
SOVIET PHYSICS JETP VOLUME 15, NUMBER 4 OCTOBER, 1962 

A DIAGRAM TECHNIQUE FOR EVALUATING TRANSPORT COEFFICIENTS IN 

STATISTICAL PHYSICS AT FINITE TEMPERATURES 

I. E. DZYALOSHINSKI I 
Institute for Physical Problems, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor November 25, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 42, 1126-1134 (April, 1962) 

We use a direct analytical continuation of the diagrams for the temperature-dependent Green's 
functions in the Matsubara method [l-3] from discrete points on the imaginary axis onto the 
whole plane of the complex frequency w to col).struct a diagram technique which involves 
quantities depending on the real frequency. This method enables us to evaluate the transport 
coefficients of a system at finite temperatures 

1. INTRODUCTION 

RECENTLY quantum field theory methods have 
been applied intensively in statistical physics at 
non-zero temperatures. One of these methods, 
that of Matsubara, [l] uses the so-called temper
ature-dependent Green's functions which depend 
on a fictitious "imaginary" time. A special ad
vantage of this method is that it allows the use of 
the Fourier transform with respect to the imagi
nary time. [2•3] The diagram technique which 
arises in this way differs from the usual one in 
field theory at T = 0 in that the integration over 
the frequency w is replaced by a summation over 
discrete "imaginary" frequencies iwn. 

An application of Matsubara's method involving 
an expansion in imaginary frequencies has made 
it possible to solve many statistical problems. 
However, its application to a study of transport 
phenomena runs into serious difficulties. The dif
ficulty is the following: transport properties of a 
system are naturally, described by the usual field
theory Green's functions (we shall give several 
examples ) which depend on the time t. 

If we know the temperature-dependent Green's 
functions of the Matsubara technique, we can in 
principle obtain also the usual Green's functions 
by an analytical continuation of the former from 
the discrete points on the imaginary axis into the 
whole complex w-plane. [2] Although such an ana
lytical continuation can in various concrete cases 
be done without any particular difficulty, there 
exists in principle no definite algorism. 

In the following we shall describe a diagram 
technique which uses directly quantities that de
pend on the real frequency w. It is obtained by 
a direct analytical continuation of the Matsubara 

diagrams from the points on the imaginary axis· 
into the upper (or lower) half-plane of the com
plex variable w. This technique is a generaliza
tion of the technique suggested by Luttinger [4] 

for the case T = 0. The technique proposed here 
is, in my opinion, appreciably simpler and more 
convenient than the one of Konstantinov and 
Perel' [5] which uses complicated contours in the 
complex time plane. 

2. ANALYTICAL CONTINUATION 

We start with the analytical continuation of the 
diagrams for the single-particle temperature
dependent Green's function @laf3(r1,r2;r1-r2 ).* 
The diagram technique to evaluate its Fourier 
transforms @l(p, wn) differs from the usual quan
tum field theory diagram technique by the replace
ment of the integration over the real frequencies w 
by a summation over discrete "imaginary" fre
quencies t iwn = i7rnT (where it is well known [2] 

that the Green's function for fermions contains 
only the "odd" frequencies Wn = 7T(2n+1)T, and 
the Green's function for bosons only the "even" 
ones wn = 2rnT ). The analytical continuation of 
@l ( Wn) from the discrete points on the upper 
imaginary semi-axis is a function which is ana
lytical in the upper half-plane of the complex 
variable w and is the same as the so-called re
tarded Green function GR(w ). We similarly ob
tain from the continuation from the discrete points 
iwn on the lower imaginary semi-axis the ad-

*We shall assume in the following that the system is homo

geneous and nonferromagnetic. In that case <l3 a/3 (r,,r2 ; r,- -;) 
= Oaj3 (!3 (r1 , r2 ; r,- 7"2). 

tWe use units such that n = c = 1. The temperature is meas
ured in energy units. 
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vanced function GA( w) which is analytical in the 
lower half-plane w. 

The functions GR(p, w) and aA(p, w) have a 
common Lehmann expansion [2] 

co 
\ p (p, 1]) d'l'] 
J 1]-(J) 

-oo 

with a real function p, where GR is that branch 

(1) 

of the function (1) which is analytical in the upper 
half-plane while GA is the branch analytical in the 
lower half-plane. The function p(p, w) is for real 
w the same, apart from a factor, as the imaginary 
part of GR (or GA ) 

p (w) = n-1 Im GR (w) = - n-1 lm GA (w). (2) 

The temperature-dependent Green's function @ ( Wn) 
is the same as GR on the upper imaginary semi
axis and the same as GA on the lower semi-axis: 

@ (wn > 0) = GR (iwn), 

@ (uln < 0) = GA (iwn). (3) 

The functions GR and aA are connected with 
the usual Green's function by Landau's well-known 
relations [G] 

ReG (w) = ReaR (w) = Re GA (w), 

Im G (w) = th 2c;, Im aR (w) = - th 2~ Im GA (w) (4a) * 

for fermions, and 

ReG (w) = ReaR (w) = Re GA (w), 

lm G (w) = cth 2c;, lm GR (w) = - cth 2~ lm GA (w) (4b) 

for bosons. 
From (1) and (3) follows an equation for @(p, w) 

in terms of p(p, w ), which is important for what 
follows. Performing the inverse Fourier transfor
mation in (1) and using (3) we get for fermions 

00 

~ (1 - n (TJ)) e-~T p (p, 1]) d1], 

@ (p, 'L) = -co 

co 

- ~ n(1])e-mp(p,1])d1], 
-oo 

where n( 1J) is the Fermi function 

n ('I'J) = [e~~r + 1]-t. 

Similarly for bosons 
co 

~ (1 + n (1])) e-~T p (p, 1]) d1], 

@ (p, 'L) = 
00 

-CO 

~ n (TJ) e-~~ p (p, 1')) d1], 
-co 

n ('I'J) = [e~!T- 1]-t. 

*th = tanh, cth = coth. 

(5) 

(6) 

We turn now directly to the analytical continua
tion of diagrams. It is most convenient to do this 
without performing a Fourier transformation with 
respect to the time T in the internal lines. More
over, we shall at once analytically continue the dia
grams which contain already the total Green's 
functions @I (depicted by heavy lines), instead of 
the free-particle Green's function @1< 0> (light lines), 
i.e., compact, irreducible diagrams which do not 
contain internal self-energy parts. 

For the case of a two-particle interaction the 
simplest of such diagrams is given by Fig. 1. 

~ 
FIG. 1 

After performing the Fourier transformation with 
respect to the spatial coordinates the expression 
corresponding to this diagram is (apart from a 
factor ) of the form* 

6@ (p, 1'1 - 'L2) = ~ @<o> (p, 'Lt- 'L') r<o> (p, Pt + P2 ~ p; Pt, P2) 

X @ (Pt• 'L' - 'L") @!. (p2, 'L' - 'L") 

X @I (Pt + P2- p, 'L"- 'L') r<o> (Pt, P2; P, Pt + P2- P) 

(7) 

r (O) is the function describing the interaction; it is 
independent of the time. 

This expression is, as is the total Green's func
tion itself, a function of the difference of the coor
dinates T'- T" (see [2]), and 

b@l ('L < 0) = - b@l ('L + liT). 

Its Fourier transform o@l ( Wn) is thus connected 
with a double Fourier transform through the rela
tion 

!IT 1/T 

~@! (wm, Wn2) = + ~ ~ d't' d't"/'"nt"'cl"'n2T2 ~@! ('Lt- 1'2) 

-1/T -I/T 

We evaluate the double Fourier transform of (7) 
and substitute instead of the Green's functions 
corresponding to external lines their Fourier 
series expansions 

@I ('L) = T~e-1"'nT@I (wn), 
h 

and instead of the functions corresponding to in
ternal lines their Lehmann expansions (5). Equa-

*We shall not write down the spin indices of the ill functions. 
Moreover, we restrict ourselves solely to the fermion case; the 
transition to bosons is completely obvious. 
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tion (7) is written in the form (we shall henceforth 
write out only integrals with respect to the time) 

()@} ((l)n. w~) ~ -- ~ dT]l dT]2 dl]a@l(O) (p, O.'n) @} (p, w~) P (pl> Tlt) 

;< p (p2, TJz) p (p1 + P2 - p, r13) {(1 - n (TJt)) (1 - n (TJ2)) 

lr r io> ''-iw' ," ' " 
X n (TJ 3) J dT' J dT"e n n e<-1h-1l,+1l,) <' _, ) 

0 0 

l/_T 't''' iw 't''-lw' "t'" 

X(1-n(TJ3))~dT"~dT'e n n e(-1J,-1l,+1l,)(,'-,"l}. 

0 0 

When we evaluate the integrals over T' and T" 

we obtain two kinds of expressions, one propor
tional to Ow w' (it is obtained when we substi-n• n . 
tute the upper limit), and the other not. One veri-
fies easily by using the explicit expression for the 
Fermi function that the two terms of the second 
kind cancel one another. This cancellation fol
lows, incidentally, from general considerations. 
Indeed, since @l (and with it also any Feynman 
diagram ) is a function of the difference between 
the coordinates only, its double Fourier transform 
is non-vanishing only if wn "" wn,. The structure 
of the terms which do not contain t5wn,wn is, how
ever, such that if they cancel when Wn "" wn, (as 
should be the case), the same happens also when 
Wn = w0. We get thus finally ( O@l = O@la + O@lb) 

()@}a (wn) ~ - @l(o) (wn) @l (wn) ~ dl] 1 dT]2 dn~p (TJt) P ( lJ2) P ('lla \ 

(1- n (111)) (1- n (1]2}) n (lla) 
X 1'11 + 1'12 - lla - iw n ' 

n (Tid n (112) (1- n (lla)) 
X -111- 1'12 + lla + iwn . 

(Sa) 

(8b) 

One obtains the analytical continuation of ex
pressions (8a) and (8b) into the upper w half-plane 
simply by replacing iwn by w and using Eq. (3). 
From the form of (8a) and (8b) it follows that the 
analytically continued expressions are analytical 
in the upper halfplane and are thus corrections to 
the retarded function aR which is expressed in 
terms of p(w ), i.e., in terms of Im GR. We in
troduce the mass operator for the retarded func
tion 

oR (w) = 0~ (w) + 0~ (w) '1:-R (w) oR (w) 

and obtain finally ( Im w > 0 ) 

1\'1:.~ (p, w) ~- \ dT] 1 dTJ2 dTJaP (pl, TJt) P (p2, 112) P 
o) 

( + ) (1- n (Tid) (1-n (llz)) n (lla) (9a) 
X Pt P2 - p, lJa. - 111 + 11•- lla- w ' 

6'1:.~ (p, w) ~ ~ dl] 1 dT]2dl]aP (pl, TJt) P (P2, lJ2) P (Pi+ P2- p, TJa) 

n (1]1) n (112) (1- n (lla)) (9b) 
X - 111 - 1'12 + lla + w . 

We need not write down again the expressions 
for the corresponding corrections to aA, since 
aA for Im w < 0 is connected with aR for Im w 
> 0 by the relation 

oA (w) = oR· (w*), 

which follows immediately from (1). 

We can compare Eqs. (9a) and (9b) with the 
well-defined diagrams obtained by a simple modi
fication of the usual Feynman diagram. We ar
range the time coordinates corresponding to the 
vertices of the usual Feynman diagram of Fig. 1 
in such order that they decrease from top to bot
tom. We get then two diagrams corresponding to 
two possible cases: T' > T" and T' < T" (Fig. 2). 

w w w 

a b 

FIG. 2 

The external lines must always be drawn vertic
ally as shown in Fig. 2. We now draw a dotted 
horizontal line (called in the following a section) 
separating one vertex from the other. 

We assign now to each internal line a function 
p(pi, rJi) such that each internal line will carry a 
momentum Pi and a "frequency" rJi; we shall 
also assume that the external lines carry a fre
quency and momentum wand p. We integrate 
over the momenta and "frequencies" of the in
ternal lines in such a way that in each vertex the 
usual momentum conservation laws ~Pi= 0 are 
satisfied; the integrations over the frequencies 
are, however, independent. Moreover, we assign 
to each internal line directed from top to bottom 
a factor 1 - n ( rJi) and to each line directed from 
bottom to top a factor - n( Tli ). Finally, we assign 
to a section a denominator equal to the sum of 
the frequencies which are intersected by the hori
zontal line, where the frequency carries a minus 
sign if the line is directed upward and a plus -sign 
if the line is directed downward. 

We must, of course, assign to each vertex the 
interaction operator which depends only on the 
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momenta, and multiply each of the two diagrams 
by the factor corresponding to the initial Feynman 
diagram (Fig. 1). 

One verifies easily that the diagram of Fig. 2a 
corresponds exactly to Eq. (9a), and the diagram 
of Fig. 2b to Eq. (9b). 

By similar considerations, taking the above
mentioned cancellation of the terms which do not 
contain own,wh into account, we can verify that 
the diagram rules written down just now remain 
the same also for more complicated Feynman di
agrams. As before, we must draw all possible 
diagrams obtained from a given Feynman diagram 
for different relative values of the times corre
sponding to the vertices, and draw in each diagram 
all possible horizontal sections separating one 
vertex from another. The rules of assigning well
defined expressions to the elements of the dia
grams remain the same as before; one need only 
take into account that in integrating over the sin
gularities of the denominators which correspond 
to the sections which intersect both external lines 
or do not intersect one of them (these latter de
nominators do not contain external frequencies ) 
one must take principal value integrals. This is 
connected with the fact that in the expression for 
the sum of all diagrams of a given type there is 
no such singularity (the quantity occurring in the 
numerator vanishes at the same time as the de
nominator ) . 

Let us consider, for instance, the correction 
to 1:R given by the Feynman diagram of Fig. 3. 
The six diagrams given in Fig. 4 correspond to 

a 

d e 

FIG. 3 

this diagram. Using the rules stated a moment 
ago we can easily write down the expressions 
corresponding to Figs. 4a, 4c, and 4e (we again 
leave out the integrals over the momenta): 

61:: (ffi) ~-~ d'1']1 ... d'I'JsP ('1'] 1) ... P (115) (1 - n ('1'] 1)) 

X (1 - n (112)) (1 - n('l'] 3)) (1 - n ('I'J4)) n ('1'] 5) 

1 
X (TJ1 + T]z- T]s- w) (TJa+ TJ•- T]s- w)' 

61:~ (ffi) ~- - ~ dlh ... d'I'J5P ('I'Jt) .•• P ('I'Js) (1 - n ('l']t)) 

X I 1 - n ('1'] 2)) n ('1'] 3) n ('I'J4) n ('I'Js) 

1 
X (TJt + T]2- T]s- w) (1]1 + T]2- T]s- TJ•) ' 

6~~ (ffi) ~ ~ d'1'] 1 ••• d'I'JsP ('I'Jt) ..• P ('I'Js) n ('I'Jt) n ('I'J2) 

X (1 - n ('I'J 3)) (1 ~ n ('I'J 4)) (1 - n ('I'J 5)) 

X (-1]1- T]2 + T]s + 1]4) (-1]1- T]2 + T]s + w) ·· 

The sum of all possible diagrams for 1:R ( w ) 
expresses this quantity, and at the same time 
also GR( w) in terms of p ( w), i.e., in terms of 
Im GR(w ). The equation 

GR1 (ffi) = GR~ (ffi) - ~R (ffi) 

is thus the analogy of the Dyson equation where 

71'' 

FIG. 4 
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the unknown function will be here not GR( w) it
self, but its imaginary part. 

3. MANY-PARTICLE GREEN'S FUNCTIONS 

We now turn to the problem of a diagram tech
nique suitable for many-particle Green's functions 
in terms of which the different transport coeffi
cients of the system can be expressed. Generally 
speaking, many-particle temperature-dependent 
Green's functions depend on several discrete 
"frequencies" wn and in the general case it is 
a hopeless task to find an analytical continuation 
for all of them. Fortunately, however, it is suf
ficient for a calculation of all the important trans
port quantities to continue analytically the many
particle functions only with respect to one fre
quency. For instance, the electrical conductivity, 
the dielectric constant, and the viscosity are ex
pressed in terms of the retarded two-particle 
function 

= Sp { exp ( Q- HT + ftN ) [1jl+ (r1 , t1) 1jJ (r2 , t1) 

X ¢+ (ra, fz) 1jJ (r4, i 2) 

-1jl+ (ra, fz) 1Jl (r4, lz) 1jl+ (rl, t1) 1jJ (r2, t1)l} t1 > t2 ; 

(10) 

where l{;(r, t) and 1/J+(r, t) are the usual Heisen
berg operators. In particular, using the well
known expression for the current operator (see, 
for instance, C7J) one verifies easily that in the 
general case where there is both temporal and 
spatial dispersion the electrical conductivity 
a( k, w) is proportional to the Fourier transform 
of 

Q (r -- r'; t1 - t2) = (-!--- _aa ) (__g_-- _j__) 
xil xiz iJxla . iJxi4 

Repeating the arguments of [2] discussing the 
analytical properties of the single-particle Green's 
functions, and replacing the matrix elements of 
l{;(rt, t1) and ¢+(r2, t 2 ) which occur there by those 
of ¢+(r1, t 1 ) ¢(r2, t 1) and ¢+(r3, t 2 ) ¢(r4, t 2 ) re
spectively, one can show easily that the Fourier 
transform of (10) with respect to the time, KR(w ), 
is an analytical function of w which is regular in 
the upper half-plane, and which is the analytical 
continuation from the discrete points on the upper 
imaginary axis of the Fourier transform corre
sponding to the temperature-dependent Green's 
function 5t ( wn) ( wn = 2rn T ) : 

X 'Ji (r3. 1:2) 1jJ (r4, T2)J}, 

where 

1jJ (r, ,;) = e' di-:JJJ 1jJ (r) e-' ui-:,NJ, 

lji (r, ,;) = e' ui-1'-Nl 'ljl+ (r) e-' <11-~JJ). 

(11) 

The analytical continuation of the diagrams for 
5t ( Wn) proceeds exactly as for the single-particle 
Green's function. The first Feynman diagram for 
5t is given in Fig. 5a. To emphasize the fact that 
the ends of the lines in Fig. 5a on the right (and 
also on the left) correspond to the same "time" 
T we shall draw the diagrams for 5t as diagrams 
for some single-particle function to which we shall 
assign a double line (see Fig. 5b). We emphasize, 
however, that in the new ''vertex'' which appears 
in this way and which is formed by one double and 
two single lines there is no integration over the 
times or coordinates. 

One verifies now easily that the evaluation of 
the contribution to KR( w) from the Feynman dia
gram of Fig. 5a can be performed using the rules 
described in the previous section, if we apply them 
to diagram 5b for the "single-particle" function. 
Diagram 5b will then, of course, depend on all four 
external momenta (or spatial coordinates) of dia
gram 5a. The definition of the momentum depend
ence of the diagram remains, of course, the same 
as in the Feynman method. 

The contribution to KR(w) given by the Feyn
man diagram 5b is, as in the previous section, de
termined by the two diagrams of Figs. 6a and 6b 

"!:,r, -------r..;r;. ~ 
-c,rz ___ .__ __ 'Czf3 ~ 

a b 

FIG. 5 

r:, 

a b 

FIG. 6 

XX=< 
a b 

FIG. 7 
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a 

b 

FIG. 8 

FIG. 9 

and can easily be evaluated. Figures 7 to 9 give 
examples of more complicated diagrams. 

One can perform an analytical continuation with 
respect to one of the discrete frequencies for dia
grams of three-particle and similar temperature
dependent Green's functions in a completely simi
lar manner. 

I express my gratitude to Academician L. D. 
Landau for discussions. 
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