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For a certain class of perturbation theory diagrams, containing three-particle intermediate 
states, we study the problem of expressing the spectral function p(s, t) in terms of the ab
sorptive parts of the subdiagrams that comprise the given diagram. 

1. INTRODUCTION 

IN the previous paper [l] * we have obtained an 
expression for the Mandelstam function p ( s, t) 
for the simplest class of perturbation theory dia
grams, that contained a three-particle intermedi
ate state (Fig. 1). This spectral function was rep
resented in the form of an integral over five delta 
functions, corresponding to all the internal lines 
of the diagram. The region of integration over 
the variables not restricted by the delta functions 
turned out to be rather complicated and complex. 

In the present work we shall show that also for 
the more involved class of diagrams (see Fig. 3), 
which correspond to the dependence of the ampli
tudes At and A2 (see Fig. 2) on two invariants, 
the rule L2J is valid according to which the spec
tral function for the diagram is obtained by re
placing the Feynman denominators in a number 
of lines by delta functions. The region of integra
tion over variables not restricted by the delta 
functions turns out to be similar to the region of 
integration for the diagram of Fig. 1. In the me
thod chosen by us this region depends on the ana~ 
lytic properties of A1 and A2 as functions of all 
their variables. 

However, for the diagrams of the type of Fig. 3 
we shall show that the region of integration can be 
made independent of the properties of the ampli
tude as far as its dependence on s 57 and s 67 (see 
Sees. 2 and 3 ) is concerned. Moreover, we shall 
show that for these diagrams the corresponding 
function p<3>(s, t) can be expressed in the form 
of a certain integral over the absorptive parts of 
the amplitudes A1 and A2, taken over one of the 
variables of the type of momentum transfer (t15, 

ta5, etc.). Consequently, the three-particle inter-

*In what follows we make use of the notation of[•], cited 
as I. 
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mediate state in the unitarity condition contributes 
to p(s, t) in the form of an integral fully analo
gous to that introduced by Mandelstam [a] for the 
contribution to p(s, t) from a two-particle state. 
This allows us to formulate in Sec. 4 the idea of 
''partitions" for the calculation of p ( s, t) for 
an arbitrary diagram. 

However the problem of determining the entire 
region of integration in the case of the three
particle contribution remains open. It can be 
solved only after making a study of the analytic 
properties of the general five-point function when 
all its variables are varied simultaneously. It 
should be noted that for the calculation of p ( s, t) 
it is not necessary to have a knowledge of the 
analytic properties in the entire range of varia
tion of the variables, it being sufficient to have 
this knowledge in a certain limited region in which 
the integration in the unitarity condition is carried 
out (continued in the momentum transfer t ) . Ap
parently, although it is true that the analytic prop
erties of the amplitude with five or more external 
particles are quite involved, their behavior in the 
regions needed for the unitarity condition is E!UCh 
that the Mandelstam representation for the scat-
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tering amplitude holds. The example analyzed in 
the present paper confirms this possibility. 

2. SKELETON DIAGRAMS. THE INDEPENDENCE 
OF p<3>(s, t) OF THE SINGULARITIES IN s57 

From among all the diagrams with three-particle 
intermediate states (Fig. 2) we shall study only 
those represented in Fig. 3. For them the unitar
ity condition in any channel has a two-particle or 
three-particle structure, because if we express 
the subdiagrams of which these diagrams are com
posed in the form of dispersion integrals, they will 
turn out to be equivalent to the diagrams of Fig. 4 
integrated with some weight over the masses of 
the virtual particles. 

a b 
FIG. 4. 

For example the contribution of the diagram 
pictured in Fig. 3b can be obtained from the dia
gram pictured in Fig. 4a by integration over the 
masses m 5, m6, m 57, and m 61 and the replacement 
of s by t. Diagrams of any other type give neces
sarily an effective contribution also to the four
particle unitarity relation in at least one channel. 
It may be that this is precisely the reason why 
their investigation is most involved and requires 
significant modifications in comparison with I. 

We shall study the contribution to the absorp
tive part of the diagrams in Fig. 4 due to the three
particle intermediate state (the particles with mo
menta p5, p6, p7 ), which will be referred to as the 
three-particle absorptive part. The contribution 
from two-particle intermediate states ( p57, p6) 
and (p5, p67 ) (two-particle absorptive parts) can 
be easily investigated by the method proposed by 
Mandelstam. [a] If the masses of the internal and 
external particles are such that all the internal 
parts of the diagrams in Fig. 4 are normal then 
the two-particle contributions will give rise to the 
usual Karplus curves t = tN(S) with the asym
ptotes s = (m5 + m 67 )2 or s = (m57 + m6 )2 and 
t = (m15 +m1 + m 46 )2 for Fig. 4a and s:::: (m57 + m 6)2, 
t = (m46 + m2s)2 and t = (m 15 + m 1 + m46 )2 for Fig. 
4b. For them the function p<2>(s, t) is expressed 
in terms of the absorptive parts of the initial and 
final amplitudes in the unitarity relation [Eq. (I.15)]. 

The three-particle absorptive part with the in
termediate state (p5, p6, p7) may be written in the 

form of integrals analogous to Eqs. (!.20) and (!.~1). 
For the diagram of Fig. 4a we have (with t in the 
physical region ) 

(Vs-m,>• 
A (3) ( t) = _1_ \ d \ dt.af (ss7, '••}{}( 1 ~ z;6} , ( 1) 

I s, 32 (2n}" J Ss7 J-v 2 
· (m,+m,)' K (t, '••· Ss7} (ss7- m57) 

(2) 

For the diagram of Fig. 4b ( s 67 - m~7 ) - 1 is re
placed by ( t26 - m~6 ) - 1. The definitions of all quan
tities are given in I. It is clear that the method 
used in I can be applied without any changes to the 
diagrams now being considered. The difference 
consists of the presence of additional poles in the 
variables s 57 and s 61 (or t 26 ). As in I we study 
the singular curves of the integral (1) in the s 57 
and t 26 plane. They differ depending on whether 
mis < (m1 + ms)2 or mis > (m1 + ms)2. 

a) For the case mf5 < (m1 + m 5)2 the singular 
curves are shown in Fig. 8 of I. To the pole s 57 
= m~7 corresponds a straight line parallel to the 
abscissa axis. When analytically continuing in t, 
the integration over s 57 and t 26 in Eq. (1) is car
ried out in the region LMBtAt, until the curve 
t2s ( t ) ( AtBt) (!.24) reaches the point E, at which 
the curve of singularities of the function f( s 57 , t 26 ) 
- tn'•(2) (curve DEC) (!.23) touches the border 
of the region of integration over s 57. 

For larger values of t there appears an addi
tional region of integration DtAtE, which after 
passing through the singular point t = t( s) goes 
out into the complex planes of s 57 and t 26 (see 
Figs. 5 and 6). 

If m~7 > (m5 + m 1 ) 2 then the pole s 57 = m~7 
will for sufficiently large s necessarily fall in 
the physical region of the variable s 57 : (m5 + m 7 )2 

< m~1 < ( ..fS- m6 ) 2• The integral (1) will become 
complex for arbitrary t. However for that same 
s the contribution to the imaginary part of the 

FIG. 5 
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diagrams of Fig. 4 comes not only from the three
particle intermediate state (p5, p6, p7 ), but also 
from the two-particle state (p57, Ps: P~T = m~7 ), 
and for the diagram of Fig. 4a also from the state 
( P67• P5; P~T = m~7) · 

The sum of the absorptive parts, corresponding 
to all possible intermediate states in the channel 
for which s = (p1 + p2 ) 2 is the energy, gives for 
t < 0 the imaginary part of the diagrams in Fig. 4 
and is a real quantity. Consequently the imaginary 
part in the three-particle absorptive part, Eq. (1), 
should be compensated by the imaginary parts of 
the two-particle absorptive parts. It is easy to 
show that this is indeed the case. For the diagram 
of Fig. 4a the imaginary part of the integral (1) is 
for t < 0 equal to 

(;":~ ~ d4psd4Ps7b<•> (Ps7+ Ps-Pl- P2) b (P~7- m!7) 

2 2 Ad 
X b (p6 - m6 ) 2 ' 

t.o-m46 
(3) 

Ad = 2 (~n)2 ~ d4Psd4P7b<4> (Ps7- Ps- P1) 

X b (p~- m~) b (p~- m~) . (4) 
(tt5- m~5)(so7- m~7) ' 

here Act is the decay absorptive part [4] of the left 
quadrangle in the diagram of Fig. 4a. 

On the other hand if we substitute into the two
particle absorptive part (p57, p6) in place of the 
right and left parts of the diagram the dispersion 
representations in the variables t 26 and t4s we 
shall find, having made use of the representation 
for a quadrangle with an unstable particle, [4] that 
the imaginary part of Af2> ( s, t) is for t < 0 equal 
to the quantity (3) taken with a minus sign. Such a 
cancellation takes place for all t. Consequently 
the decay absorptive parts of the internal parts of 
the diagram do not contribute to p ( s, t) for the 
diagram as a whole and have no effect on the posi
tion of its singularities. 

If m~7 < (m5 + m 7 )2, but the quadrangle with the 
external mass m 57 that appears in the diagram of 
Fig. 4a (or the triangle in the diagram of Fig. 4b) 
has an anomalous singularity, then the pole s 57 
= m~7 will for some values of s fall within the re
gion of integration DtAtE, which arises when the 
integral (1) is continued in t. Indeed, the straight 
line representing the pole intersects in this case 
the curves t~~>, <2> in the points F and G, which 
lie higher than the point C [the maximum of the 
curve t 26 = tW ( s 57 ) (see Fig. 5)]. The three
particle singularity t = t( s) comes about when t 
is such that the points Dt and Ct coincide and the 
curve t~6> ( t ) touches the curve tW ( s 57 ) at some 
point K ( s ) ; for larger values of t the integration 
over the region DtAtE proceeds then with complex 
values for s 51 and t 2s· 

Depending on s, the point K ( s ) may lie on the 
curve tW(s 51 ) above, as well as below, the point 
F. For s ~ (m5 + m 6 + m 7)2 the point K(s) lies 
near the point E, as s increases it coincides with 
the point F at s =SF, and tends to the point C as 
s - oo • When the point K ( s ) lies above the point 
F, the pole s 57 = m~7 does not fall within the range 
of integration of the integral for A~3 > ( s, t) which 
then only has the usual three-particle singularity 
studied in I. When however K ( s ) lies below F 
the integral Af3>(s, t) develops an additional sin
gularity at t = tA ( s) (Fig. 7) that satisfies the 
condition 

t~6) (tA, m;7 , s) = t~~> (m!7). (5) 

What has been said above corresponds in the 
complex s 57 plane (see Fig. 6a) to the possibility 
that the singularities s~t>(t), equal to the ordi
nates of the points Dt and Ct, might coalesce with 
the contour of integration captured by the singular
ity sW(t) going off into the complex plane* before 

FIG. 7 

*The details of the capture and the motion of the contour 
in the s 57 plane and the appearance of the-singularity t(s) 
are described in I. 
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(for s < sF), as well as after (for s > sF), inter
cepting the pole (see Fig. 7). 

The imaginary part of Af3>, due to the singular
ity (5), may be found in a way analogous to the cal
culation of p ( s, t) in I (see Appendix II in I). The 
desired imaginary part corresponds to the contour 
C (see Fig. 6) passing below or above (for t = tA 
± iE) the pole s 57 = m~7 and is equal to* 

where s~v> are the roots of K (m~7 . s 67, t 26 ) = 0 
[see Eq. (1.22)]. The expression (6) differs from 
zero in the region s >SF, tA(s) < t < tA.(s ), 
where t.A ( s ) is found from the equation 

(6) 

K (si7• 861• t28• s) /s =m2 . s =m2 . t =t<-> (t m2 s) = 0. (7) 
S7 fj7' 67 67' 26 26 ' 57' 

At the point; Eq. (7), the integral over s 67 becomes 
pure imaginary. 

On the other hand, if one investigates according 
to Mandelstam the two-particle absorptive part 
corresponding to the intermediate state (p57, P6 ), 
one finds for the values of m~7 under considera
tion in addition to the normal two·-particle Karplus 
curve t = tN( s) with the usual asymptotes two 
more anomalous curves. These curves are due to 
the anomalous addition in the dispersion relation 
for the box diagram [5] in the left part of Fig. 4a 
and are equal to the curves tA(s) and tA.(s ), de
fined by Eqs. (5) and (7) (Fig. 7). The anomalous 
addition to the imaginary part of the two-particle 
absorptive part differs from zero in the region 
tA ( s) < t < tA. ( s) and its amount is equal to the 
expression (6) taken with the opposite sign. Con
sequently, in the region s > sF the imaginary 
parts (6) of Af3>(s, t) and Af2>(s, t) cancel each 
other so that the internal anomalies give no con
tribution in this region. 

Let us discuss in the s and t plane the Karplus 
curves for the diagram of Fig. 4a corresponding 
to the two- and three-particle states under con
sideration. From Fig. 5 it is easy to deduce the 
relative location of the Karplus curves, as shown 
in Fig. 7. For example in this case the curve 

*We assume here that the mass m!7 is such that in the 
region t < t(s) the pole s67 = m!7 of the integral (2) plays no 
role. This condition reduces to the requirement that the right
hand quadrangle of the diagram in Fig. 4a with the external 
mass m67 should not be anomalous. In that case tA(s) > tA(s) 
(see Fig. 7). 

tN( s) necessarily intersects the three-particle 
curve t (s ). Indeed, the equation for tN(s) is 
of the form 

t~;-> (t, 8s7• s)/ _ 2 = (m1, + m7)2• (8) 
S57-m57 

But from Fig. 5 it is seen that for s ~ (m5 + m 6 
+ m 7 )2 the condition (8) is satisfied before the 
three-particle singularity is produced [for s 
~ (m5 + m6 + m 7)2 the curve t~6>(t, s 57, s) is al
most indistinguishable from a straight line paral
lel to the t26 axis ] , whereas for s __..., co [now 
t~6>(t, s 57, s) is a straight line parallel to the s 57 
axis ] the situation is reversed. This means that 
the curves t( s) and tN( s) intersect. In an analo
gous fashion the location of all the other curves 
may be determined. In particular the curve t 
= tA ( s) necessarily touches the three-particle 
curve (the point s =sF). 

The anomalous additions contribute to p(s, t) 
in the region between the curves t = t A ( s ) and 
t = tA. ( s ) . Their cancellation occurs in the region 
shown dashed-in in Fig. 7. From the previous dis
cussion it follows that this cancellation holds for 
s > sF· It is easy to show that also in the region 
t >t(s) and sF< s <sF (see Fig. 7) the curve 
t = tA. ( s) is not singular and the anomalous con
tribution to the two-particle absorptive part is 
canceled for t > t ( s ) , if the contour in the s 57 
plane in Fig. 6 is drawn in an appropriate way. 
Consequently, the parts of the curves tA ( s) and 
t.A ( s ) that are shown in Fig. 7 as dashed lines do 
not represent singularities for the diagram as a 
whole. 

We have discussed the case when the left quad
rangle of the diagram in Fig. 4a with the external 
mass m 57 was anomalous. The same procedure 
can be followed when the quadrangle with the ex
ternal mass m 67 is anomalous. Then the contour 
over s 67 in Eq. (2) (see I) reaches the value 
s 67 = m~7 and an imaginary part appears in the 
integral (1) [for t < t ( s ) and s larger than some 
sN], which is canceled by the anomalous addition 
due to the two-particle absorptive part (due to the 
intermediate state consisting of particles with the 
momenta p5, p67 ). This can be verified easiest by 
writing Af3> ( s, t) not in the form (1) and (2), but 
in terms of the variables s 57, s 67, t 35 with the ex
ternal integration carried out over s 67. In that 
case everything except for some relabeling re
duces to the previously discussed case. On the 
other hand if the mass m 67 is such that the quad
rangle on the right-hand side of the diagram in 
Fig. 4a is normal, then the contour of integration 
in Eq. (2) does not reach the value s 67 = m~7 in the 
region t ::: t( s ). For t > t( s) it goes off into the 
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complex plane and the pole s 67 = m~7 plays in the 3. THE EXPRESSION FOR p<3>(s, t) FOR ARBI-
immediate vicinity of t(s) no role in the expres- TRARY VALUES OF t 
sion for A~3 > ( s, t), except for the addition (6) in 
which we have taken it into account. 

The reason for the cancellation discussed above 
is easy to understand. The condition that one of 
the internal quadrangles of the diagram in Fig. 4a 
be anomalous is not the same as the condition that 
the diagram as a whole be anomalous,. Therefore 
the curves tA ( s) and t_A ( s), whose asymptotes 
lie at t < (m15 + m 7 + m 46 )2, should not (in any 
event for large s) be singularities of the diagram, 
as indeed is. the case. It is seen from here that 
the cancellation should occur also in the case 
when the anomaly of one of the quadrangles is due 
to an external mass (say, m 1), but the diagram 
as a whole remains, as before, not anomalous. A 
direct calculation confirms this conjecture. The 
case when the diagram as a whole is anomalous 
will not be considered. 

Finally, if the mass m 57 is such that the left 
quadrangle in Fig. 4a with the external mass m 57 
has no anomalous singularities, then the pole s 57 
= mg7 does not fall under the sign of the integral 
defining Af3> ( s, t ) and has no effect at all on 
p<3>(s, t). 

b) The case m~5 > (m1 + m 5)2 corresponds pre
cisely to the condition that the left-hand box in 
Fig. 4a have no anomalous singularities in t 26 for 
arbitrary masses m 57. In that case the pole s 57 
= m~7 has, for m~7 < (m5 + m 7 )2, no effect on 
Af3> ( s, t) , as also follows directly from Fig. 6b 
which represents the complex s 57 plane with the 
singularities and the contour of integration for 
m~5 > (m1 + m 5)2• As regards the values mg7 
> (m5 + m 7 )2 and the pole in s 67, one finds that 
the situation is fully analogous to that given in 
this section and leads to the same results. It is 
obvious that the same investigation can be carried 
out in the same manner also for the diagram in 
Fig. 4b. Instead of the pole in s 67 it contains a 
pole in t 26 . The contribution to p ( s, t) due to the 
pole is easily written down and may be transformed 
into the Mandelstam form -a two-particle integral 
over the product of absorptive parts. This is obvi
ous since this part of p ( s, t ) corresponds to the 
contribution from two-particle intermediate states 
in the variable t. The absence of a pole in s 67 
simplifies the discussion for the case of an anom
alous mass m57· 

Before passing to a discussion of these results 
we derive an expression for the contribution to 
p ( s, t) from the three-particle intermediate state, 
p <3> ( s, t), for all values of t. The next section is 
devoted to this problem. 

Analogously to I, after passing the singular 
point t = t( s) the amplitude Af3> ( s, t) for the dia
grams of Fig. 4 may be represented in the form 

(9) 

F ( t ) _ ~ df2sf (s57, f2s) 
s57, , s - V . 

C' K(t,t2o,S57) 
(10) 

The position of the contours C and C' relative to 
the singularities of the integrands for the path 
t- t( s) + iE is shown in Figs. 6a and 8a for the 
case m~5 < (m1 + m 5)2, and in Figs. 6b and 8b for 
the case m~5 > (m1 + m 5)2• The contour C' in 
Fig. 8, which defines the function F(s 57, t, s ), is 
shown for values of s 57 near (/S -m6 ) 2. Values 
of F ( s 57 , t, s ) for other s 57 that enter the integral 
(9) are obtained by analytic continuation of Eq. (10) 
in s 57, with the path relative to the singularities of 
s 57 specified by the rules indicated in Fig. 6. In 
that figure we show the change in the position of 
the singularities of F(s 57, t, s) as t is increased. 

/ 

a 't(2) 
26 

b 

FIG. 8 

If p<3>(s, t) = Im Af3>(s, t) is calculated with 
the help of Eqs. (9) and (10) then in the immediate 
vicinity of the singular point t = t( s) one obtains 
formulas analogous to Eqs. (1.28) and (I.31), with 
the same region of integration. As was indicated 
in I, if t is further increased the region of inte
gration for p ( s, t ) of the diagram of Fig. 1 
changes as compared to the Eqs. (I.28) and (1.31), 
because a new singularity of the function f( s 57, t 26 ), 
namely 1'26 = <.fS; + m 1 )2, starts to play a role. 
We shall now discuss in detail the problems that 
arise with the appearance of this singularity since 
it is responsible for the basic differences that 
appear for the diagrams of Fig: 4 as compared 
with the diagram of Fig. 1. 
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Let us consider the diagram of Fig. 1. The 
singularity 1'26, shown in Fig. 8, will for some 
value of t = t coincide with t~6> ( t) = t~6> ( t, s 57 , s) 
which results in the appearance of a new singu
larity of F( s 57, t, s) in the s 57 plane (857 in Fig. 6 ). 
This singularity appears in the s 57 plane when t 
= 1', having passed from the second sheet of the 
function F(s 57, t, s) through the cut joining the 
singularities sW(t) and s~7>(t). Because the 
singularity 857 appears through a cut whose posi
tion is well defined relative to the contour of in
tegration C no new ambiguities are produced by 
it, and therefore Af3>(s, t) has no singularity at 
the point t = 1'. But the determination of the imag
inary part of Af3>(s, t) changes from that point on. 

The point 857 is found from the equation 

t~;\t, So7• s) = cV%; + m1)2. (11) 

For the sake of definiteness let mi5 < (m1 + m 5)2. 
Then 857 is the ordinate of the point Pt, Fig. 5. 
One can verify directly that the point 857 is not a 
singular point for the branch of the function 
F(s 57, t, s ), defined on that side of the sW(t )
s~7>(t) cut which contains the point (m5 + m 7)2. 
As soon as the point 857 reaches the point 
(m5 + m 7 )2 it appears in the s 57 plane, since for 
the branch of the function F(s 57, t, s ), defined on 
the other side of the cut, 857 is already a singu
larity. p<3>(s, t) receives a new addition to (1.31) 
in the form of the integral 

,1. (3) ( t) - 1 p s, . - J~ (~n)" 
(" J ds~.7 ImF (sr.7 , t, s). (12) 

(m,+m7)' 

D.p may be obtained in an analogous manner also 
in the case mf5 > (m1 + m 5)2. 

One must take into account for the diagrams of 
"' c- 2 Fig. 4 that as the point t26 = (v s 57 + m 1) is ap-

proached the root sM><t26, s 57, s ), having captured 
the contour of integration in the integral (2), goes 
off to - oo and then for 1'26 > (..;-;;;;; + mt> 2 returns 
from + oo along the real axis. In essence, in its 
motion it traverses all values of s 67 and conse
quently the pole s 67 = m~7 will affect Af3>(s, t) 
of the diagram shown in Fig. 4a, resulting in the 
singularities 1'26 in the t26 plane (Fig. 8) and 857 
(Fig. 6). These singularities are of the same na
ture as 1'26 and 857 and they change the determi
nation of p<3>(s, t) as compared with the Eqs. 
(1.28), (1.31), and (12). The new addition to 
p<3>(s, t) will already be of a different nature 
than the remaining contributions to p(s, t) (we 
do not write it out here since the concrete form 
of the diagrams in Fig. 4 is of no interest). 

Indeed, both the expression (1.28) or (1.31) and 
(12) can be written in the form of an integral over 

a certain (complex) region over the absorptive 
parts of the five-point amplitudes, appearing in 
the left and right sides of the diagrams in Fig. 4 
(A1 and A2 in Fig. 2 ). At that only absorptive 
parts of the five-point functions taken in one vari
able of the momentum transfer type (usual "jump") 
enter into the integrals of the type of Eqs. (!.28), 
(1.31), and (12). In that sense they are no different 
from the expression for the two-particle contribu
tion p<2>(s, t) derived by MandelstamC3J [see 
Eq. (1.15)). The new addition, beside absorptive 
parts of the five-point functions taken in one vari
able, will contain an absorptive part taken in two 
variables consecutively (double "jump") (t15 and 
s 67 for the diagram of Fig. 4a). 

An analogous investigation in other variables
t35, s 57, ss7 -would in a certain sense give rise to 
the "inverse" result: the singularity in s 67 plays 
no role in the determination of p<3>(s, t) (just like 
s 57 in Sec. 2 ), whereas the singularity in s 57 does 
contribute. This, of course, implies no contradic
tion since a given integral may be expressed in 
terms of integration over a variety of contours in 
a many-dimensional complex space, all of them 
yielding the same value. In particular, for the di
agrams of Fig. 4 we could eliminate the additions 
to p(s, t) that contain double "jumps" of the five
point functions by performing the integration for 
Af3>(s, t) in Eq. (9) fort >t(s) along complex 
values of s 57, having deformed the contour C 
into the complex plane. Then the region of inte
gration for the diagrams of Fig. 4 would differ in 
no way from the region of integration for the dia
gram of Fig. 1, which may be also deformed in the 
same way. On the other hand that region would not 
involve the pole s 67 = m~7 for any value of t. In 
that case p<3>(s, t) would be expressed solely in 
terms of the usual absorptive parts of the five
point functions; in this sense the results of this 
section confirm the results of the previous one, 
since it was shown in Sec. 2 that all contributions 
to p(s, t ) that are not in the form of integrals 
over the usual absorptive parts (except for a part 
of the two-particle contribution) mutually cancel 
and do not contribute to p. This makes it possible 
to formulate the "partition" rule (see below). 

4. CONCLUSION 

It thus appears that it is possible to write for 
the contribution to p ( s, t ) from the three -particle 
intermediate state a formula analogous to the 
Mandelstam formula for the two-particle contri
bution to p. According to it p(s, t) is expressed 
in terms of the absorptive parts of the five-point 
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functions A1 and A2 (Fig. 2), taken over variables 
of the momentum transfer type (t15, t 26, t 35, t4s) 
and integrated over a certain complex region of its 
arguments. By analytic changes of this region 
other formulas may be obtained for p(s, t), con
taining in addition to the usual absorptive parts of 
the five-point functions also absorptive parts in 
two variables, etc. The nature of this region is 
not known to us in the general case, but apparently 
it differs significantly from the region derived for 
the diagrams of Fig. 1 or Fig. 4, since even the 
inclusion of singularities depending simultaneously 
on two variables (for example, t 15 and s 46 ) re
sults in a change of the contour of integration in 
the variables of the type of the mass mf5• 

In the absence of singularities due to anomalies 
of internal parts of the diagrams [of the type tA ( s ) 
and t_A ( s ) , Fig. 7 ], one could obtain p ( s, t) for 
an arbitrary diagram with four external lines by 
dividing the diagram into four parts by means of 
two partitions applied in all possible ways such 
that each part contains one and only one external 
line. Then those lines of the diagram that are tra
versed by the border of the1 partition are replaced 
by delta functions of PI - mf and an integration is 
carried out over a certain, generally speaking 
complex, region of the invariant variables, having 

first multiplied by a factor easily obtainable from 
the unitarity condition. The presence of anoma
lies results in the appearance of contributions to 
p(s, t), expressible not in terms of the usual 
jumps of the amplitudes taken in one variable, as 
one would obtain according to the "partition" rule, 
but in terms of double, etc., jumps. But, appar
ently, these may be eliminated by deforming the 
contour of integration over the internal variables, 
just as we have done it for p <3> ( s, t) for the dia
grams of Fig. 4 (Sec. 3). Since in any event the 
region of integration for the general case has not 
been determined by us, within this reservation the 
"partition" rule turns out to be valid. 
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