (w) and h2 (w) with total isotopic spinor T = t;2 

and T = %, nevertheless we can obtain a limita
tion on the coupling constant f and show that it 
does not exclude the possibility of resonance in the 
amplitude h3 (w). 

*ctg =cot. 

Let us examine the equation for h3 (w) 
co 

h3 (ro) = L + ~ \' dw'k'v2 (k') 
2rt Jt .) 

1 

[ I ha (w') 12 _, 1/a I ha (w') 12+ 2/al h, (w') 12 ] 

X w'-w-iE r w'+w . · 
(7) 

It follows from (7) that h 3 ( z) is an R function, 
since Im h3 (z) = ;\(z) Im z and ;\(z) > 0. Using 
the Herglotz theorem [5] for the R function and 
taking into account the properties of h3 ( z) given 
by (7), we represent the inverse function H3 (w) 
= -1/h3 (w) in the form 

00 

H 3 (ro) = R (w) - u: f' + : ~ dw'k'v2 (k') 

X [ 1 -1- _1_ {t -1- 21 ha-hl I'}] 
w'-w-iE ' w'+w ' h3 +2h1 • 

( 8) 

For agreement with perturbation theory we put 
R(w) = 0. Since h3 (w) has no poles in the interval 
0 :::: w :::: 1, H3 ( w) does not vanish in this interval, 
and since H3 ( 0) = -(fo/27T)-t and dH3 (w)/dw > 0 

in the interval 0 :::: w :::: 1, it follows that H3 ( 1 ) 
:::: 0. This inequality leads to the following limita
tion on the coupling constant 

co 

L .-- {__!_ \ dw'k'v2 (k') [-1- + 1 +I x (w') /' ]}-' 
2rt ~ rt .\ w'- 1 w' + 1 • 

1 

If we discard under the integral sign in (9) the 
positive quantity 

I x (ro') 12 = 21 (h3 (ro') - h1 (ro'))/(h3 (ro') + 2h1 (ro') j2 , 

then the inequality becomes even stronger: 
co 

(9) 

L<{-1 \' dw'k'v2(k') 2ro' }-1 =2_( 1 + __!_)• 
2rt rt ~ w ' 2 - 1 L L . (10) 

1 

The inequality (9) does not exclude the possibil
ity of resonance in the amplitude h3 (w). Indeed, 

Re h3 (ro) 
00 

(_r_)-1- ~ p \' dw'k'v' (k') [-1- + 1 +I x (ro') I•J-
2rt rt .) ro'- w ro' + w 

1 
co 

I ( L)-1-~ \' .dro'k'v' (k') [ 1 . + 1 +I x (w') I'] I' 
\ 2rt rt .) ro'- ro-tE ro' + ro 

1 

The vanishing of the numerator in (11) does not 
contradict (9) when w = Wres• where 1 < wres 
< L, since 

co 

rores p \' dw'k'v• (k') [ 1 + 1 + J x (ro') 12 ] 

n .) w'-w w'+w 
1 res 

00 

(11) 

> __.!.__ \ dw'k'v2 (k') [-1 - + 1 +I x (ro') 12]. (12) 
n .) w'-1 w' + 1 

1 
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In similar fashion we can obtain a limitation on 
f2 in the Chew-Low model [1], too, by repeating the 
foregoing arguments for the amplitude h3 ( state 
T = o/2 and J = % ). We obtain 

co 

{2 3 { 1 \ dw'k' 3v2 (k') [ 1 1 -1- 1 y (w') 12 ]}-1 
2it < T n ~ w'2 w' _ 1 + w' -1- 1 . (13) 

l 

If we now discard the positive quantity 

I y (w) \2 

I h2 (w)- h1 (w) 12 -1- 1/•l ha (w) - h1 (w) 12 -1- 1/.llza (w)- h2 (w) 12 

I h1 (w) -1- h2 (w) -1- 1/.lza (w) 12 

and put L = 7, we get fo/27T < 0.28, which does not 
contradict the assumed value fo/27T = 0.08. 

From the examples considered above it follows 
that the occurrence of resonance in the solution of 
the Low equation is connected with the nonrenor
malizabUity of the interaction. However, in the 
example given below, that of the nonrenormalized 
model of Bialynicki-Birul, the limitation on the 
coupling constant excludes, as in the renormalized 
models, the possibility of resonance. In this case 
we have in place of (2) and (3) 

co 

+ 4nw \' dw'k'v 2 (k') I h (w') /2 [ 1 . -'- - 1-l .J N w'-w-tB 1 w'+w_.. 
1 

with a solution 

where the coupling constant is limited by an in
equality that follows from the requirement that 
hN (w) have no zeroes or poles outside the real 
axis 

(14) 

Ff4n<VI -f:!.2 /f:!. (1 +LVI- f:!.2). (16) 

Inequality (16) can be readily obtained by the 
method first proposed by Gribov et al [12 •13]. 

I ( ") R Lw2 !'l (2L -1-V~ 
(I)"= e(V1-!l2 -I-V1-w2)(L-!-V1-w2 l' 

Figure 3 shows a plot of the function 

It is seen from it that in order to exclude the ad
ditional pole in the interval 0 s w s 1 it would be 
enough to stipulate that the line must not cross 
the curve I (w2 ) in this interval. From this we 
get a limitation for the constants f2 when L » 1: 

2ll Re !rw'l 
Jl-Ll' 

i; _, J 

-({TT}+b 

·[!Jl__ ______________ _ 

FIG. 3. •It follows from inequality (17) that the line 
t/JN(W 2 ) = -oN(f2/277f 1 + f:!. 3/Vl- f:!.2 nowhere crosses the 
curve I (w 2 ). 

(/2/4nt1 + f:!.3/Yl - f:!.2 > 2f:!./JI 1 - f:!.2 • (17) 

But inequality (17) is clearly weaker than (16), 
since L » -J 1 - ~2. The satisfaction of the 
stronger inequality (17) is necessary not only to 
prevent the appearance of an additional pole in the 
interval 0 s w s 1, but to exclude a possible pole 
of hN ( w) on the imaginary axis, made possible 
by the fact that the function in the braces in (15) 
depends on w2• Resonance would be possible under 
inequality (17), but inequality (16) excludes this 
possibility. 

4. CONCLUSION 

From the examples considered it follows that 
in the case of nonrenormalized interactions, reso
nance exists for definite values of the coupling 
constant f2 and of the cutoff parameter L. The 
possibility of resonance in the nonrenormalized 
scalar charged and symmetrical theories, con
sidered in Sec. 3, is interesting because in this 
model there exists only an S-phase in the scatter
ing amplitude, and therefore the resonance cannot 
be attributed to the centrifugal barrier. 

In conclusion the author is grateful to Professor 
D. I. Blokhintsev and A. A. Logunov for useful 
discussions of the problems touched upon here, and 
also to G. V. Efimov for great help with the work. 
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