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The kinetic equation for scattering of electrons by phonons is obtained by a density-matrix 
method similar to that of Kohn and Luttinger; [1•2] higher-order terms in the interaction with 
the scatterers are taken into account. In contrast to the impurity case, [2] only the field term 
in the second approximation contains a term linear in the spin-orbit interaction; this leads to 
a proportionality of the spontaneous Hall coefficient Rs to the square of the electrical resist
ivity p. Possible reasons for the deviation of experimental data from the Rs ~ p2 law are 
discussed. 

THE occurrence of an anomalous Hall effect in 
ferromagnets is commonly attributed to spin-orbit 
interaction. However, because of its periodic char
acter in a crystal lattice, this interaction cannot 
lead to the appearance of any resultant force of the 
Lorentz-force type, originating from an external 
magnetic field or from an induction field. As was 
first shown by Kohn and Luttinger, [1•2] the appear
ance of the resultant electromotive force of the 
anomalous Hall effect is connected with a change 
in the nature of the scattering and in the action of 
the external electric field on the current carriers 
under the influence of spin-orbit interaction. This 
influence appears only in higher-order terms in 
an expansion in the scattering potential; conse
quently, in order to calculate the anomalous Hall 
effect it is necessary to use a kinetic equation 
that takes account of such terms. 

In [1, 2] the case considered was that of scatter
ing by randomly distributed impurities. Two types 
of terms were obtained, corresponding to Rs ~ p 
and to Rs ~ p2; the second term, as compared 
with the first, was obtained in the next order of 
smallness and is in fact always appreciably 
smaller.* Thus the result of the work cited sig
nifies essentially that scattering by impurities 
gives a linear relation between Rs. and the im
purity part of the electrical resistivity. With re
gard to the temperature dependence Rs ( T), es
pecially in the high-temperature :region, it is quite 
evidently necessary to give special consideration 
to scattering by phonons and also by magnetic in
homogeneities, which are known to play a basic 
role in the dependence p ( T). 

*At impurity concentration~ 1%, the ratio of the second 
term to the first is -10-3 to 10-• (estimated by formulas of [21). 

In the present work we shall obtain the kinetic 
equation for scattering by phonons by a method 
similar to the method of Kohn and Luttinger, [1] 

and we shall examine the dependence Rs ( T ) thus 
obtained. 

1. DERIVATION OF THE KINETIC EQUATION 

Interaction with phonons is conveniently treated 
in the second-quantization representation. We 
write the original Hamiltonian iC in the form 

.Jf c= ie 0 + {ff' -!- :JY ; (1) 

ieo = ~ Bta7 at --1-- '\; eqb; bq, 
I 

Li' 

(2) 

Here EZ = Enk is the energy of an electron in band 
n with wave vector k; Eq is the energy of a phonon 
with wave vector q; N is the number of ions in a 
fundamental volume of the crystal; M is the mass 
of the ions; Czz' is the familiar Bloch constant,* 
in the theory of electrical conductivity; Fa and ra 
are components, respectively, of the external elec
tric field and of the position vector; finally, az and 
bq are the second-quantization operators of the 
electrons and of the phonons, l being a represen
tation in which the Hamiltonian JC0, including the 
spin-orbit interaction, is diagonal. 

We further introduce the second-quantization 

*We retain the indices l and l' but relinquish the possi
bility of taking account of transitions between bands (n f, n) 
in our model. 
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density .matrix p = K exp (- !3*- ), which satisfies 
the equation ( {3 = 1/kT) 

iap/al = [Jf' p 1 =~ .1(p - p :it 0 (3) 

We seek a solution of (3), linear in F a• in the form 

p -~ :: .• ~- f' (4) 

where f satisfies the equation 
, 'F ' ' ' ' iaf I i}t = [Jf . , Pol+ [J( 0 + ;1f ',fl. (5) 

We transform, in (5), from the second-quantization 
representation to the l-representation by multiply
ing (5) by a[az' and taking the trace in accordance 
with the occupation numbers: 

- "F A " " " + idfz·t/ at= Sp {[Jt 'Pula/ ar} T Sp {[Jt'o + Jt', fl al al'} 

= Sp {Po !a7 at·, .if:F ]} + Sp {[ [ar ar, ifo + JC']}o (6) 

On calculating the commutators, we get (the infini
tesimal parameter s, s - + 0, insures adiabatic 
application of the external electric field) 

Cit == [~o. r"ln ft'tq = Sp {/a/arbq}, rtz" = Sp {[at arb;}. 

(8) 

The values of fl'lq and fl'lq must also be found 
from (5). In analogy to Eq. (7) we obtain 

etc. In (9) and (10) we have performed a separa
tion by representation of the two-particle density 
matrices through single-particle ones: 

Pt,t,'oll' = Pt,lo'Pll' + Pt,t' (bu,- - Pu,· )0 
(12) 

On substituting (9) and (10) in (7), we get a 
closed system of equations in the unknown func
tions fz = fu and fu,. In particular, we get to the 
lowest order in the interaction Q with the phonons 
(remembering that the fz series begins with 
ft2>),* 

t!;.;/ = (et· - 1;1 + f'q- isr1 Q;rq [p~ (fl:2) - f)- 2)) 

--f)- 2)(1--r'l·) + r7tf;-2)lo (13) 

Now ou substituting (13) and the analogous ex
pression for f~;l~+ in (7) for l = l', we get in the 
limit s- 0 

I' C'''l" + 2 0 'l (I Q ·2 " ( e ·o ., t :rtt L.i , u,q 1 u e1, - e1 
l,q 

(14) 

this agrees with the usual kinetic equation, since 
c~o>a = iapVaka· 

Equation (14) cannot contain terms linear in 
the spin-orbit interaction (i.e., in the magnetiza
tion), which are necessary for calculation of the 
spontaneous Hall effect, for the same reason as 
in the case of impurity scattering. [2] Therefore 
we must seek higher-order terms in the expansion 
of fu' in powers of Q. 

2. THE SPONTANEOUS HALL EFFECT TO THE + ft.-z (6n,- pn,) - Pz,·t/n,]o (9) SECOND APPROXIMATION IN THE INTER
ACTION WITH PHONONS 

+ ~ r ( Qz,tq,/l't, (pq,q + 6qq.) 
llql 

+ Q;z,q}n,p;q.)- ( Qn,q}t,t (r•q,q + 6qq.) + Q;,t•q.ft,tP;q,)l 

- ~ Qz,t,'q 1/n(Jt,'t, + Pt't /z,·z, +- ft,-t (6n,- Pn.l 

(10) 

Here 

Ct'·tq =~ ~ (''l't 1qr~, --- r~t/ t1tq), 
z. 

For what follows, we need to know the expan
sions of the functions that occur in Eqs. (7), (9), 

and (10)- Pqq'• Pqq'• Pqq'• Pll'• Pll'q• and Piz'q 
-in powers of Q. Such an expansion is easily 
obtained by application of Feynman's theorem to 
the matrix elements that are obtained when the 
equations for these quantities, (11), are expanded. 
Calculation to the second order gives 

pqq = r~ + ~ r~ (1 + rgl I Qll'q ]2 ~2r1 0 -Pi·), 
II' 

2i3E 

pq,-q = ~ P~f)':.." I Qu·q 12 r2 (1 - r?· l 1- e • (1- 2f3eql 
ll 2e~ 

*Here and hereafter, the upper index corresponds to the 
(11) degree of the coupling constant. 
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P~.-q = 2] (P~ + 1) (P!l_q + 1) 1 Q u·q \2 p~ ( 1- r?·) 
II' 

- 28< 
1 - e ' -q (1 +- 2~eq) 

X ---- ' 
2e~ 

and therefore the solution of (19), linear in the 
spin-orbit interaction, will have the form 

ao0 

t(O) - • F J" ' I 
t - te " 1 a-, 

el 
(21) 

rt•· = P~l'o/1', Pl'lq= -- ~Q;t'qPi· (1- p~) o~, 

rrtq =- P>Qnqo7· 0- r7) (p~ + 1). 

where J? is the diagonal part of the coordinate r? 
(15) in a Bloch wave-function representation containing 

the spin-orbit interaction: 
It is easily seen that the lowest approximation 

for fz'l• when l = l', is obtained by substitution 
of (13) in (7): 

(- 2) 

<o> . -1 f F c<o>" "'-' [Q Q' {f!t,tq f t't = (8r- 81- ts) \. e " t'l - L.i n,q u,q ~ 
l,q t,lq 

(- 2) (--2) 

Q• Q (f!u,q Q Q • Cf!r0!_ 
- l,l'q t,lq~- 1/,q l,l'q -l-

ul,lq 11i>t,q 

(- 2) 

' Q' Q (f!l,l'q ]} 
'I ll,q l'l,q ~ · 

IJ.t•t,q 
(16) 

Here we have introduced the notation 
A --1- ' 
u/;tq = 8t, - 8t ± 8q - LS, (17) 

rpt~~ = [r;~(f);~ 1 - f)- 2>) + tl- 2>Pi, + fi~ 2>P~- ff- 2>]. (18) 

To obtain the diagonal matrix elements f~ in the 
zeroth approximation,* we substitute (9) and (10) 
in (7) and use (5). If we restrict ourselves to con
sideration of the scattering of electrons within a 
single band ( n = n' for all indices l = n, k and l' 
= n', k') and use the law of conservation of mo
mentum k' = k ± q, we get for s -- 0 

2] [ \ Qwq\ 2 «'1 (8t•- 8t + fq) qJ)9)q 
!'q 

+ ',;', [/ Qu·q \2 «'' (81'- 81 + 8q) (f): 2>- f}- 2>) 
l'q 

X (p~2 ) + p;}~~) + I Qr1q \2 6 ( 8t• - 8/- 8q) 

X (f)-; 2)- f)- 2)) (r;~2 ) + o;,<:>Q)] + eF" 2] lP>P~ \ Q ll'q /2 

l'q 

(22) 

By means of (17) and (21) we can now calculate 
the mean velocity vf3 of the electrons to the zeroth 
order in Q: 

where 

- '\' (0) ~ 'V (0) ~ --d -' 
V~ = ..::_ ft V1 + L.J ft•tVu• = V(J + V,8, 

I I <F I' 

vi= a81/ ak~, 

Therefore 

(23) 

(24) 

In the calculation of v~ we note that the terms 
in the expression (16) that contain products of the 
type Qz'z,qQ{z,q with l ~ l', i.e., with n ~ n' 
( k = k' by virtue of the law of conservation of 
quasimomentum ), correspond to interband tran
sition in scattering. On neglecting these and using 
the expression for cl9Ja obtained from (8), 

c)?)"= (p7·- Pi) rtl = in·lbkk' H· -pi), (25) 

we have 

v~ = ieF, 2] J7rltl ("7· -o7) bkk' 
l~t· 

= - ieF,_ ~ o? 2] (J~,. (k) J~., (k) - J~,. (k) J~·n (k)). 
I n' 

Hence, using the relation [3] 

(26) 

x 6 (8r -- 8t + 8q) r7· (1- P7) (rv- r~) + f3(P~ +I) 1 Qnq 2 we get 

X b (81'- 8t- 8q) n;.(J - p7) (r~-- r{)] = 0. (19) 

The second sum in (19) contains no terms linear 
in the spin-orbit interaction, since ft2>, as ob
tained by solving (14), contains none. 

In the case of high temperatures, f3Eq « 1, we 
have 

·*We remark that in scattering by phonons, in contrast to 
the case of scattering by impurities,[•] there are no terms f~-t) 
and f~~~) inversely proportional to the first power of the scat
tering potential. 

v~ == -- ieF, 2J o? ( aJ~ (k) _ aJ~ (k) ) . (27) 
1 aka. ak~ 

On integrating (27) by parts and combining it with 
(24), we find the final expression for Vf3: 

- . F -v ap? " 1 
v~ = te "L.i-a v tl'1· 

1 el 
(28) 

Our result (28), obtained by systematic treat
ment of the equations for the density matrix to the 
second approximation in the interaction with the 
phonons, agrees with the result of the earlier work 
of Karplus and Luttinger [3] and differs from the 
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results of Luttinger [2] for the case of scattering 
by impurities. The reason for this lies in the fact 
that in scattering by phonons, there is no correc
tion to the velocity of the electrons because of a 
change of the scattering potential under the influ
ence of spin-orbit interaction. The entire effect 
of spin-orbit interaction in this case is contained 
in the field terms of the kinetic equation. 

The diagonal elements Jg ( k) differ from zero 
only if the Hamiltonian contains an imaginary part. 
In our case the spin-orbit interaction JCso is such 
an imaginary part. In the first approximation of 
perturbation theory, 

J~ (k) = 2 2} J~n·(k) .o/t~~n (k) 

n'(*n) e~ (k)- e%, (k) 

where all the matrix elements on the right are 
taken in the representation of the Hamiltonian 

(29) 

JC0 -JCs0• We transform (29) in a manner similar 
to that of Karplus and Luttinger, [3] recalling that 

l~n' = - l~·n = - P~n· I mwnn' (k), 

(30) 

where m is the mass and p the momentum of the 
electron, and Wnn' = €~>- €~,>. Thus 

"<?SO /l ~ "J'!SO 
13 1 " "'''nn•Pn•n- Pnn"'/l• n'n 

ln(k) = m~ -2~---
n wnn' 

(31) 

Assuming that Wnn' ~ .6. = const and substituting 
(31) in (28), we get for the electrical conductivity 

where n is the number of current carriers in unit 
volume. 

Since 
::J{SO = _1_ v ~ 

4m"c" V [p !. 

where the spin u may be replaced by the mean 
relative magnetization M/Ms, it follows that 

i a J av i::J£'0 • p]ll = lun"c"M I [pM]Ydf df · 
s \ y !l 

(33)* 

Then on calculating the Bloch diagonal matrix ele
ment, we have 

i e • a•v 
(.J't' 0 p}~ =- 4 22M [kMp\ Unk (r) a-a Unk (r) dro 

, m c 5 t r -y r(3 

1 r • a•v l a Jy + 4 2 "M \ Unk (r) or ar dr M Unk (r) dro. 
mt. sv Y 0 ~ 

(34) 

The second integral in (34) vanishes if there is a 
center of symmetry, but the first differs from zero 
when y = {3. Using Poisson's equation, we get after 
substitution of (34) in (32) 

*[pu] = p xu. 

(35) 

where 

Vt = ~ U~k (r) p (r) Unk (r) dro (36) 

and where p ( r) is the density of the charge re
sponsible for the potential V. If M = Mz, we get 
for ayx:* 

(37) 

On integrating over k and on averaging the result 
over all bands n, as in [3J, we get from (37) 

(38) 

where o ~ 5 is the number of bands whose elec
trons take part in the conduction, and where 
( 1/m *) and ii are the averages over these bands 
of the inverse effective mass and of the effective 
density of the electrons. 

When there is no current in the y direction, 
the anomalous Hall coefficient Rs, according to 
Ohm's law and (38), is 

R 2 1 1 e•nv 6 < 1 > 2 
s = -- P Ciyx 4nM = -12 m2c"t12 M -. p · 

z s m 
(39) 

Setting .6....., 10-12 erg, n...., 1022 em - 3, m * ..... 10m, 
Ms ...., 103 Oe, and p ( 300°K) :::::: 7 x 10-6 Q-cm, we 
find that for agreement of Rs 'with the experimen
tal values at room temperature (- 10-11 V-ern/ 
A-oeC4J) it is necessary to take ii...., 1027 cm-3• 

Such a value of ii evidently corresponds to appre
ciable localization of the electron density in small 
regions of linear dimensions 10-9 em. 

On comparing (38) with the corresponding for
mulas from the work of Karplus and Luttinger, [3] 

we get for the effective spin-orbit field introduced 
there 

H' 0 = - nev/3mc ~· 107 Oe. 

It is interesting to compare the value of Rs 
for scattering by phonons with the results of the 
work of Luttinger [2] for the impurity case. If we 
calculate the quantity ( aJ? ( ok/3 )0 that occurs in 
the impurity conductivity a}x by means of for
mulas (31) and (34), we get 

(40) 

where the Fermi energy EF...., 10-12 erg and the 
mean potential impurity scattering ~i- 10-14 to 

*Equ!ltion (35) satisfies Onsager's relation axy(Mz) 
= -ayz( -M z). 
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10-15 erg; this gives a}x/cryx"' 103 to 104• This 
result means that at high temperatures the con
tribution of impurity scattering in the total 
( T ) -1 ( ) -1 ( i ) -1 · 11 d cr yx = cryx + cryx 1s very sma an 
that the total Hall constant RJ = - p~crJx I 41TMz 
~ Rs remains, as before, proportional to p2• 

3. DISCUSSION OF RESULTS 

The experimental data on the spontaneous 
Hall effect in the high-temperature range are 
known to give, for Fe and Ni, a dependence 
Rs ...... pn, where n = 1.9 and 1.4 respectively. 
At low temperatures no such relation between 
Rs and p is usually found. [4] Thus we see that 
even in the high-temperature range, the mecha
nism of phonon scattering that we have consid
ered, which gives n = 2 exactly, is incapable of 
explaining the experiments. In our treatment of 
scattering by phonons we neglected interband 
transitions, which can in general play a role for 
d-bands in the transition metals because of their 
considerable degeneracy. Consideration of such 
transitions, however, can apparently not affect 
the basic result Rs "' p2 but can only change the 
values of the coefficients. 

One of the possible reasons for a deviation 
from the Rs "' p2 law is scattering by magnetic 
inhomogeneities, which at high temperatures can 
be treated like statistical ones. Elastic scattering 
by such inhomogeneit£es, by analogy with the re
sults of Luttinger's work, [2] can lead to the ap
pearance of a linear term in the dependence Rs ( p ) . 
Another reason, which complicates the whole phe
nomenon, may be the presence of several types of 
carriers. Thus, for example in Ni the normal Hall 
effect indicates that at least two types of carriers 

take part in electrical conduction. It is possible 
that this is also connected with the experimentally 
observed change of sign of Rs in Co. [4] 

In the low-temperature range, our treatment of 
scattering should be modified by taking account of 
the deflection of the electrons by the induction 
field; this becomes important when the length of 
the free path becomes comparable with the radius 
of curvature of the electron trajectories. Inclu
sion of the corresponding terms in the kinetic 
equation completely changes the expansion of the 
scattering functions in powers of the scattering 
potential. 

The authors are sincerely grateful to R. N. 
Gurzhi, M. I. Kaganov, and V. M. Tsukernik for 
helpful advice and to S. V. Vonsovskil for his in
terest in the work. 

Note added in proof (April 17, 1962). 'By separating as in 
formula (12), we have omitted correlation functions proportion
al to high powers of the phonon-interaction constant. Calcu
lation of such correlation effects may give additional terms 
in the equations we are studying. They do not, however, give 
a contribution to the anomalous Hall effect, because the cor
relators obviously contain ~he interaction constant only in the 
form of even powers of its modulus. 
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