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Diffusion of a nuclear spin in crystals is studied theoretically with allowance for the pres­
ence of a diffusion barrier. An expression is obtained for the nuclear magnetic relaxation 
time in an ionic crystal containing paramagnetic atoms. The agreement between theory and 
experiment is improved by taking the diffusion barrier into account. 

l. Bloembergen has shown that in many non- C = 2(rng~)2 S(S+ I)t/5[1 +(trnH)2], (2) 
conducting solids nuclear magnetic relaxation is 
caused by paramagnetic ions.CtJ In the same 
paper he suggested a relaxation mechanism 
wherein the spin of the paramagnetic ion re­
verses direction by interaction with the lattice 
periodically, with a period on the order of T 

(the spin-lattice relaxation time of the paramag­
netic ion) .1) The nuclear spin near the paramag­
netic ion is therefore acted upon by a time-vary­
ing local magnetic field, which causes its re­
orientation. It is clear that the nuclear spins 
near the paramagnetic ions soon enter into 
equilibrium with the lattice. This gives rise to 
a spin temperature gradient, which in turn causes 
diffusion of the nuclear spin (diffusion not of the 
nuclei but of the nuclear-spin direction, 2> which 
leads ultimately to an equilibrium between the 
nuclear spins and the lattice over the entire spe­
cimen. 

Bloembergen calculated the time T?ir ( r ) of 
direct relaxation of a nuclear spin situated a dis­
tance r from the paramagnetic ion. Calculation 
(for a nuclear spin equal to %) yields 

Tfir (r) = r 6/C, (1) 

where 

l) T = p/2rr, where p is a quantity used in Bloembergen's 
paper[ 1 ], More accurately, T is correlation time of the z com­
ponent of the paramagnetic ion spin (z is the direction of the 
external magnetic field). In the case of sufficiently low para­
magnetic-impurity concentration, the paramagnetic ions are 
independent of each other and T coincides with the spin­
lattice relaxation time, At large concentrations, on the other 
hand, T coincides with the spin-spin relaxation time of the 
paramagnetic ion. 

2lThis diffusion is connected with the simultaneous re­
orientation of the spins of two neighboring nuclei, wherein the 
total spin projection on the external field is conserved, The 
re-orientation is caused by dipole-dipole interaction. 

Yn is the gyromagnetic ratio of the nucleus, {3 is 
the Bohr magneton, g and S are respectively the 
Lande factor and the effective spin of the paramag­
netic ion, and H is the external magnetic field. 
Averaging over the angles is already included in 
formula (2). Usually TYnH » 1. 

Bloembergen then set up a differential equation 
for the z component of the nuclear magnetization 
M(r,t), 

aM;at = DI1M- 2AM- c ~I r-rn ,_6 (M- Mo)· (3) 
n 

Here M0 -equilibrium value of M, A -probabil­
ity per unit time of reorientation of a nuclear spin 
under the influence of the resonance exchange field, 
rn-radius vector of n-th paramagnetic ion; D -co­
efficient of nuclear-spin diffusion. An estimate 
yields 

(4) 

where T 2 is the transverse nuclear-relaxation 
time, a -distance between the nearest spin-pos­
sessing nuclei whose relaxation is being investi­
gated. 

Finally Bloembergen solved (3) numerically 
and determined the time-averaged nuclear mag­
netic relaxation. 

2. We have obtain~d an analytic solution of (3) 
for the stationary case in the absence of a satu­
rating alternating field. [2] It follows from our 
analysis that the nuclear magnetic moment of the 
sample has a single relaxation time. We further 
obtained an expression for the relaxation time 
from the asymptotic expression for the solution. 

Nuclear spin diffusion in the presence of a 
saturating alternating field was later investigated 
by De-Gennes [3] (see also the detailed analysis 
in the book by Abragam [4]) who obtained a solu-
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tion of (3) for the stationary case.. He derived 
for the relaxation time a formula that agreed with 
ours. 

De-Gennes considered also the non-stationary 
problem of the restoration of the nuclear mag­
netic moment of a sample after the saturating 
field has been turned off. He showed that for 
times that are not too short the relaxation has 
an exponential character, and the expression ob­
tained for the relaxation time again agreed with 
ours. 

However, neither we nor De-Gennes took into 
consideration the presence of the so-called diffu­
sion barrier due to the fact that the Zeeman fre­
quencies of the nuclei located near the paramag­
netic ion differ appreciably from each other, [1] 

making the diffusion of the nuclear spin difficult. 
This apparently must be the reason for the dis­
crepancy between our results and the experimen­
tal data. The role played by the presence of the 
diffusion barrier is emphasized by Bloembergen.C5J 

The purpose of the present paper is to derive 
an expression for the nuclear relaxation time with 
allowance for the diffusion barrier. 

3. We assume the concentration of the para­
magnetic ions to be sufficiently small (a criterion 
for the smallness of the concentration follows). 
In such a case the paramagnetic ions are independ­
ent of each other and the crystal can be regarded 
as made up of separate independent systems, each 
comprising a single paramagnetic ion surrounded 
by a large number of nuclear spins. 

Let N be the concentration of paramagnetic 
ions and let R = (3/47TN) 1f3 be the radius of the 
sphere for each ion. 

We can confine ourselves to one term in the 
sum of (3). We consider the stationary case in 
the absence of a saturating alternating field. If 
the origin is located at the center of the para­
magnetic ion, Eq. (3) becomes 

!lM- ~r-s (M- M 0 ) = 0, (5) 

where (3 = C/D. 
A general centrally-symmetrical solution of 

(5) is 

M = M 0 - M0r-'1, [AL•;,(W1•f2r2)- Bl·;, (WI•f2r2)1, (6) 

where A and B are integration constants and 
Ip(x) = cPJp(ix). Using the known expressions 
for Bessel functions of small arguments, we 
readily obtain an asymptotic form of (6) for 
r » (31/4: 

In order for the problem to be stationary it is 
necessary to maintain M artificially constant at 
large r. We assume, in particular, that M ( oo) 
= 0. 3> This boundary condition makes it possible 
to determine the constant A and we obtain as a 
result 4> 

M = Mof'lr, (7) 

In order for our analysis to be valid, the follow­
ing conditions must be satisfied 

~·;,< R. F<R. (8) 

The first of these conditions is necessary to make 
the asymptotic form (7) valid over a certain range. 
The condition F « R is necessary to make M(R) 
« M 0• Only then can we assume that the different 
paramagnetic ions act independently of each other. 

4. According to (7) the nuclear moment flux 
through a sphere of radius r is (with r » {31/4) 

D4:rtr2 I grad M I = 4:rtDF M 0 • 

For the total nuclear moment of a sphere of ra­
dius R we obtain [we use (7) over the entire 
sphere] 

~ = 2:rtM0FR2 = (9:rt/2)' 1'FMoN-'1•. 

From the condition F « R we get FN1/3 « 1. 
In this case ~ is negligible compared with its 
equilibrium value rol 0 = M 0N-1• The nuclear mo­
ment flux through a sphere of radius R is there­
fore 47TDFN(~-~0 ). We see therefore that~ 
has a single relaxation time T1, given by the 
formula 5> 

T1 = l!4:rtDFN = R'fJ/3CF. (9) 

This conclusion shows that the presence of a single 
relaxation time is due to the fact that M is in­
versely proportional to r when r » {3 114, with T1 

expressed in terms of the factor F in the asym­
ptotic formula (7). 

The problem has thus been reduced to a deter­
mination of a quantity F, with the dimension of 
length. To determine this quantity we need the 
boundary condition for small r. 

5. We use the derivation of formula (9) given 
by De-Gennes. [3] At large values of r we can 
neglect the relaxation term, and in the presence 

3) The same result is obtained for the relaxation time if we 
assume M(oo) = M1 (see [a]). 

4'If we include the succeeding terms of the expansion, we 
obtain M "'M0(F /r - {3/12r4). 

5>The method used here to derive the formula for the re­
laxation time from the asymptotic expression for the magnetic 
moment flu.x was suggested to us by L. D. Landau. 
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of a saturating field the stationary equation as­
sumes the form 

L1M-C2 M=0, L=(Dj2A)'I.. (10) 

This equation has a centrally symmetrical solution 
that vanishes at infinity: 

M = M 0 const r-1 exp (- rjL). (11) 

We find that {31/4/L « 1 always. To reconcile (11) 
and (7) we therefore put F = const. 6> Thus, if we 
eliminate small spheres of radius on the order of 
(3114 centered on the paramagnetic ions, we can 
employ (3) without the relaxation term for the re­
mainder of the crystal. 

By finding the stationary solution (with account 
of all the paramagnetic ions ) , we obtain 

ID?fiD?0 = 4nNFDf (2A + 4nNFD), (12) 

We then determine T 1 from the formula 

(13) 

where A1; 2 is the value of A for which the nuclear 
magnetic moment of the specimen is equal to half 
its equilibrium value. A comparison of (12) with 
(13) again leads to (9). 

Replacing A in (10) by A1; 2• we obtain 

L 1, = (DT1)'i, = (4nFN)-'f, = (R 3j3F)'I•. (14) 

L112 is the distance covered by the nuclear spin 
through diffusion during the relaxation time T 1• 

De-Gennes believes that (11) is valid if the 
condition R « L is satisfied in addition to (8). 
Accordingly, we must have R « L112 for (9) to 
be valid. This condition, however, follows auto­
matically from (8) and (9). 

6. We proceed to calculate F (or B). For this 
purpose we need a second boundary condition for 
Eq. (5). 

We introduce a quantity b with the dimension 
of length (see [2]) 

b = nr;,'l•f'l:''• 1r (6/4)1 2 = 0.68?>'1•. (15) 

The expressions (7) and (15) yield B/ A = F /b. 
In [2] we used the boundary condition M ( 0) = M0• 

In this case, (6) yields A = B or 

F=b. (16) 

Then, according to (9) 

T1 = lf4n NDb = R8?>'1'j2C = 1.6· (bR)3! C. (17) 

However, the derivation of (16) does not take into 
consideration the presence of the diffusion barrier. 

6)In [•], as in l•J, the formula for T1 contains in lieu ofF 
the quantity b [see (15) below], 

Therefore expressions (16) and (17) are valid only 
if b is appreciably greater than the radius of the 
diffusion barrier. 

7. The radius of the diffusion barrier d is de­
fined as the distance from the p~ramagnetic ion, 
on which the difference of the Zeeman frequencies 
of the neighboring nuclei is equal to the nuclear­
resonance line width (the broadening of the nuclear 
resonance is due to nuclear dipole-dipole interac­
tion). This yields 7> 

d~(f.tJf.tn('a if -r>T2 or f.teHfkT>J, (18a) 

d ~ { ~ fleH)'I•a 'f < T flell < 1 (18b) 
\ fln kT 1 T 2 or 7iT ' 

where J.l.e and J.l.n are the magnetic moments of the 
paramagnetic ion and of the nucleus, respectively. 

We note that Blumberg [S] introduces a quan­
tity o, defined as the distance from the paramag­
netic ion, at which the Zeeman frequency shift is 
equal to the width of the nuclear resonance line. 
It is easy to see that o is given by formulas (18), 
in which, however, the exponent% is replaced by 
Y3. 

Nuclei closer than o to the paramagnetic ion 
barely participate in the resonance, since the dis­
placements of their resonant frequencies are too 
large. Further, when the distance from the mag­
netic ion is less than d, the diffusion of the nu­
clear spin weakens, since simultaneous re-orien­
tation of the neighboring nuclear spins with con­
servation of the total projection is made difficult 
by the difference in their Zeeman frequencies. 

8. For an approximate calculation of the diffu­
sion barrier we employ the boundary condition 

dM I dr = 0 for r = d. (19) 

In such a case we can obtain from (6) 

F 2xi,1, (x) [3'/, 
b = 2xi,1, (x) + !,1, (x)' X= 2d2 · 

(20) 

Formulas (15) and (20) express F as a function of 
b and d. Substitution of F in (9) yields the relax­
ation time. 

Let us examine so:rp.e limiting cases. If d « b, 
(20) yields F = b, and we again obtain (16) and (17). 
On the other hand, if d » b, (20) yields 8> 

F = ?>! 3d3 = 1,6b4fd3 , 

T = 0~05 (!!:_)" = (dR)" 
1 NDb b C . 

(21) 

(22) 

7>When r > T2 the nuclear spin is acted upon by a static 
local magnetic field, brought about by the magnetic moment of 
the paramagnetic ion, This field averages out when r < T2 • 

8 >We can obtain (21) by imposing boundary condition (19) 
on the function mentioned in footnote 4 >, 
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A comparison of (17) and (22) shows that the pres­
ence of a diffusion barrier slows down the relaxa­
tion, as expected. 

From (2), (15), (17), and (22) we obtain for the 
dependence of T 1 on N, H, and T, for TYnH » 1, 

T 1 ~ N-1t:' 'H'1' 

Tl ~ N-lr:daH2 

(23a) 

(23b) 

9. It is easy to show that if b > d, then diffu­
sion plays a larger role than direct relaxation 
when the distance from the paramagnetic ion is 
larger than b. Indeed, when r > b, Eq. (5) re­
duces to ~M = 0 and its solution is given by (7). 
However, to determine the factor F we must 
know the values of M for small r. On the other 
hand, when r < b, the role of diffusion is small 
compared with the role of direct relaxation. 

Furthermore, the quantity d was defined as 
the radius of a sphere inside which the nuclear 
spin diffusion coefficient is small. It is clear 
that the introduction of d is meaningful only if 
d >b. 

Thus, we see that the nuclear spin diffusion 
plays an appreciable role when r > l, where l 
is the greater of the two quantities b and d. It 
is clear therefore that in order for the macro­
scopic description of the spin diffusion to be 
valid it is essential to have l » a. 

Furthermore, for our analysis to be correct 
it is essential to have d « R. We take additional 
account of (8) and of the fact that F < b in accord 
with (16) and (21). We then obtain finally the fol­
lowing conditions under which our analysis is 
valid: 

(24) 

10. We now consider the extent to which the 
boundary condition (19) takes correct account of 
the presence of the diffusion barrier. 

To allow correctly for the diffusion barrier it 
is first necessary to determine the dependence of 
the diffusion coefficient D on r. Calculation shows 
that for small r (starting with r """ d) D decreases 
with decreasing r. The reason for this decrease is 
that the resonances of the neighboring nuclei do not 
coincide at small values of r. Using further the 
obtained dependence D on r, we must then solve 
(5) with the boundary conditions M ( 0) = M0 and 
M(oo)=O. 

The dependence of D on r can be determined 
approximately, using the theory of crossing re­
laxation (see [6]). Recognizing that the difference 
of the Zeeman levels of neighbor:ing nuclei is pro­
portional to r-4, we obtain 

D (r) = D ( oo) exp (- const r-8), (25) 

where const""" d8• 

It is, however, very difficult to solve (5) ~ith 

variable D. It is therefore desirable to replace 
this procedure with a solution of (5) with constant 
D for r > d, and with a corresponding boundary 
condition for r = d. The boundary condition (19) 
which we use follows from the continuity of the 
flux of the nuclear moment, if it is assumed that 
the nuclear spin diffusion coefficient vanishes 
when r <d. 

The case d > b signifies that the diffusion of 
the nuclear Zeeman energy to the paramagnetic 
ion (up to distance on the order of d) is faster 
than the transfer of this energy from the para­
magnetic ion to the lattice. 

We note that t.he result (22) which we obtained 
for the limiting case d » b agrees with the result 
obtained by Blumberg [5] in a non-stationary analy­
sis of the problem. 

11. We see that the diffusion of the nuclear spin 
is significant when r > l. Our results will there­
fore be valid only if the following condition is ful­
filled 

(26) 

which yields Z6 « R3b'/F. This condition, however, 
is automatically fulfilled if l « R. 

12. We now proceed to compare the theory with 
experiment. The first experiments on spin diffu­
sion were set up by Bloembergen. [l] The depend­
ence of the proton relaxation time on the tempera­
ture, external field intensity, and chromium atom 
concentration was measured in potassium chrome 
alum highly diluted with aluminum. The relative 
concentration of the chromium atoms ranged from 
2 x 10-6 to 3 x 10-2• The measurements were 
made in the temperature interval 300-1°K. The 
condition TYnH » 1 was fulfilled in all these ex­
periments. The dependence of T1 on the para­
magnetic-atom concentration, given by (9), was 
experimentally confirmed. The temperature de­
pendence obtained was T 1 """ Ta, with a= 0.5-0.7 
for different N. This result is intermediate be­
tween (23a) and (23b). 

Blumberg experimented with a solution of 
( NH4 ) 2Cr04 in NH4HS04, and measured the time 
dependence of the proton resonance signal. The 
results obtained with some specimens do not 
agree with the theory that does not allow for the 
diffusion barrier; allowance for this barrier im­
proves the agreement. It was found further that 
for certain specimens the proton-resonance sig­
nal is proportional to t 112 at small values of t. 
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Leifson and Jeffries [7] measured the proton 
relaxation time in lanthanum -magnesium double 
nitrate, in which a small fraction of the lanthanum 
atoms was replaced by cerium atoms. The con­
centration of cerium varied in the inverval 0.05 
-10%. The measurements were made in the tem­
perature interval 1.6-4.2°K. The experiment con­
sisted of measuring the dependence of the proton 
relaxation T 1 on the concentration of the cer-
ium atoms, on the external field, and on the tem­
perature. The external field was applied in these 
experiments perpendicular to the axial-symmetry 
axis of intracrystalline electric field. 

The results of the measurements yielded T 1 

~ N-2, which is in sharp disagreement with (9). 9> 

Leifson and Jeffries [7] obtained T 1 ~ T- 7 (in 
the temperature interval 1.9-2. 7°K ), and in ac­
cordance with their data T ~ T-14• Thus, T1 ~ T1/2, 
which is intermediati) between (23a) and (23b). 

Scott measured T 1 in the same specimens as 
Leifson and Jeffries, except that the external field 
was applied parallel to the axial-symmetry axis 
of the intracrystalline electric field. He found 
that T1 ~ N-1.J T-12• Assuming T ~ T-14, we find 
this result to be quite close to (23b). 

We see therefore that an account of the diffu­
sion barrier improves the agreement between 
theory and experiment. 

We do not make a detailed comparison between 
theory and experiment for the following reasons. 
First, the numerical values of certain quantities 
(for example, the diffusion coefficient D) are 
known only very approximately. Second, formulas 
(18) for the radius of the diffusion barrier d are 
accurate only to order of magnitude. Furthermore, 
our analysis itself, in which we assume that the 
diffusion terminates abruptly at r = t, is of course 

9 lThe spin-spin relaxation time of a paramagnetic ion is on 
the order of tiJ.!-;;R•, It is proportional to N" 1 and is practically 
independent of the temperature. Consequently, at sufficiently 
low temperatures or at sufficiently high concentrations it will 
be smaller than the spin-lattice relaxation of the paramagnetic 
ion. In this case, we must take T to mean the spin-spin relax­
ation time in all 0ur formulas, According to (23a) and (23b), 
this yields T1 - N"1' 25 when d < b and T 1 - N-2 when d > b. 
But then T1 should depend only weekly on the temperature, in 
contradiction to the results of Leifson and Jeffriesl•]. We note 
that the greatest concentrations employed by these authors are 
too large to allow the·use of our results. 

a crude approximation. All these circumstances 
do not influence, however, the correctness of (23a) 
and (23b), which give the dependence of T1 on T, 
N, and H in two limiting cases. 

The foregoing shows that to confirm the theory 
we need experimental data on the dependence on 
T1 and T on N, H, and T. It is desirable here to 
carry out experiments in one of the two limiting 
cases d » b or d « b, and to satisfy conditions 
(24). 10) 

We note, finally, that the nuclear magnetic re­
laxation which we investigated in crystals contain­
ing paramagnetic centers should have considerable 
anisotropy in the case of a single crystal, i.e., the 
relaxation time T 1 should depend on the direction 
of the external field relative to the crystallographic 
axes. Indeed, the diffusion coefficient D is in fact 
a tensor. Furthermore, C and the diffusion barrier 
become anisotropic. 

Note added in proof. (20 April 1962). Substitution of (18a) 
in (22) leads, at hydrogen and helium temperatures, to relaxa­
tion times T1 that exceeds Bloem bergen's experimental data[1 l, 
It must be concluded that at low temperatures the effective 
radius of the diffusion barrier is less than given by (18a). 
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10 >we note that according to (2), (15), and (18) b decreases 
with decreasing temperature while d increases. 


