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An approximate expression is presented for the quasi-classical wave function of a system 
with many degrees of freedom. The result obtained is valid in a broader range than is per
turbation theory. 

A quasi-classical solution of the Schrodinger 
equation can be obtained only for the one-dimen
sional problem. When the number of degrees of 
freedom is large, a solution is possible only if 
the variables separate. Yet, it is precisely for the 
non-separating variables that the quasi-classical 
approximation is of special interest, since it is 
impossible to solve the corresponding classical 
problem. In this case, some information can be 
obtained with the aid of perturbation theory. The 
condition under which the latter is applicable is, 
as is well known, the inequality ( V /E ) ( ka) « 1, 
where V is the perturbation, E the energy of the 
system, k the wave vector, and a the dimension of 
the classically admissible region of motion. In the 
present communication we calculate for a system 
with many degrees of freedom a quasi-classical 
wave function which is valid under less stringent 
requirements. 

Let a system with N degrees of freedom have a 
discrete spectrum and let it be described by a 
Hamiltonian H0 + V. It is assumed that the vari
ables in H0 are separable, so that the wave func
tions ~nk) of the unperturbed system are known; 
nk is the set of quantum numbers (k = 1, ... , N ). 
We assume the quasi-classical condition nk » 1 
to be satisfied. The unperturbed system goes over 
in the classical limit to a system with a Hamiltonian 
H0, which carries out a finite motion over all the 
degrees of freedom. Such a system is characterized 
by a set of frequencies Wk and action variables Ik. 
Its energy is E = E (Ik ). In order to write down the 
Schrodinger equation in the action and angle vari
able representation ( cp -representation), it is 
necessary to replace Ik by the operator C1a/acpk. 
We obtain 

We write down the perturbed equation in the 
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form 

E (+ a:k) U<nk> 'I'~nk> + V ( cpk, + a:k) U<nk> 'I'~nk> 

= [Ernk> + t:.<nk> l U<nk> 'I'rnk>, (2) 

where U (nk) ~(nk) is the perturbed wave function 

and .6.(nk) is the shift in the level characterized by 
the numbers nk (we are considering the nondegen
erate case). In the quasi-classical approximation 
we can replace i-1a/acpk in V (cpk, i-1a/8cpk) by nk, 
since i-1a/acpk ~ nk, and the noncommutativity of 
CfJk and ajacpk is of the order of unity. 

We are interested in the correction to the wave 
function corresponding to the nk level. We expand 
E (ik) in powers of <ik - nk) and confine our
selves to the linear term. The error resulting 
from this is best estimated by comparing the final 
result with the known expression for the quasi
classical wave function of the one-dimensional 
problem, as will be done below. We thus obtain 

~ + rokaU'I'~nk> !acpk + V (cpk, nk) U'I'rnk> 
k 

(3) 

Inasmuch as ~(nk) is a solution of (3) when V = .6. 

0, U (nk) satisfies the equation 1> 

~rokaU<nk>/acpk = i [~<nk>- V (cpk> nk) l U<nk>. (4) 
k 

We write its solution in the form 

l)An equation similar to (4) can be obtained with the aid 
of perturbation theory of classical mechanics, by writing 'II in 
the form exp(iS), where S is the classical action. The dif
ference in this case lies in the absence of the term with t:. in 
the right half. The calculation of the level shift thus consti
tutes a separate problem. 
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(5) 

where t0 is the root of the equation Vk ( <Pk + Wkto) 
= 0. The function V (<Pk ), specified in the region 
0 :s<Pk :s 27T, is continued analytically in all of <Pk 
space, and the root t 0 can, in particular, be com
plex. 

The expression for ~ (nk) can be readily obtained 
by considering the two equations 

(Ho + V) UlJ!fnk) = [E~nk) + f'i(nk) J U'¥~nk), 

(6) 

Multiplying from the left by ~nk) and integrating, 
we get 

On the other hand, there exists an 'exact' quasi
classical function 

'I' n (x) = U n (x) 'I'~ (x) 

= {2 TEn+ f'in- U (x)- V (x)l}-'1• 

X 

X exp { i ~ Y2JEn + f'in-U(x)-V(x)l + rn}• (12) 
x, 

Taking into account the relation 
X 

(' dx 
cp =Wf =W ~ V2[E-U(x)] ' 

x, 

(13) 

we verify that formula (11) gives the first term in 
the expansion of the square root in the exponent of 
(12) in powers of (~n- V )/(En- U) ~ V/E. 

(7) The condition for the validity of this approximation 

The matrix elements in (7) are taken over by the 
unperturbed wave functions. Formulas (5) and (7) 

solve our problem in the cp-representation. 
The transition to the x-representation is made 

in accordance with the well-known formulas for 
unitary transformations. We present the result 
only. The transition matrix fcpk (xk) is 

f'"k(xk) = 2J '¥~"(1Jlk)'¥~k (xk). (8) 
n1 ... nN 

The perturbed wave function in the x-representation 
is 

'¥(nk) (xk) = ~ U nk('Pk) '¥~k (l)lk) f"'k (xk) dcpl ... dcpAJ. (9) 

The function V (<Pk· nk) is determined by its 
Fourier components 

!V (cpk, nk)lmk = (nk- m,, IV I nk), (10) 

where the matrix element is taken over the unper
turbed wave functions in the x-representation. 
Formula (10) corresponds to the well known ex
pression for matrix elements calculated with 
quasi-classical wave functions. 

To estimate the applicability limits of the ob
tained results we consider the one-dimensional 
case. Formula (5) then assumes the form 

is 

(VI E) (ka)'l· < 1, ka ~ n. (14) 

It is necessary to put in the pre-exponential factor 
V = ~ = 0, which corresponds to the condition 

VIE< 1. (15) 

Finally, we disregarded in the derivation the dis
placement oa of the cusp (in the multi-dimen
sional case-the caustic). Its order of magnitude 
is oa = aV/E. This neglect is valid if oa is much 
smaller than the distance from the cusp, at which 
the quasi-classical solution is 'pieced together' 
with the solution of the Airy equation. This leads 
to the inequality 

(VIE)(ka)'f, < 1. (16) 

The limitation (16) is the strongest of the three 
and determines the limits of applicability of the 
results obtained. 

I take this occasion to express my deep grati
tude to A. M. Dykhne and V. L. Pokrovskil for 
numerous valuable comments and for discussions 
of the present work. 

"' 
Un(cp) =exp{--b--~[!'1-V(cp')ldcp'}· 
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