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Spin coupling via a phonon field is treated by the methods of quantum field theory. The en
ergy of paired spin interaction is written in operator form for cases in which retardation 
can be neglected. The effect of this interaction on the shape of the resonance lines is esti
mated. 

SPIN-SPIN interaction in paramagnets is usually 
considered to be of two types: exchange and mag
netic dipole-dipole. The first is an interaction 
that is essentially of the contact type; the second 
acts through a photon field, neglecting retardation, 
i.e., in the approximation of an instantaneous inter
action. It is clear, however, that the presence of a 
spin coupling with a phonon field, like an interac
tion with a photon field, will lead to additional 
coupling between the spins in crystals, which in 
some cases can be extremely effective. In this 
paper we shall carry through a calculation of the 
interaction of spins via a phonon field, which in 
the main will be analogous to the investigation of 
the interaction between two charges in quantum 
electrodynamics. 

We shall write the Hamiltonian of the spins and 
phonons in the form 

H0 = ~ Ema:;,;ami + ~nwkb~bk, 
m, i k 

. "'Q q + ( iqr; b+ -iqr;) 
H1 = l L.J G;mnUmtUni bqe - qe • (1) 

imnq 

Here Em is the energy of a spin in state m, ai'n.i 
and ami are creation and annihilation operators 
for the i-th spin in state m; and tiwk, bk, and bk 
are the corresponding quantities pertaining to a 
phonon with wave vector k. 

The matrix of the interaction of two spins is 
obtained by selecting those components of the 
second-order scattering matrix in which a neu
tralization over the states of the phonons is ef
fected: 

s<2> - ni "'V Gq Gq + + 
ij - - fi2 L.J imn jm'n' Umi ani am'j an'j 

mnm'n'q 

Here Ilq is the number of phonons in state q, 
r is the distance between the i-th and j-th lattice 
points, 6 ( x) is the usual 6-function. Represent
ing the energy of the spin-phonon interaction in 
the form 

(2) 

we have 

In Eqs. (2) and (3), Qh are the normal vibrations 
of the complex surrounding the i-th spin, Fll'(Si) 
are some spin functions, Ea is a constant charac
terizing the magnitude of the spin-phonon interac
tion, M is the crystal mass, R is the size of the 
complex, v is the speed of sound, which we con
sider to be constant for all types of vibration, and 
ahq are functions of the unit vectors of polariza
tion and of the wave vectcrr of phonon q; besides 
this, we here make use of the assumption that the 
phonon wavelength A.» R. 

We obtain further, by changing the summation 
over the wave vectors of the phonons to an inte
gration 

SjJ> =- 2ni ~ a:;,,an;a:;,.ian·iF~mnF1m•n·{Aa.f3(r) 
mnm'n'cr.(3 

cp = Wmn rjv. (4) 

Here p, q, and s are all functions of r /r ,0 and 
their order of magnitude is unity, and p is the den
sity of the crystal. As a result the perturbation 
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energy Uij• which is related, according to [1] to 
sg> by the equality 

S)J> = - 2rtiU;j {j (nWmn + ftWm•n·), 

turns out to be complex, because the spin levels 
are non -stationary. 

The dependence of the spin interaction on the 
spacing between spins is not completely deter
mined from Eq. (4), since the phonon can be scat
tered in the path between spins either by another 
phonon or by some kind of obstruction. In connec
tion with this it is necessary to supplement Eq. (4) 

with the condition r < Zph• where Zph is the free 
path of a phonon of frequency Wmn. 

If Zph is small (e.g., at high temperatures, in 
crystals with a large number of defects, etc.), 
then the retardation part of the interaction of spins 
via the phonon field can be neglected; in this case 
it is possible to speak of the potential energy of a 
direct pair interaction, which can be written down 
in explicit form. 

We shall write the energy operator of the direct 
interaction between spins for the most widely dis
tributed case, when the paramagnetic particle is 
situated in an octahedral site: 

6 

l..f;ih = Aril ~ Sa.~ea.e~ F"" (Si) F~ (S;), A = R2 (2nptf)-I; 
a., ~=1 

Sn = s24 = 0, sl2 = Y2s23 == V3/z (X2 - Y2), 

S1s = V2s2~ = - V2ssa = V2s44 = V 1l2 (I - 3Z2), 

Sa= V2s34 = V 813so6 = V6XY, 

s15 = VBfss2s =- V8sss = V87;84s = V6XZ, 
Sls =-V81aS26 = - V8s36 = l/87;s45 =-V6YZ, 
S 00 = f (1 - Y2), s66 = + (1 - X 2). (5) 

Here X = Xij /I'ij· Y = Yij /I'ij· and Z = Zij /rij· 
The summation limits are imposed by the fact that 
the spin -phonon interaction is determined by the 
symmetrical normal vibrations of the complex 
( cf. [3]), of which there are six for an octahedron.* 
We note that one of the terms in Eq. (5) with the 
factor s 22 for Z = 1 was obtained by Sugihara. [2] 

The constants E a and the functions of the spin 
variables Fa ( S ) are determined by the kind of 
paramagnetic particles and were given for iron 
group ions in the review by Al 'tshuler, Kochelaev, 
and Leushin. [4] We shall indicate only the gen-

*Usually the term in H~, which includes the wholly sym
metrical vibration Q, is discarded, since it is assumed that 
the terms linear in the vibrations of the complex are bound to 
the J ahn-Teller effect and Q, does not contribute to this effect. 
However, it seems more natural to explain the presence of 
linear terniS by the difference in the equilibrium configura
tions of the complex when the spin is in the ground or excited 
states, In this case the term in Q, should be retained. 

eral properties of these quantities. If the para
magnetic ion has a spin S = -!, then the constants 
E a are proportional to the intensity of the mag
netic field H, which arises from the fact that the 
Kramers doublet can be split only by a magnetic 

field (see [3J). In this case ufr ~ H2• It is ob

vious that the functions Fa ( S) are linear in the 

spin projections. If s > -!, then u~h does not de

pend on the magnetic field and the functions Fa ( S) 
are usually quadratic in the spin variables. 

The estimate of the order of magnitude of the 
interactions considered is made much clearer by 
a comparison with the usual spin-spin interactions, 
e.g., dipole-dipole u~-d. For comparison we con
sider the effect of both types of interaction on the 
width of a paramagnetic resonance line. For the 
sake of simplicity, we select a paramagnetic ion 
with spin S = -!, e.g., Cu2+, in a crystalline field 
of tetragonal symmetry, in which the symmetry 
axis is directed along one of the four-fold axes of 
the oxtahedral complex ( OZ ). The external mag
netic field is directed perpendicular to this axis 
(in this case the spin-phonon interaction is a max
imumC4J), along the other four-fold axis (OX). 
Then the reduced second moment of the paramag
netic resonance absorption curve, for a direction 
of the alternating magnetic field perpendicular to 
the constant field, equals 

12 ( ee') ( 'J..g~H ) ( r~ 25 r~ ) 
ez = - 7 R" ~ \3 R2 + f2 R4 , (6) 

where we have made use of Eq. (2) of [S]. Here e 
and e' are the charges on the electron and on the 
particle closest to the paramagnetic ion, A is the 
spin-orbit coupling constant, ra and 11 are the 
mean square and fourth degree separation of the 
d electron from the nucleus of the paramagnetic 
ion, and 6. and 6 are the splittings of the orbital 
levels in electric fields of cubic and tetragonal 
symmetry respectively. Using A= 700 cm-1, 
6 = 1400 cm-1, 6. = 12 000 cm-1 [ 6], and H = 10 
kOe we obtain for a cubic lattice with parameter 
a= 10-7 em 

< ( dv)2) '1• ~ 2 · 1Q7 cps. 

This is one or two orders less than the width of 
the resonance line caused by magnetic dipole
dipole interactions. We obtain just such an ap
proximate result for the majority of the ions of 
the iron group elements. However, this group 
contains paramagnetic ions whose spin interac-



IN T E R A C T I 0 N VI A A PH 0 N 0 N FIE L D IN PAR AM A G N E TIC C R Y S T A L S 905 

tion with the phonon field is anomalously large. 
Ti3+ is an example of such an ion. In order to 
estimate the magnitude of the spin-spin interac
tion we are considering, it is necessary in this 
case to replace ~6 in Eq. (6) by 62 (see C4J). 
Hence it can be seen that uP.h is of the same 

1] 

order as ufj-d and larger. A similar result is 

also obtained for salts of elements of the rare
earth group. 

At low temperatures, whe1.1 the phonon scatter
ing is not large, the retardation part of the spin
spin interaction slj' begins to play an important 
role. The distinguishing features of this part are 
the strong dependence on the magnitude of the 
spin splittings (for the first term in Eq. (4) 
stfret ~ w4 for s =! and sff ~ w2 for s >!) 
and action at a distance (of order 1/ r). With 
decreasing concentration of paramagnetic centers, 
because of the latter property' siJ>ret inevitably 
will begin to dominate the interaction between 
spins at some value of their concentration. It is 
curious to note that the more perfect the crystal, 
the more significant the role of siJ>ret· 

In conclusion we emphasize the obvious cir
cumstance that there exists an additional coupling 
energy between ions in a crystal, caused by the 

interaction of the orbital moments of the bound 
electrons via the phonon field. If the splitting of 
the orbital levels is less than the Debye tempera
ture ®, then the coupling energy will be extremely 
significant. The calculation procedure for this in
teraction is similar to that presented above, the 
only difference being that in case ~ < k® it is 
significantly simpler. 

The authors thank S. A. AI 'tshuler for a useful 
discussion of the results. 
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