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Higher partial waves are taken into account in the equations for low-ene~gy rnr scattering 
derived by the differential method. Their effect is shown to be small. A procedure for 
taking into account an infinite number of partial waves in the low energy equations is con­
sidered and found to be meaningless. 

1. FORMULATION OF THE DIFFERENTIAL 
METHOD ON THE EXAMPLE OF SCATTER­
ING OF NEUTRAL MESONS 

IN the recent papers of Sarker [t] and Lovelace [2] 

questions were raised about the eorrespondence be­
tween the equations for partial waves for low-en­
ergy 1r1r scattering as derived by the differential 
[ 3- 5] and the integral [6] methods (in what fol­
lows, the work of Chew and Mandelstam [6] will 
be referred to as CM ). In view of some errors 
in [i,a) we discuss below in detail the question of 
inclusion of higher partial waves in the differen­
tial method, and also the relation of this method 
to the CM method. 

The earlier [3] equations for rrrr scattering 
were obtained by combining forward and backward 
dispersion relations, whereas in the work of Hsien, 
Ho, and Zollner [4] there was also included infor­
mation from first derivatives with respect to mo­
mentum transfer. Consequently, the real parts of 
only s and p waves were taken into account in [3], 

whereas in [4] d and f waves were also included. 
We consider the question of including a larger 

and larger number of partial waves, up to the lim­
iting case of an infinite number of such waves. 

Let us write out first the formulas that express 
the low partial waves fi in terms of the value and 
the derivatives of the function f( e) at the points 
c = ± 1. Different formulas are obtained depending 
on how many harmonics are used to approximate 
the function f( c). 

In the lowest approximation, keeping s and p 
waves only 

we obtain 

*Member of the Mathematics Institute, Siberian Division, 
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fo =+If (1)+ f (- 1)], fl =~It (1)- f (- 1)1. 
(1.1) 

In the next approximation, which includes d and 
f waves, 

f (c) = fo + 3cfl + 4 (3c2 - 1) f2 + +- (5c3 - 3c) fa, 

we obtain 

fo = + [f(l) + f(-1)1-{- [f' (1)- f' (- 1)1, 

fi =+ [f(1) -f(-1)1--h- [f' (1) + f' (- 1)1, 

f2 =fa- [f' (1)- f' (-1)1, 

fa= -fa [f (1)- f (-1)1 +fa [f'(1) + f'( -1)1. 

Finally, in the limiting case 
00 

f(c) = ~ (2n+ l)fnPn(c) 
n=O 

we have the formulas 

1 oo f(n) (-1)- (-)n f(n) (1) 

f1=---z~ (n+2)! ' 
n=O 

(1.2) 

f2=-+~ ~;~-+;)5~ [f(n)(-1)+(-t{(n)(l)], ... , (1.3) 
n=O 

which express the partial waves of the function 
f(c) in terms of an infinite number of its deriva­
tives at the points c = ± 1. 

Equations (1.3) can be obtained purely formally, 
by consecutive integration by parts of the integrals 
defining the partial amplitudes. The convergence 
of a series of the type (1.3) is determined by the 
singularities of the function f ( c ) in the complex 
c plane. In Sec. 3 below we consider this problem 
for the case of rrrr scattering. 

We wish to note here that the passage from 
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Eq. (1.1) to Eq. (1.2), and from Eq. (1.2) to Eq. 
(1.3), consists of not only the addition of terms 
with higher derivatives, but also requires the 
modification of the coefficients of terms already 
present. We shall apply formulas of type (1.1)­
(1.3) to the scattering amplitude given in a spec­
tral representation over the momentum or energy 
variable at fixed values of the cosine of the scat­
tering angle c. For the scattering amplitude for 
neutral mesons this representation has the form 

00 00 

A (v c) = __!__ (' Im A (v, c) dv' , _!_ \' lm A (v', c+) d'v' 
' :rt J v'- v --r :rt ,, 1 + v' + v• (1 +c) I 2 

0 0 

co 

_: _1_(' l,mA(v',c_) , dv'. 
· :rt ) 1 -t- v -t- v (1 -c) 1 2 

(1.4) 
0 

Here the first integral refers to the physical cut 
of the first reaction, for which the square of the 
energy is s = 4( v + 1 ), the second integral refers 
to the crossed channel with energy squared equal 
to u = - 2 v ( 1 + c ) , and the third integral to the 
crossed channel with energy squared equal to t 
= - 2 v ( 1 - c ) , and where 

c ___ 2 . .L 3v'- c (2 + v') C _ 2 + 3v' + c (2 + v') (1. 5) 
1 -- v' (1 + c) ' - - v' (1- c) · 

It is seen from Eq. (1.5) that 

c± (v', c = ± I) = ± I, c+ (v', c = ± I) = oc. 

Therefore, in the limiting cases c = ± 1 the nu­
merator of one of the crossed integrands corre­
sponds to forward (or backward) scattering, 
while the other contains the unphysical infinite 
cosine. 

In the CM scheme, as well as in the Cini­
Fubini [8] representation, the function Im A( v', c±) 
is approximated by s waves in the entire interval 
-1 :::; c :::; 1, i.e., up to and including infinitely 
large values of the cosines c±. Performing the 
indicated approximation, we obtain after integra­
tion over c the CM equation for the neutral model 
(compare [8, 9]) 

stituting Eq. (1.4) into the first of the formulas 
(1.1), and approximating Im A( v, ± 1) by the s 
wave, we obtain 

00 

A 0 (v) = __!__ (' dv' (-,-1- + 1 + 1, + ) Im A0 (v') +~X, (1. 7) :TtJ v-v v v 
0 

where 
00 

1 (' dv' , , 
~X= 2:rt .) 1 + v' [lm A (v, oo) + Im A (v,- oo)]. (1.8) 

0 

Let us show that for solutions to Eq. (1. 7) to exist 
it is necessary to set a = 0. To this end we per­
form in Eq. (1.7) one subtraction, reducing it to 
the form of Eq. (2.5) of [7]. By repeating the con­
siderations of Sec. 2 of that paper we arrive at the 
conclusion that Im A( oo) = 0, which, together with 
the unitarity condition 

Im Ao (v) = v1 ~vI Ao (v) j2 , v > 0, (1.9) 

leads to 

Re A0 (oo) = 0. 

In other words, Eq. (1. 7) has a solution only if 

IX= 0. (1.10) 

We remark now that the quantity a represents 
the high-energy contributions. Indeed, for exam­
ple, the third integral in Eq. (1.4) corresponds to 
the segment of the straight line c = 1 - E = const 
from - oo to the point a( E) with coordinates t = 4, 
v = - 2/ E, which approaches infinity as E - 0. 
Consequently the first term on the right side of 
Eq. (1.8), which represents the limit of that inte­
gral as c -1, corresponds to the high energy 
contribution. The same applies to the second in­
tegral in Eq. (1.4) in the limit as c- -1. Conse­
quently a represents the contribution from a re­
gion which lies above the threshold of any state, 
with finite mass. It is therefore clear that we can 
neglect a entirely, since all intermediate states 
starting with the four-meson state have been ig-
nored. 

co 

1 ~ dv' A0 (v) o,~- -,-- Im A0 (v') 
n.v--v 

0 

co 

- ~ \' dv' Im A (v') In (I - --"------)1 
• 

nv J 0 1 + v + v') 
0 

Let us pass now to the second approximation 
described by the form.ulas (1.2). Approximating 
Im A( v, ± 1) by s waves and ignoring high energy 

(1.6) contributions of the form a' ± {3v we obtain from 
the first of the Eqs. (1.2) 

From here it is again clear that in the methods 
of CM and Cini-Fubini one makes use of an ana­
lytic continuation with the help of the first term 
in the Legendre polynomial expansion into a region 
in which the Legendre series does not exist. 

Let us derive now the equation for the s wave 
by means of the differential approximation. Sub-

00 

1 ~ A 0 (v) =- dv'Im A 0 (v') 
:rt, 

0 

xJ [ v' _:_ v + v' + ~ + 1 ( 1- 6 (v' +v v + 1))] · (1.11) 

It is of interest to investigate the asymptotic be­
havior of the solution of Eq. (1.11). To this end 
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let us represent the second integral in Eq. (1.11) 
in the form 

( I-~ i) __!:._ \' Im Ao(v') dv' 
6 av 1t ~ 1 + v' + 'V • 

It is clear from her~ that the asymptotic behavior 
of Eq. (1.11) coincides with the asymptotic behav­
ior of Eq. (1. 7) for a = 0: 

(1.12) 

since valn-1 v/av = -ln-2 v. It therefore follows 
that the inclusion of d waves in the real part of the 
scattering amplitude does not appreciably change 
the behavior of the logarithmic branch of the solu­
tion of the neutral model, Eq. (1. 7). 

We turn now to the limiting case, Eq. (1.3). 
After ignoring the power series in v with coeffi­
cients due to high energy contributions we obtain 
for the s waves 

00 

1 ~ dv' A0 (v) = - .-,- Im A0 (v') 
·1t 'V - 'V 
. 0 

The sum in the crossed integral may be written 
in closed form with the result 

00 

1 ~ dv' A0 (v) =- -,- Im A0 (v') 
1t 'V - 'V 

0 

00 

- ;:v ~ dv' Im A0 (v') In ( 1- 2 (v' -+\ + 1)). (1.13) 
0 

It is not difficult to verify that Eq. (1.13) admits 
logarithmic asymptotic behavior, Eq. (1.12). 

It is important to note that Eq. (1.13) differs 
substantially from the CM Equation (1.6) which pos­
sesses the logarithmic asymptotic behavior of the 
form (1.12) for b = %. 

What has been said above proves that Sarker's [1] 

assertion is false. His conclusion that equations of 
the type (1. 7), (1.11) may be obtained from (1.6) by 
expanding the logarithm is based on an insufficiently 
precise study of the numerical coefficients of the 
corresponding series. 

Let us investigate also the influence of higher 
partial waves in the imaginary part of the scatter­
ing amplitude on the s wave. To this end were­
peat our considerations including, with the help of 
Eq. (1.2), s and d waves in the real as well as in 
the imaginary part of the scattering amplitude. 
Carrying out the calculations with the high-energy 
terms ignored, with the help of the formulas 

ac+ I = ac_l = _ !_j~ 
ac c=+l ac C=-1 ,, ' 

(1.14) 

we obtain for the s and p waves the system of 
equations 

00 

A (v) = ~ (' Im Ao (v') dv' 
o n .) v'- v 

0 

00 

1 (' dv1 
( v ) 1 

+-;t~ 1+vl+v 1 +6(v1 +v+1) (ImAo (v) 
0 

00 

1 10 (' dvl 1 + 'V1 1 + 5 Im A2 (v )) + 3n ~ 1 +vi+ v -v~- Im A2 (v), (1.15) 
0 

00 00 

A (v) = _!_ (' Im Az (v') dvl _ _!_ \' dvl 'V 1 + 1 Im A (vi) 
2 1t j 'V 1 

- v 1t .) 'V 1 + v + 1 V 1 2 

0 0 

00 

'V \' d\'1 
1 I 

- 30n j (1 +vi+ v)" (Im A0 (v ) + 5 Im A2 (v )) . (1.16) 
0 

It follows from Eq. (1.16) that the logarithmic 
asymptotic behavior of the function A2 is deter­
mined by the crossed integral containing A0, and 
is of the form 

R.e A2 (v') ~ - In-2 v, Im A2 (v) ~ In-4 v. (1.17) 

Consequently, the term containing 1m A2 in the 
crossed integral in Eq. (1.15) goes like ln-3 v for 
large v and does not change the asymptotic be­
havior, Eq. (1.12), of the s wave. This leads to 
two important conclusions: 

1) When higher partial waves are taken into 
account the approximations in the real and imagi­
nary parts of the scattering amplitude must be 
correlated. Thus, in the approximation following 
Eq. (1.11) one must take into account 1m A2 in 
addition to Re A4• Consequently Eq. (1.13) does 
not represent an improvement in accuracy in com­
parison with Eq. (1.11). 

2) The logarithmic asymptotic behavior, Eq. 
(1.12), is not changed when higher partial waves 
are taken into account in the imaginary as well as 
in the real part of the scattering amplitude. 

As will become clear in what follows, the con­
clusion 1) is a special property of the neutral 
model and is due to the absence of the p wave. 
It will be shown below that for the scattering of 
charged mesons the coefficient in the logarithmic 
asymptotic behavior does change, but the change 
is insignificant. 

2. SCATTERING OF CHARGED PIONS 

We now consider the realistic case of the scat­
tering of charged pions. The formulas (1.1), (1.2) 
will be applied to the functions 

A 0 = 3A + B + C, AI =B-C, A 2 = B + C, 

specified by the representations 
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[iJ (v,c) = ! ~ V'~v Im [iJ 
0 

(2.1) 

The cosines of the crossed reactions c+ and c_ 
are defined by Eq. (1.5). 

The simplest equations for s and p waves 
(see [a,5]) may be obtained from Eq. (2.1) with 
the help of the formulas (1.1). Restricting oneself 
in the amplitudes A J to s and p waves only 

A0 (v, c)~ Ag (v) == A 0 (v), A' (v, c)~ 3cA~ (v) = 3cA 1 (v), 

A 2 (v, c) ~A; (v) = A 2 (v) (2.2) 

and taking into account the inverse relations 

A (v, ± 1) = T (A 0 - A2), B (v, ± 1) =-}- (A 2 ± 3A 1), 

C(v,=f 1) = -i-(A2 ±3A 1), 

we obtain consecutively from Eq. (2.2), ignoring 
high energy constants of the type of Eq. (1.8), 

A (v, 1) = A (v, - 1) 

00 

1 ~ d'\1 1 
1 1 = -3. -~- [lm A 0 (v) - Im A2 (v )l 

n v -v 
0 

00 

+ 2~"t ~ 1 + dvv~ "I [lm A 2 (v') -3 Im A1 (v')l, 
0 

B (v, 1) = C (v, - 1) 

00 
1 ~ dv 1 

= -2 \ -~- [ Im A2 (v') + 3 Im A1 (v')l n.\v-v 
0 

00 

+ 2~ ~ "I ::

1 + 1 [lm A2 (v') + 3 Im A1 (v')l, 
0 

B (v,- 1) = C (v, 1) 

00 

= -2
1 \ ----f:Y:- [Im A 2 (v') - 3 lm A1 (v') 1 n.)v-v 

0 

00 

+ 3~ ~vi:~~+ 1 [lm A 0 (v')- Im A2 (v')l. (2.3) 

On going over to partial waves we obtain the equa­
tion 

. . _ _!_rIm A1 (v1
) _!_ r f; (v) dv' 

A (v) - n ) v'- v + n j 1 + v + V 1 ' 
(2.4) 

0 0 

where 

ft (v) = Im A,- (v) + l;~ (v), 
~ (v) = 2 Im A0 (v) + 9 Im A1 (v) -· 5 Im A2 (v), 

l0 = - 1/ 3 , l1 = - 1/ls• l2 = 1/s (2.5) 

with the additional threshold condition on the p 
wave 

A1 (0) = 0, (2.6) 

which follows from the crossing symmetry condi­
tion 

B (s, u, t) = C (s, t, u). 

Equations (2.4) have been studied in detail pre­
viously. [S] In particular the existence of a loga­
rithmic branch of the solution was established, 
with asymptotic behavior given by (see also [2]): 

A1 (v) ~ d;/ln v, d0 = 2.13, 

d1 = - 0,118, d2 = 0.640. (2. 7) 

We pass now to the next approximation, in which 
d and f waves are taken into account in the real 
parts of the amplitudes. Evaluating the deriva­
tives with the help of the relations (1.16) and 

iJim A(v, c)= O 
ac . 

iJlmB(v,c)=iJlmC(v,c)=2I A(·) 
oc ac 3 rn 1 " • 

we find 

A' (v, 1) =A' (v, -1) 
00 

=I 1 (v)- 2: ~ 2 (1 +d~: +v)" [ Im A2 (v')- 3 ImA 1 (vi) I, 
0 

B' (v, 1) = -C' (v, -I) =- / 1 (v) 
00 

- 2: ~ 2 (i /:
1 + v)" [ lrn A 2 (v') + 3 Im A1 (v')], 

0 

C' (v, 1) = - B' (v, - 1) 

00 

= 2:\ 3 (1 +d:: + v)' [Im A 0 (v') - Im A 2 (v')], (2.8) 
o· 

where we have used the notation 
00 

3 ~ dv1 V1 + 1 
/1 (v) = 2- -- Irn A1(v'). 

n 1 +v +v' v' (2.9) 
0 

Substituting Eqs. (2.3) and (2.8) into Eq. (2.1) 
we obtain 

. 00 

1 ~ dvl A0 (v) =- -~-Im A0 (v') n v-v · 
0 

00 

1 I dv' ( v ) , 2 · 
+"it.) 1+v1 +v 1 + 6(v1 +v+1) fo(v) -3/I(v), 

0 

00 

A1 (v) = ~ -,- lm A1 (v') 1 ~ dv' 
n v -v 

0 
00 

6 \ dv' ( v ) , 1 
+-sn~1+v+v' 1 +12(1+v+v1 ) ft(v)+15II(v), 

0 

00 00 

1 1 dv' · 1 \ dv 1 

A2 (v) ="it.) "I_ vIm A2 (v') +"it j 1 + v +vi 
0 0 

(2.10) 
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The fi appearing above are defined in Eq. (2.5). 
Equations (2.10) are analogous to the equations 

(21)-(23) of Hsien, Ho, and Zollner. [4] There is, 
however, one important difference. The point is 
that the Eqs. (21)-(23) contain terms of the form 

00 

I dv' 
\ -, Im A1 (v1

), 
., v 

(2.11) 
0 

which are independent of v and do not vanish in 
the limit of large v. Therefore the Eqs. (21)-(23) 
are not satisfied by a logarithmic asymptotic be­
havior and, consequently, have no solutions. This 
remark does not apply to the subtracted equations 
(25)-(27) of the above-mentioned paper (see [4]) 

which, consequently, are not equivalent to the un­
subtracted equations (21)-(23). 

The presence of the terms (2.11) in the equa­
tions of Hsien, Ho, and Zollner [4] is due to the 
fact that these authors started out not from dis­
persion relations at fixed cosine c of the type of 
Eq. (1.4), but rather from dispersion relations at 
fixed t, which for t ;.! 0 contain unphysical low 
energy contributions from regions for which the 
cosine of the scattering angle varies between the 
limits 1 :s I c I :s <Xl • Let us study the logarithmic 
asymptotic behavior of the system (2.10). Setting 

A1(v)zdtl In v, (2.12) 

we obtain from Eq. (2.10) the system of equations 
for the coefficients di: 

ndt = dZ + ~ O;kd~ ; (2.13) 
k 

(j·k =(-: -74 1. )· l 15 10 3 

1 1 
3 2 6 

(2.14) 

This system possesses the unique notrivial solution 

d0 = 2,13, dl =- 0.137, d2 = 0.653, (2.15) 

that has been recently found by Lovelace. [2] A re­
markable property of this solution is its closeness 
to Eq. (2. 7). From a comparison of the numbers it 
is seen that the logarithmic asymptotic behavior is 
very stable with respect to the inclusion of d and 
f waves. 

It is of interest to investigate the impact on the 
asymptotic behavior of the real parts of the higher 
waves. We discuss right away the limiting case of 
all waves, making use of formula (1.3). To this 
end it is sufficient to substitute Eqs. (2.3) and (2.8) 
into Eq. (1.3). In the equations for the partial 
waves given below we have kept only the terms 

that contribute to the logarithmic asymptotic be­
havior: 

00 00 

1 \' dv' 1 1 ~ dv' 1 A0 (v) =-- -,- ImA 0 (v) +- 1 + + Jo(v) :rt . v -v :rt v v 
0 0 

-4 (2ln 2 -1) / 1 (v), 

+ (3 -4ln 2) / 1 (v), 

00 00 

1 ~ dv' 1 1 ~ dv' 1 A2 (v) =- -,- Im A2 (v ) +- 1 + + 1 f2 {v ) :rt.v-v :rt v v 
0 0 

+2(2ln2-1)/1 (v). (2.16) 

To these equations corresponds the matrix. 

'" ~ ( -f 
3 

-3(41n2-1) _I!_) 
3 

21 24 5 
4 ( 1 - m:-ln 2) 12 

3 1 
4(41n2-1) 6 

(2.17) 

and, correspondingly, the asymptotic coefficients 

d0 = 2.15, dl=-0.167, d2 = 0.667. (2.18) 

Comparing the numbers (2.18) with (2.15) and 
(2. 7) we conclude that the logarithmic asymptotic 
behavior of the equations for the partial waves ob­
tained by the differential method converges rapidly 
to its limit (2.18). We see also that the equations 
of the differential method do not at all go over into 
the corresponding equations of CM when the real 
part of the scattering amplitude is approximated 
more and more precisely. 

3. THE PROBLEM OF INCLUSION OF HIGHER 
PARTIAL WAVES 

We discuss now the meaning of our results. In 
the construction of low-energy schemes one has to 
deal with two approximations: the elastic approxi­
mation in the unitarity condition and the restriction 
to a few lower partial waves in the scattering. The 
second approximation affects both the real and the 
imaginary parts of the scattering amplitude and 
for this reason it may be realized in a variety of 
ways. As was shown in Sec. 1 on the example of 
scattering of neutral mesons, the approximations 
in Re A and Im A should be correlated. It makes 
no sense to include Re A4 if Im A2 is ignored. 

The equations of CM provide an example of an 
unbalanced scheme. In these equations no approxi­
mation is made in Re A, while Im A is approxi-
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mated by s and p waves. As a result the equa­
tions of CM do not allow the introduction into 
Im A of even d and f waves and, apparently, 
possess no solutions at all. [2,10] 

It is appropriate to pose the question whether 
equations of the type (2.4), (2.10) can be improved 
by taking into account higher partial waves in the 
scattering amplitude with the help of formulas of 
the type (1.3). There may arise here the tempta­
tion to take into account an infinite number of par­
tial waves or, which is equivalent, an infinite num­
ber of terms in the summations (1.3) for the real 
and imaginary parts of the scattering amplitude, 
and to obtain in this manner "exact" equations, 
not containing the neglect of higher partial waves. 

Such "exactness" makes no sense, however, 
for two distinct reasons. 

The first reason has to do with the fact that in 
the region of not too small energies, in which 
higher partial waves may be important, a substan­
tial role is also played by the contributions from 
inelastic processes which were ignored. 

Let us suppose, however, that for some reason 
the contributions due to inelastic processes are 
small in absolute magnitude or, equivalently, let 
us consider a model in which inelastic processes 
are forbidden. Even in this case the "exactness" 
claimed above cannot be achieved because of the 
existence of spectral functions. We clarify this 
circumstance on the example of s waves. We note 
to this end that the first of the formulas (1.3) may 
be viewed as the result of integration over c of 
two Taylor series for the function f( c) at the 
points c = + 1 and c = - 1. At that the Taylor 
series at the point c = - 1 is integrated in the in­
terval [ -1, 0 ], and the series at the point c = + 1 
in the interval [ 0, + 1]. Consequently, in. order 
that the sum (1.3) exist it is necessary for the re­
gion of convergence of these two Taylor series to 
cover entirely the physical interval [ 1, - 1]. 

This requirement is satisfied for arbitrary 
v > 0 for the functions given by spectral represen­
tations of the type (1.4) under the condition that 
the numerators of the integrals have no singulari­
ties in c (i.e., in the absence of spectral func­
tions ) and under the condition that the polynomials 
in v with high-energy coefficients of the type (1.8) 
are discarded. These two conditions together give 
rise, for example, to the result that the second in­
tegral in Eq. (1.4) is expanded in a Taylor series 
only about the point c = + 1, with the singularities 
in c given by its numerator. 

This picture changes substantially when the 
spectral functions are taken into account. Then 
the region of analyticity is defined by the Lehmann 

ellipse and, as is easily seen, the series (1.3) for 
the real part of the amplitude ceases to exist in 
the region v > 2. 

However, even under these conditions the finite 
sum of terms from Eq. (1.3) may yield a good ap­
proximation. Integrating by parts N times we ob­
tain for the s wave the expression 

1 N--1 
-- _1:_ \' - _!_ ~ t<n) (-1) + (-)n r<n) (1) 

f o - 2 ~ de f(c) - 2 LJ (n + 1) ! 
_ 1 n=O 

N ~. N N +(;;, \ t< l(c)c de. .. (3.1) 
-1 

Assuming that in the energy region of interest 
higher partial waves, starting with fm, are small 
we may discard in Eq. (3.1) the last term for N 
= m and obtain expressions of the form (1.1), (1.2). 

From this we conclude that a scheme that takes 
into account a small number of low partial waves 
may yield a good approximation in the low energy 
region. Taking into account an infinite number of 
terms in the summation (1.3) does not, on the one 
hand, produce a real improvement in the precision 
because of the existence of inelastic processes and, 
on the other hand, is mathematically impossible be­
cause of the existence of the spectral functions. In 
that case the series (1.3) must be viewed as an 
asymptotic series. 

To illustrate this thesis we discuss one more 
scheme for consecutive inclusion of higher partial 
waves. We expand the second integral in Eq. (1.4) 
about the point c = + 1, the third integral about the 
point c = -1, and use these expansions in the en­
tire interval [ + 1, -1] in place of discarding the 
high energy constants. At that the imaginary parts 
are approximated by s and p waves (we have in 
mind scattering of charged mesons). If we now go 
over to an infinite number of terms then the unsub­
tracted equations will not exist, because the imagi­
nary parts of the crossed integrals will, owing to 
the presence of p waves, have poles in c at the 
point c = + 1 or c = - 1. One subtraction gives 
rise to precisely the equations of CM, with all the 
mathematical complications connected with them.ClO] 

The difficulty with the spectral functions may be 
partially overcome by taking into account the elas­
tic two-particle parts of the spectral functions. 
This leads to the "strip approximation" program 
of Chew and Frautschi. [1!] However, in contrast 
to these authors, we expect that the inclusion of 
the spectral functions in the elastic strips will 
change insignificantly the low energy approxima­
tion. On the contrary, the behavior of the scatter­
ing amplitude in the region of high energies and 
low momentum transfers may turn out to be com-
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pletely determined by the properties of low energy 
scattering. This perspective seems to be particu­
larly likely in view of the recent results (see [12]). 

The authors are grateful to D. I. Blokhintsev, 
N. N. Bogolyubov, Yu. Vol'f, V. A. Meshcheryakov, 
Ya. Fisher, and also the participants of the Confer­
ence on the Application of Dispersion Relations 
(Novosibirsk, Mathematics Institute, Siberian Div. 
Acad. Sci., September, 1961) for useful discussions. 
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