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In Sec. 1, a review of the various interpretations of the uncertainty relation between energy 
and time is presented. In Sec. 2 an attempt by Aharonov and Bohm to disprove the relation 
~ ( E'- E) ~t > h, and to subject to doubt the interpretation of this relation given by Fock 
and Krylov, is criticized. In the example used by Aharanov and Bohm to refute the uncer­
tainty relation there appear in the Hamiltonian operator discontinuous functions of time 
(instantaneous switching on and off of the interaction); but this implies the introduction 
of a field which does not obey the uncertainty relation and so taking as a premise in the dis­
cussion the very proposition to be proven. Aharonov and Bohm's argument thus contains a 
logical error known as petitio principii (begging the question). The example in the criti­
cized article, when treated correctly, only serves to support the uncertainty relation. 

1. TWO TYPES OF RELATIONS FOR ENERGY 
AND TIME 

THE interpretation of the Heisenberg uncertainty 
relation for energy and time was discussed in de­
tail by Krylov and Fock in 1947. [t] They showed 
that it is necessary to distinguish between two 
types of uncertainty relations. Relations refer­
ring to the act of measurement (to which the 
Schrodinger equation is inapplicable) belong to 
the first type, whereas those referring to the un­
perturbed state, which develops according to the 
Schrodinger equation, belong to the second type. 

The relation of the first type might be called 
the Heisenberg-Bohr relation. It is best written 
in the form 

tJ. (E'- E) M > h, 

where ~ ( E'- E) and ~t stand for the absolute 
values of the uncertainty in the energy change 
E'- E and in the instant of time t, when this 
change occurred. 

(1) 

The derivation of relation (1) requires, beside 
the application of the apparatus of quantum me­
chanics, additional considerations that allow one 
to reduce the uncertainties in the instant of time 
and in the energy difference to uncertainties in 
the coordinate and momentum; the necessity for 
additional considerations is due on the one hand 
to the fact that one may not use in the derivation 
the Schrodinger equation, and on the other hand 
to the fact that time is not an operator. For this 

reason the derivation is not as direct and formal 
as the derivation of the Heisenberg relations for 
coordinates and momenta. 

The relations of the second type (referring to 
the unperturbed state) may in turn be subdivided 
into two kinds: one relates the decay half-life of a 
quasi stationary state to the width of the level, the 
other, found by Mandel'shtam and TammPJ relates 
the shift time of a wave packet to the uncertainty 
in energy. 

The first of these relations may be viewed as 
a consequence of the general theorem of Fock and 
Krylov on the connection between the decay law 
and the energy distribution function.* According 
to this theorem, if the energy distribution function 
for the initial state is given by 

dW (E) = w (E) dE, (2) 

then the decay law for that state is expressed by 
the formula 

L (t) = I~ e-iEflhdW (E) 12 • (3) 

The quantity L ( t) is the probability that at the 
time t the system has not yet decayed. For an 
energy distribution given by the dispersion formula 
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*This theorem is contained in an indirect form in the course 
of lectures given by V. A. Fock at the Leningrad University in 
1936-1937;['] its first explicit formulation and proof was given 
by Krylov and Fock in 1947.[•] In the years following 1959 the 
theorem has been rediscovered in connection with problems in 
the theory of unstable particles by a number of authors, in par­
ticular by Levy,[•] Matthews and Salam,[•] and Petzold.[•] 
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it follows, with sufficient accuracy, that 

L (t) = exp (- ~ rt) , (5) 

so that if the half-life T1; 2 is defined by the condi­
tion L ( T 1; 2 ) = % we obtain 

h fT,1 =--In 2 
2 2 ' 

where r is the level width appearing in the dis­
persion formula. 

(6) 

The uncertainty relations of the second kind for 
the unperturbed state are based on the expression 
for the time derivative of the operator for a cer­
tain quantity R. If in the given state the quantity 
R has a standard (mean square deviation from 
the mean) equal to ~R. and if the mathematical 
expectation (mean) value of the quantity R is R, 
then following Mandel'shtam and Tamm we can in­
troduce the time interval ~T given by 

D.T = D.Rf(iJRjot). (7) 

This is the time in which the wave packet for the 
quantity R will be shifted by ~R. The time inter­
val ~T is, in a well-known sense, a measure of 
the stationarity of the system with respect to the 
quantity R. According to Mandel'shtam and Tamm 
this time interval is related to the standard (mean 
square deviation) of the energy ~H by 

no matter what the state of the system and the 
quantity R might be. 

(8) 

This relation looks superficially like the Heisen­
berg-Bohr relation, Eq. (1), however its meaning is 
different. The relation (8) refers to the unperturbed 
motion of the wave packet and the time ~ T does not 
refer to the duration of the measurement [ as ~t 
does in Eq. (1)] but rather gives the time delay in 
the beginning of the measurement-the time delay 
necessary for the wave packet for R to be shifted 
by the amount ~R. A detailed comparison of the 
relations (1) and (8) may be found in [1]. 

On the other hand, although both relations (6) 
and (8) refer to an unperturbed system they do not 
have the same physical meaning. The relation (8) 
is, generally speaking, inapplicable to the decay 
law since the energy distribution in (8) is charac­
terized by too gross an energy standard ~H. which 
in problems of this type either does not exist at 
all or does not represent a characteristic magni­
tude. 

AND BOHM 

Aharonov and Bohm [7] attempt to refute the 
Heisenberg-Bohr uncertainty relation, written in 
the form of Eq. (1) and interpreted in the sense of 
Krylov and Fock [ ~ ( E'- E) and ~t are the un­
certainties in the magnitude and in the instant of 
energy change, see above]. Aharonov and Bohm 
arrive at the conclusion that the interpretation of 
Krylov and Fock is incorrect, and that in the gen­
eral case the relation (1) does not hold. 

At the same time Aharonov and Bohm acknowl­
edge the validity of the relation (8), since it fol­
lows from the Schrodinger equation and belongs 
to the second type. The rejection of the uncer­
tainty relation of the first type is motivated by a 
(incorrectly understood) statement by Bohr, that 
no limitations must be imposed on individual meas­
urements except those that follow from the appa­
ratus and interpretation of quantum mechanics. 
(These words of Bohr, clearly, must not be inter­
preted as is done by Aharonov and Bohm to forbid 
the use of additional considerations that allow one 
to reduce the uncertainties in the energy differ­
ence and in time to those in momentum and coor-
dinate; such additional considerations are con­
stantly used by Bohr in, for example, his well 
known "Discussions with Einstein." [S]) 

We shall not analyze here all of the considera­
tions given by Aharonov and Bohm in their attempt 
to refute the relation (1), but will limit ourselves 
to a discussion of the example, which in the opinion 
of the named authors violates the relation. The 
authors, apparently, consider this example de­
cisive. 

Aharonov and Bohm consider the collision of 
two particles (x) and (y), each with one degree 
of freedom, which compose a system with a Hamil-
tonian operator 

H 1 2 1 2 ( 
= 2m Px + 2m Pu + YPxg t), (9) 

where g( t) is a discontinuous function of time with 
the constant value g( t) = g0 during a certain time 
interval of width ~t. and the value g( t) = 0 out­
side that time interval. The authors assert that 
if the interaction between the particles is of the 
form indicated in Eq. (9), then it is possible in 
the time ~t to precisely measure the increase 
in energy E'- E of particle (x ), thus violating 
the uncertainty relation (1). 

Before entering into the analysis of the consid­
erations of Aharanov and Bohm let us call atten­
tion to the fact that the introduction of an explicitly 
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time-dependent interaction is equivalent to the in­
troduction of a field which can be described clas­
sically (in the correspondence principle sense). 
However the classical fields and test bodies util­
ized in the equations of quantum mechanics are 
not free of the limitations imposed by the Heisen­
berg uncertainty relations. On the contrary, the 
use of classical fields and test bodies is based on 
the premise that the uncertainty relations are sat­
isfied for them so strongly that it is unnecessary 
to introduce these relations explicitly. If however 
it is (illegitimately) assumed that the classical 
field or test particle may violate the Heisenberg 
relations it should come as no surprise that these 
relations will also be violated for the quantum 
mechanical particle serving as object. 

Just such an illegitimate assumption was made 
by Aharonov and Bohm. Indeed, the introduction 
into the Hamiltonian operator of discontinuous 
functions of time implies admitting the possibil-
ity that the field which carries the interaction be­
tween the particles may be instantaneously switched 
on and off. But such a possibility violates relation 
(1) for this field. For the mechanical system under 
consideration the instantaneous switching on and 
off of the interaction means an instantaneous change 
in the energy by a prescribed finite amount [so that 
~ ( E'- E) = 0] in a given instant of time (so that 
~t = 0). The possibility of such a change amounts 
to a hypothesis that is even stronger than the asser­
tion the authors wish to prove [ they only claim that 
it is possible to have ~ ( E'- E) = 0 with ~t ;r 0]. 

On the formal side, the reasoning of Aharonov 
and Bohm is an example of an error in logic, long 
known under the name petitio principii (begging 
the question): assuming in the premise that which 
is to be proved. 

Having clarified the logical nature of the error 
of Aharonov and Bohm let us show that the operator 
(9) leads to the uncertainty relation (1), provided 
that one does not introduce discontinuous functions 
but assumes instead that during the time under 
consideration (of the order of ~t) the interaction 
keeps its order of magnitude. For the operator (9) 
the Hamilton equations take on the form 

. 1 
x =mPx+yg, 

. 1 
Y = fi!Pu, (10) 

The energy of particle (x) is given by 

[ It is clear that one may not take as energy the 
quantity Pi I (2m )., since the canonical variable 

(11) 

Px does not coincide with the kinetic momentum 
mx. ] Making use of the expression for x it is 
easy to see that the uncertainty in the energy 
change will be of the order of 

6. (E' -E)= !J.y-jgpxl' (12) 

where ~y is the uncertainty in y during the inter­
action (collision) time. Further, the duration of 
the collision ~t is equal to the uncertainty in the 
instant of time at which the energy transfer took 
place. The uncertainty in the value of Py should 
satisfy the inequality 

(13) 

since it should be less than the predictable part of 
the change in Py. which is equal to Py ~t. Making 
use of Eq. (13) and the Heisenberg relation for y 
and Py we obtain 

!J.y >hI !J.py >hI( tJ.t I gpx 1), (14) 

and on introducing this inequality for ~y into Eq. 
(12) we arrive at the relation (1). 

Consequently the example of Aharonov and 
Bohm, when treated correctly, does not refute but 
confirms the Heisenberg-Bohr uncertainty rela­
tion, Eq. (1). 

The same considerations are also valid for 
systems described by a Hamiltonian operator of 
a more general form provided that we write 
everywhere in place of the product gpx the quan­
tity 8H/8y. 

1 N. S. Krylov and V. A. Fock, JETP 17, 93 
(1947), N. Krylov, J. Phys. (U.S.S.R.) 11, 112 
(1947). 

2 L. I. Mandel'shtam and I. E. Tamm, Izv. AN 
SSSR ser. fiz. 9, 122 (1945). I. Tamm, J. Phys. 
(U.S.S.R.) 9, 249 (1945). 

3 V. A. Fock, Konspekt lektsil po kvantovo1 
mekhanike, chitannykh v 1936-1937 gg. v Lenin­
gradskom universitete (Lectures on Quantum 
Mechanics delivered in 1936-1937 at the Leningrad 
University). Steklografiya LGU, 1937. 

4 M. Levy, Nuovo cimento 14, 612 (1959). 
5 P. T. Matthews and A. Salam, Phys. Rev. 

115, 1079 (1959). 
6 J. Petzold, Z. Physik 157, 122 (1959). 
7 Y. Aharonov and D. Bohm, Phys. Rev. 122, 

1649 (1961). 
8 Niels Bohr, Atomic Physics and Human Knowl­

edge, Wiley, 1958. 

Translated by A. M. Bincer 
187 


