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The problem of homogeneous turbulence in an incompressible viscous fluid is considered 
on the basis of the Hopf equation (in variational derivatives) for the characteristic func
tional. Owing to the analogy between this equation and the Schrodinger equation for a vector 
Bose field with a strong interaction, the mathematical theory of quantum field theory can be 
applied to the problem. The solution is obtained in the form of a continual integral. An analy
sis of the solution shows that for infinite Reynolds numbers of the initial state the law of tur
bulence degeneration is independent of the form of the initial-state probability distribution. 

CoRRELATION functions of the form (vi (x1, t) energy sources viscosity causes the turbulence 
... vz(xn, t)) are frequently used in statistical to attenuate with time). This paper does employ 
descriptions of the turbulent motion of a liquid. certain mathematical procedures of quantum field 
If a differential equation for the time variation of theory, but unfortunately contains an error, a 
such a correlation function is derived from the matter to which we shall return. The analogy 
Navier-Stokes equation of motion [by multiplying with quantum field theory was noted by Wyld [a] 

the Navier-Stokes equation written for Vi (x1, t) in a discussion of the theory of stationary turbu-
by Vj (x2, t) ... ve(Xn, t )] and subsequently aver- lence. This paper establishes a direct connection 
aged, then the nonlinear term in the equation of between a solution expanded in powers of the ex-
motion yields the correlation function of order ternal force and the series in powers of the coup-
(n+1), and the resultant equation is not closed. ling constant used in quantum field theory. 
This results in a system of coupled equations, In the present paper we trace an even closer 
similar to the chain of equations for Fock's func- analogy between turbulence theory and quantum 
tional. In practice, such a system is always field theory.' The Hopf equation for the character-
solved by using various supplementary hypotheses, istic functional is found to be analogous to the 
which allow us to close the system of equations Schrodinger equation for a nonlinear vector Bose 
and find an approximate solution. This method field with strong interaction and an interaction 
has resulted in considerable progress, in that Hamiltonian corresponding to the fusion of two 
Kolmogorov, Obukhov, Heisenberg and others bosons into one. This problem can be solved by 
obtained for very large Reynolds numbers second- a field-theoretical method such as the ordering 
order correlation functions for a certain distance of the S matrix (after Hori) with subsequent 
interval (inertial interval) in which the form of expression of the solution in the form of a con-
these functions is universal, i.e., independent of tinual integral. The kernel of this integral, which 
the way the turbulence is generated. can be called the Green's functional for the Hopf 

Great interest attaches, however, to a more equation, can be writt~n in a closed although com-
rigorous approach to this problem, in which plicated form. The same Green's functional en-
Kolmogorov's solution is an asymptotic form of abies us to write the solution of the equation in 
the exact solution of the problem. This rigorous the presence of external forces, too (this solution 
approach to turbulent motion of fluids was sug- is not presented in the article). 
gested by Hopf, [i] who formulated for the char- The exact solution obtained in this paper for 
acteristic functional a variational differential the problem of degeneration of turbulence is too 
equation equivalent to the entire infinite chain of complicated to yield specific conclusions directly. 
equations for the correlation functions. Rosen [2] The task of extracting such conclusions from the 
used Hopf's equation to analyze the degeneration solution will apparently turn out to be no less 
of turbulent motion (in the absence of permanent complicated than the work already performed. 
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1. We consider the degeneration of turbulence in 
an unbounded volume of incompressible viscous 
liquid. Its evolution is described by the Navier
Stokes equations. If vi(x, t) is the random veloc
ity, then 

(1) 

We put 

v1 (x, t) = ~ exp (ikx) q1 (k, t) d3k (q; (- k, t) = q1 (k, t)), 

p (x, t) = ~ exp (ikx) r (k, t) d3k (r' (- k, t) = r (k, t)). 

Then (1) becomes 

iJqi (k, /) - - 'k \ . (k' t) (k- k' 1) d3k' at - z 1 ~ q, , qz , '· (2) 

ik-r 
- -:- -- vk2q1, k1q1 (k, t) = 0. (3) 

Multiplying the first equation in (3) by ki and using 
the second equation, we obtain 

+ =- \:1 ~qJ(k', t)qt(k--k', t)d3k'. 

Substituting this expression in (3) and introducing 
the notation* 

Bz, ii (k) = - ikz (6;1 - k;k/k2 ), 

Q1 [q (x, t); k] = Bt, if (k) ~ q1 (x, t) q1 (k - ')(, t') d3x, 

we obtain 

aq; (k, t)!at = Q; [q (')(, t); kl -- vk2qi (k, t). (4) 

We note that B[,ij ( k) satisfies the conditions 
kiBl,ij(k) = 0 and Bz,ij(-k) = B[,ij(k). It is nec
essary to add to (4) the incompressibility equation 
kNi ( k, t) = 0, which actually reduces the number 
of independent components of the velocity field to 
two. This complicates the solution somewhat. We 
therefore do not add the incompressibility equation 
to (4) and regard all three velocity components as 
independent, imposing this condition on the initial 
state. The incompressibility equation is then sat
isfied for all t. Indeed, multiplying (4) by kj and 
taking the equality kiBl,ij ( k) = 0 into account, we 
·obtain a ( kNi )Clt = - vk2 ( kNi), from which it fol
lows that kiqi(k, t) = 0 if kNi(k, 0) = 0. 

Instead of the functions qi (k, t) it is convenient 
to introduce new functions gi ( k, t): 

*We shall adhere to the following notation: if a certain 
functional F depends on a functional argument f(k, t), it is 
written F [ f(x, T)] and actually is independent of x or T 

(Greek letters assume the role of 'dummy' indices in tensor 
algebra). If F is also dependent on certain k and t, then 
these arguments are denoted by Latin letters: for example 
F[f(x, t)] or F[f(k,T), tl. 

q1 (k, t) = exp (- vk2t) g1 (k, t), g; (- k, t) = g, (k, t). 
(5) 

Substituting (5) in (4) we obtain 

agt(k, t)lat = exp (vk2t) Q, [exp (- vx2t) g (')(, t); kl. (6) 

We add to this equation the initial condition 

g; (k, 0) = q7 (k), (7) 

which satisfies the relation kiq~ ( k) = 0. 
2. We now turn to the statistical analysis. Let 

q~(k) be a random field. All its statistical char
acteristics can be specified with the aid of the 
characteristic functional 

(8) 

where 

l [p (')(); qo (x)] = exp {2n:i ~ p1 (x) qJ (x) d3x} 

and the brackets ( )qo denote averaging over the 
· random field q 0• Knowing .P 0[ p ( IC ) ] , we can find 
all the desired characteristics of the field q0(k), 
for example 

It is assumed in (8) that the function Pi (k) sat
isfies the condition p{ (- k) = Pi ( k), from which 
it follows that the integral in the exponent is pure 
real and consequently I .P 0 I :5 1. 

The solution qi (k, t) of Eq. (5) for a random 
initial condition is also a random field, determined 
by the characteristic functional 

<Dt [p (x)l = (Z [p (x); q (')(, t)])q•, (9) 

and it is assumed here that qi ( IC, t) is expressed 
in terms of q~(k) and then averaged. If we intro
duce the functional 

'I't [p (x)] = (Z [p (x); g (x, t)])q•, (10) 

then, as is clear from (5), (9), and (10), 

<Dt [ p ( x) l = 'I't [p (x) exp (- vx2t)]. (11) 

(The transition from .Pt to 'lllt and from q to g is 
analogous to the transition from the Schrodinger 
representation to the interaction representation). 
We differentiate (10) with respect to time, insert 
(6), then interchange the order of averaging and 
integration with respect to k: 

~~~ = 2ni ~ exp (v~t) Pt (k) (Z [p (x); g (')(, t)l Q, 

x [exp (-vx2t) g (x, t); k])qod3k. (12) 

The average value involved here can be expressed 
in terms of the variational derivatives of 'lllt[p( IC )] • 
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Putting Di ( k) = 6/ opi ( k ), we have fD1 (k, t), p; (k', t')] = exp l -vk2 (t - t') J 61; 6 (k - k'). 

= (2rti)2 (!It (kl, t) g; (k2, t) z [p {l<.}; g (l<., t}])q•· 

Multiplying the last equation by exp [- v( k~ + k~ )t] 
x BZ,ij (k1 + k2 ), and then putting k2 = k- k1 and 
integrating with respect to k1, we obtain an equa
tion 

Q; [exp (- vk2t) D (l<.); kl '1'1 [p (l<.}) ·= (2ni)2 

x <Z [p (l<.}; g {l<., t)l Q1 [exp (- vk2t) g (l<., t); k])q•, 

which when substituted in (12) results in a varia
tional differential equation equivalent to the Hopf 
equation: [i] 

(13) 

x [exp (- vx2t) D (l<.); k] '1'1 [p (l<.}l. 

If we introduce the time-dependent operators and 
functions* 

D 1 (k, t)-= exp (-vk2t)Di (k), 

Pi (k, t) = exp (vk2t) Pt (k), 

then (13) becomes 

(14) 

a'¥ \ 
2ni af = .l d3kp1 (k, t) Qi [D (l<., t); kl '1'1 [p (l<.}l. (15) 

It is necessary to add to (15) the initial condition 

'l'o [p (l<.}] = Cflo [p (l<.)], (16) 

where 11> 0 satisfies the condition kiDi (k) 11> 0 [ p( IC )] 

= 0, which is a consequence of the condition 
kiq~(k) = 0. 

3. Equation (15) is analogous to the equation of 
nonlinear quantum theory for a certain vector Bose 
field, with Pi ( k) and Di ( k) regarded as operators 
for the creation and annihilation of bosons with 
momentum k. It is easy to check that these op
erators satisfy the same commutation relation 
as the creation and annihilation operators t 

[Di (k), Pi (k') 1 = 6i;6 (k - k'). (17) 

From the definition of (14) we then obtain 

*Expressions (14) can also be obtained in the form 
exp(iH0t)Di(k)exp(-iH0t) and exp(iH0 t)pi(k)exp(-iHot), 
where H0 is the 'free-field Hamiltonian,' which we do not 
write out here. Our method of obtaining (14) and (15), how
ever, is shorter, 

tin field theory it is preferable to use as the creation 
operator the Hermitian adjoint operators Aj (k) = 1/zp, (k) - D, (k) 
and Aj (k) = 1/•P, (k) + D1 (k) [4], which satisfy the same com
mutation relations [Aj (k), Aj (k')] = 61;{) (k- k') , Since we 
do not use the adjoint condition for the creation and annihila
tion operators, we can employ the foregoing analogy. 

(18) 

The state vectors in the Schrodinger and in the in
teraction representations are analogous to the func
tionals <~>t and ~t· The operator 

H (t) = ~d3kp; (k, t) Q1 [D (l<., t); k] = ~d8k1 

x ~ d8k2Bt, ii (k1 + k2) p; (k1 + k2, t) Dt (k1 , t) D; (k2, t) 
(19) 

is interpreted as the interaction Hamiltonian in the 
interaction representation. Equation (15) in the 
form 

(20) 

is analogous to the Schrodinger equation in the 
representation interaction. The essential differ
ence from quantum field theory is that the Hamil
tonian (19) has no crossing symmetry and de
scribes only the single process of fusion of two 
bosons. 

4. The indicated singularity enables us to con
struct for (20) a certain class of exact solutions, 
corresponding to special initial conditions. For 
this purpose we use the well known series expan
sion 

'¥t fp (l<.)] = S (t) Cfl0 [p (l<.}] 
t ~l 

= { 1 + ... + - 1-_ \ d-r:1 I d-r:2 ... 
(2ru)m 0 ~ 

-rm-1 

X ~ d-r:mH (-r:l) ... H (T:m) + ... } Cflo [p (l<.)l. 
0 

Let 11> 0 be a functional of n-th degree 

<Do= !lnlP(l<.}] =~·· · ~fivin (~1• · · ·, kn) Pi, 

X (kl) · · · Pin (kn) d3k1 ... d3kn 

(21) 

(in field theory it describes the n-particle state). 
It is clear that the operator H ( t ), acting on en, 
reduces its degree by unity; the (m + 1 )-th mem
ber of the series (21) reduces the degree of this 
functional by m; all members of the series start
ing with the (n + 1 )-st, acting on en, yield zero. 
Thus, if we specify the n-particle state as the 
initial state, then the first n members of the 
series (21) yield the exact solution of the prob
lem. As is well known, the series (21) is an ex
pansion in the interaction constant, which in our 
case is the Reynolds number (this is clear from 
the fact that the small parameter v precedes not 
the nonlinear terms of (1), but the linear term 
~Vi). Consequently, the finite partial sequences 
of the series (21), which yield the exact solution 
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considered above, are polynomials of degree n 
in the Reynolds number. 

However, the initial state en, which has phys
ical meaning in field theory, has no meaning in 
turbulence theory. Indeed, from the definition (8) 
it follows that I ~Po I ~ 1. But the functional en 
which we are considering does not have this prop
erty, and neither does any linear combination of 
such functionals with different n. We can expand 
4? 0 only in an infinite power series corresponding 
to an infinite number of particles in the initial 
state 

~ (21ti)n \ 
<1>0 [p ('X)]= .LJ----;;-! ~ ... 

n=o 

In virtue of the linearity of (20), we can seek a 
solution in the form of a sum of terms correspond
ing to the individual terms in the expansion of 4? 0• 

For each of these terms we can write out an exact 
solution which is a polynomial of finite degree in 
the Reynolds number. The series constructed in 
this fashion, which we do not write out here, is a 
series in powers of the Reynolds number. Even 
if we assume that this series converges, the num
ber of terms that must be taken in it is of the 
same order as the Reynolds number of the initial 
state, which is unrealistic in practice. However, 
such a construction indicates the nature of the 
difficulties that arise when attempts are made to 
obtain a solution by neglecting moments of rela
tively low order. 

5. Our next problem is to represent the solu
tion of (20) in the form of a continuous integral. 
For this purpose we transform the expression 

t 

S (t) = T (1\), K = exp [ 2~i ~ H ( -r) d-r J (22) 
0 

x < 0, and .6. assumes the form 
t ~. 

~ = ~ d3k ~ dT2 ~ dTt 
0 

(25) 

Applying the operator (23) to 4?0 written in the 
form (8), and including the operator S under the 
averaging sign, we obtain 

"'l't [p ("X)]= <{N [(exp ~)·Kl}·Z [p ("X); q0 ("X)])q•· (26) 

We now note that all the differentiation operators 
Di (k, t) in (23) are on the right side of the func
tions Pi ( k, t), and consequently act only on Z. 
But when applied to this exponential, the oper
ators Di can be replaced by the eigenvalues in 
accordance with the rule 

Dt (~. t) ~ 2ni{it (k, t), (it (k, t) = exp [- vk2tl.q~ (k). 

(27) 
This substitution can obviously be made also in 
expression (23), provided the operator o/ oDi ( k, t) 
in .6. is replaced in accord with the rule 

6 1 6 
6D; (k, -r) -+ 2ni 6q; (k, -r) 

Then H - H and .6. - .l, where 

l! lp ('X, t); <I ('X, t)l 

= - 4n2 ~ d3kpt (k, t) Ql [q ('X, t); kl, 

t '"• 
'X = 2~i ~ d3k ~ dT2 ~ d-r1 exp [- vk2 (T2 - -r1)l 

0 

X 6 6 
6pi (k, 'rt) 6ll; (k, '~'2) 

If we introduce the notation 
t 

(28) 

(29) 

(30) 

Ktlp ('X, -r); q ('X, -r)l = exp{2~i ~ H [p ('X, t'); q ('X, t')l dt'}, 
0 

for the S-matrix with the aid of the Hori operator [S] 
to the normal form then (26) assumes the form 

now be omitted) 
(the sign of N can 

S (t) = N {(exp M·K}, 

where .6. is the operator 
t t 

~ = ~ d3k1 ~ d3k2 ~ dTl ~ d-r2p; (kl> T1) n; (k2, T2) 
0 0 

6 6 
X 6pi (kt. -r1) 6Di (k2, '~'2) ' 

Convolution of p (k1, T1 ) Dj(~, T2 ), yields 

p; (kh T1) D~ (k2, T2) 

= 6 (-r2 - T1) exp [- vk~ (T2 - T1}1 6;i6 (k1 - k2), 

where e(x) = 1 when x > 0 and e(x) = 0 when 

(23) 

(24) 

"'l't [p ("X)l = <{(exp K) 

X Kt [p ('X, -r);q ('X, -r)]} .z [p ('X); q0 ('X)])q•·· (31) 

We note that by virtue of the conditions p{(- k, t) 
= Pi(k,t), q{(-k, t)=<!'!(k,t), and B{,ij(-k) 
= Bz,ij(k) the quantity H is pure real. The quan
tity 

S1 [p ('X, -r); q ('X, T)l = (exp S) ·Kt [p ('X, -r); q ('X, T)] (32) 

is now no longer an operator, but a functional of the 
a-functions p(IC, T) and q(IC, T). With the aid of 
(32) we rewrite (31) in the form 
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'l"t [p (-x.)1 = (St [p (-x., -r); q (-x., -r)1 ·Z [p (-x.); q0 (-x.)1)q•· 

(33) 

6. To find St we use the Fourier transforma
t~on. We first determine the continuous integral of 
the function F[f(x)], a :::> x :::> b, with the aid of the 
relation [6] 

(38), the functions Pi(K, T), <ij_(K, T) enter in the 
exponential linearly. We can therefore readily 
calculate the action of the operator 3: on Kt: it 
multiplies the integrand in (38) by a factor 

t 

'X.- 2~i ~ H [L [A (-x., -r); t']; a (-x., t') I dt', 
0 

where 
t 

~F If (£)1 'l:>f (£) = l~~ ... ~· .. ~F <ft •••. , fn) 

XCV tu dfl) ... (V ~X dfn), (34) Lt [A (k, -r); t'] = ~ exp [- 'Vk2 (-r- t')1 At(k, -r) d't'. 

where 6x = (b-a)/n and F(f1, ••• ,fn) is the 
value of F[f(~ )J on a step function that assumes 
values f1, ••• , fn. Symbolically we can write (34) 
as 'l:>f(O = rrv'CIZ df(U. If 

~ 

boo [t:p (£)1 = ~ exp [ 2ni ~ f m t:p (£) d£] 'l:>f <£>, (35) 

then, as shown by Novikov, [6] the following for
mula holds true 

~ F [t:p (£)1 boo [t:p (;) - f (s)1 'l:>t:p (£) = F If (£)1. (36) 

By taking the limits a - - oo and b - - oo , we 
extend (34)- (36) to include the case of an infinite 
interval. Substituting (35) in (36) we obtain the 
formula for the continuous Fourier integral 

F [f (£)1 = ~ 'l:>t:p (6) ~ 'l:>'IJ (£) F (t:p (£)1 

X exp {2ni ~ 'ljl (£) (t:p (£) - f (£)1 ds}. (37) 

Formula (37) holds true for real functions f, cp, 
1/J, but by introducing new variables, which are 
the Fourier transforms of these functions, for
mula (37) can be extended also to complex func
tions which are Fourier transforms of real func
tions (for which the integral in the exponential is 
real ) . In the case of functions of many variables, 
all the formulas remain in force if we put 

x.~ 

7. We represent the functional Kt in the form 
of a continuous integral in the variable Cli ( K, T ). 

Using an analog of (37), we obtain 

Kt lp (-x., 't); <I (-x., -r)l 

= ~ 'l:>3a (-x., -r) ~ 'l:>3A (Y.. -r) K1 [p (-x., 't); a (-x., -f) I 

I 

X exp{2ni ~d3k ~d-rA1 (k, T) (tlt (k, T)- a1 (k, 't)J}, 
0 (38) 

where the integration extends to the functions a 
and A, which satisfy the conditions a*(- K, T) 
=a(K,T), A*(-K,T)=A(K,T). Inexpression 

t' 

Since this factor is independent of the functions 
Pi ( K, T), Cli ( K, T ) , the repeated application of the 
operator 3: is given by the same formula and then 

t 

exp Li .- exp {2;i ~ H [L [A (-x., T); t'l; a (-x., t')1 dt'} 
0 

= Kt [L [A (-x., -r'), -rl; a (-x., -r)l. 

Substituting the last expression into the formula 
for St. we obtain 

StlP (-x., 't');q (-x., T)1 

= ~ 'l:>3a (-x., -r) ~ 'l:> 3A (Y., 't') Kt [p (-x., -r) 

+ L [A (10:, -r'); -r); a (-x., T)] 

t 

x exp {2ni ~ d3k ~ d-rA1 (k, 't') (q1 (k, 't') - a1 (k, -r)l}. 

0 (3!1) 

8. Formula (39) can be greatly simplified by in
tegrating explicitly over the functions a(K, T), 
which are contained in the exponential of (39) quad
ratically. This integration can be carried out by 
using the method indicated by Feynman. [i] 

We represent (39) in the form 
t 

S1 [p, q] = ~ exp { 2ni ~ d3k ~ d-rA; (k, T) q1 (k, -r)} 
0 

X Gt [p (-x., -r); A (-x., -r)1 'l:>3A (-x., 't), (40) 

where Gtlp(K, T); A(K, T)] denotes the functional 

G1[p (-x., -r); A (Y., -r)l 

= ~ 'l:>"a (-x., -r) Kt!p (-x., -r) + L !A (-x., 't'); 't); a (-x., T)] 

t 

X exp {- 2ni ~ d3k ~ ~'t A1 (k, T) a1 (k, -r)}. (41) 
0 

The integrand in (41) is an exponential function 
that contains terms both quadratic and linear in 
ai ( k, T). To calculate (41) we introduce new in
tegration variables 

a; (-x.. T) =a~('X., T) + Ut (-x., T), 'f:>3a (-x., T) = 'f:>3u (x, T), 

and choose the fixed functions a~ ( K, T) such that 
the exponential has no terms linear in u. This 
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leads to a linear integral equation of the convolu
tion type, which can be solved with the aid of the 
Fourier transformation. Its solution has the fol
lowing form 

a? (k, t') = ~ ft1 [p (~. I') 

+ L [A (x., 't); t'l; k + k'l A1 (k', t') d3k', (42) 

where the following notation is used:* 

!;1 [f (x., t'); k] = 16
1_. \ (exp ikx) a In T [f (-A., t'); l() dax 
" J ar,i [f (-A., 1'): x] ' 

T = Det II Tlill. 

T;1 [ f (x., t'); x] = ~ (exp ikx) f 11 [ f (k, t')l d3k, 

fti If (k, t')l = -i !Bt. it (k) + Bi. tt (k)l fz (k, t'). 

With the aid of this change of variables, the in
tegral (41) reduces to 

Gtfp (x., 't); A (x., 't)] = P [fiJ, A]· Q[f;il, (43) 

where 
ftJ = r,i[P (k, t) + L [A (k, 't); tll; 

t 

P [ft/Al = exp {- in~d3k'~d3k"~dt'Iii!ftn; k' 
0 

+ k"] A, (k', t') A1 (k", t'J}, (44) 

t 

X ~ dak" ~ dt' ftjUt (k', t') Uj (k", t')} D3u. (45) 
0 

Since the functional Q depends on the function A, 
in which integration is subsequently carried out, 
we must evaluate also the integral (45). t This can 
be done following the same procedure of Feynman. 
Differentiating (41), we can write the equation 

2 . 6Gt \ IJ"Gt d3k' 
- m or,1 (k, I') = J M 1 (k'. n M 1 (k- k', t') · (46) 

Substituting (43), (44), and (45) into this equation, 
we can obtain after rather cumbersome manipula
tions the following equation for the functional Q: 

b In Q/bf;i (k, t') = - &t364 (0) I,i !ftn (k, t')], (47) 

*We note that Det II Tij II .f 0, although the incompressi
bility condition yields Det IIIlj l1 = 0. The proof is usually 
obtained by writing Det II Tij II in the form of a triple integral 
of nj• 

tWe note that Rosen[•] did not take this into account, er
ronneously, an analogous circumstance and the numerical con
stant appearing in this paper is actually a functional of a 
function over which integration is subsequently carried out. 

where 64 ( 0) is an infinite constant, equal to 
o(k) o(t)jJ:t;:o· In carrying out the repeated inte-

t=o 
gration with respect to A, this constant should 
vanish by virtue of the normalization of ~t· When 
the continuous integral is written in the finite
dimensional form (34), we must replace 64( 0) by 
( Ll.3k. Ll.t) -l. It is easy to check that the solution 
of (46) has the form 

t 

lnQ = lnQ0 -04 ~0)~d3x~dt' In T [f (x., t'); x], 
0 

where Q0 is a numerical constant, and f(k, t') 
should be replaced by p(k, t') + L [A(k, T); t']. 
Gt is finally written in the form 

Gtfp (x., 't); A(~. 't)l = M [p (x., 't) 

+ L [A (x., 't'); 't]; A (x., 't)], 

where 

M [ f (x., 't); A (x., 't)] 

t 

= Q0 exp {- 04 ~0) ~ d3x ~ dt' In T [ f (x., t'); xl 
0 

t 

-in~ d3k1 ~ d3k2 ~ dt' Iii[ f (x., t'), 
0 

(48) 

9. Bearing in mind formula (48) for the func
tional Gt[p, A], we rewrite (33) for wt(p(IC )] in 
the form 

'l'tlp (x.)l = ( Gtlp (x., 't); A (x., 't)]·exp {2ni ~ d3k[p1 (k) q~ (k) 

t 

+ ~ d'tA1 (k, 't) exp (- vk2't) q1 (k)]} D3A (k, 't))q', (49) 
0 

where we use the explicit expression for the func
tional Z[p(IC ), q0(1C )] and make the substitution 
q(k,T) =exp(-vk2T)q0(k). Replacingp(k) by 
exp (- vk2t) p ( k) in accord with (11) we change 
over from 'lit to ~t; in addition, we put p( k, T) 
= exp (vk2T)p(k). As a result we obtain 

<Dt [p (~)I = (~ Gt [p (~) exp [- vx2 (t- 't); A (x., 't)] 

X exp { 2ni ~ d3kq1 (k) [p; (k) exp (- vk2t) 

t 

+ ~ exp (- vk2 't) At (k, 't) d'tl} i!)3A (k, 't))q'. (50) 
0 

Using the definition (8). we average the q~(k)
dependent factors in (50), obtaining ~0 [p(IC )x 
exp (- vK2t) + L [A( IC, T ), 0 ]] . As a result we ob
tain a final expression for the characteristic 
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functional during the process of degeneration of 
the turbulence: 

<Dtfp (x)l = ~ Gtfp (x) exp [- vx2 (t- T)]; A (x, T)] 

X <Do [p (x) exp (-'-- vx2t) + L[A (x, T); Oll [)3A (x, 't). 
(51) 

10. On the basis of (51) we can draw certain 
conclusions concerning the character of the solu
tion in the case when the Reynolds number of the 
initial state tends to infinity. In this case the 
characteristic functional of the initial state w0 [p] 
is concentrated in an ever narrowing region near 
the point p = 0. This is directly clear if il> 0 [ p ( IC ) ] 

is a Gaussian functional of the form 

<Do[P (x)l = exp {- ~ ~ W;i (x) p; (x) Pi·(-x) d3·K}, 

where W ij ( IC ) is the spectral density of the initial
state energy, proportional to v~L~, L0 is the char
acteristic dimension and v0 the characteristic 
velocity when t = 0. It is clear that as v0L0 - oo 

the functional w0 is concentrated near the point 
P = 0. The situation is similar not only for a 
Gaussian function, but in the general case: as the 
characteristic velocity and the characteristic 
scale tend to infinity, the characteristic functional 
is concentrated near the point p = 0. This is a 
consequence of the fact that the probability den-

sity and the characteristic functions are Fourier 
transforms of each other, and therefore when the 
scale of one of the functions tends to infinity the 
scale of the transform turns to zero. But it fol
lows from (51) that in this case wt(p] is inde
pendent of the specific form of the initial func
tional w0, for as L0v0 - oo and for arbitrary 
il>o this functional is concentrated near the point 
P = 0. Thus, at infinitely large Reynolds num
bers in the initial state, the law governing the 
degeneration of the turbulence does not depend 
on the form of the probability distribution of the 
initial state. 
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