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It is proved that the wave function of the bound S state for a superposition of Yukawa poten
tials in momentum space is an analytic function of the square of the momentum t throughout 
the complex plane except for a pole at the point corresponding to the bound state energy and 
a cut on the negative half-axis. As It I ---.. oo the wave function decreases at least as rapidly 
as It 1-2• An equation is set up from which the discontinuity of the wave function can be de
termined in a simple manner. The eigenvalues of the Schrodinger equation are determined 
from the law of decrease of the discontinuity at infinity. 

1. INTRODUCTION 

THE analytic properties of the wave function of 
the bound state for a superposition of Yukawa po
tentials are of interest in two respects. First, they 
can lead to a new method for a practical determi
nation of the wave function, which may be useful in 
nuclear physics problems. Second, they are closely 
related to the quantum theory of fields. It is known 
that the problem of two nonrelativistic particles in
teracting through a potential of the above-mentioned 
type leads to an S matrix with analytic properties 
which are very similar to what one obtains in quan
tum field theory. In the latter one encounters quan
tities which are the analog of the wave function of a 
bound state. [1] Their analytic properties are pos
sibly also close to the properties of the correspond
ing quantities in quantum mechanics. 

For simplicity we consider spinless particles 
and restrict our discussion to the S state. We set 
ti = 2M =:= 1, where M is the reduced mass of the 
particles. The Schrodinger equation has the form 

-v2'(J (r) + V (r)¢ (r) = - x2\l) (r), 
00 

V (r) = f ~ e-rVz p (z) dz. (1) 
p.' 

We assume that p(z) is a continuous function ex
cept, perhaps, for o-type singularities, and de
creases faster than z-1• In momentum space we 
obtain (after integrating by parts ) 

00 00 

1 ~ dq2 c z + k2 - q2 
= 2n .\ -q-(j) (q2) .\ [z + (q + k)2][z + (q- k)2] P (z) dz, 

0 p.' 
(2) 

where cp (k2 ) = J lf'{k2 ) dk2 is assumed real for 
k2 ~ 0. For k2 ---.. oo the function lf'(k2 ) decreases 
faster than k-3• 

Formula (2) is valid for k2 ~ 0. We shall be 
interested in the analytic properties of the function 
lf'(k2 ), the solution of Eq. (2), for all complex val
ues k2 = t. 
2. ANALYTIC PROPERTIES OF ljl(t) 

We shall show in this section that 1/J(t) is an 
analytic function in the entire complex plane ex
cept for a pole at the point t = - K2 and a cut along 
the line t ~ - p.2. Later on we shall show that this 
cut actually starts somewhat further away from the 
origin, namely at the point t ~ -{p. + K ) 2. The func
tion 1/J(t) vanishes more strongly than C 2 as It I 
---+ 00 

Let lf'(k2 ) be a solution of Eq. {2). We substi
tute cp (q2 ) in the right-hand side and consider the 
resulting equation for complex k2 = t. It is con
venient to begin with the discussion of the simpler 
function 

00 

f( ( z+t-q2 !!:!t_ 
z, t) = ~ (jl (q2) (z + t + q2)"- 4tq2 q 

0 

The denominator vanishes at two points: 

qi = a2 - (b - Vz)2 + i2a (b- Vz>. 
q~ = a2 - (b + VZ)2 + i2a (b + Vz), 

(3) 

(4) 

where a and b are the real and imaginary parts 
of ..ft: 

t = a2 - b2 + 2iab, b:;>O. 

As long as the singular points (4) do not fall on the 
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positive real half-axis, the function f( z, t) is an 
analytic function of the variable t. A singularity 
occurs at b = .fZ, when q~ = a2• The singular 
curve of the function f ( z, t) in the t plane has 
the form of a parabola: 

1 
Ret =4z (lm t)2 - z. (5) 

The function f ( z, t ) is therefore analytic in the t 
plane except for a cut along the curve (5). 

The function if! ( t) can be written in the form 
()() 

'ljl (t) = Zn (I~ x•) ~ f (z, t) p (z) dz (6) 
l'-' 

and will be analytic to the right of the parabola (5) 
with z = p,2, except for a pole at t = -K2• The func
tion cp (t) will be analytic in the same region with 
an additional cut along the line t ~ - K2• 

We note further that formula (3) and the law of 
decrease of if! ( k2 ) as k2 - oo imply that f ( z, t ) 
vanishes within the region of analyticity at least 
as rapidly as c 1 as It I - oo and 1/J(t) at least 
as rapidly as c 2• 

Let us now show that the function if! ( t ) can be 
continued analytically out of the above-mentioned 
region of analyticity into the whole complex plane 
except for a cut along the negative real half-axis. 

Let a > 0 and b = 0. The positions of the two 
singularities (4) in the complex q2 plane are as 
shown in the figure. As b increases with fixed 
a, these singularities move along the parabola B, 

1 Re q2 = a2- 4a•- (1m q2)2 

in the directions indicated by the arrows. When 
the point 1 meets the integration contour q2 > 0, 
f( z, t) becomes singular. Using the proven ana
lyticity of cp (t ), we deform the integration contour 
of the integral {3) in the upward direction so as to 
avoid the point 1. A singularity will then occur for 
values of b larger than rz' i.e., we continue 
f ( z, t ) analytically across the cut. The limiting 
position of the integration contour C is, of course, 
fixed by the above-shown region of analyticity of 
cp (t ), and is given by the upper half of the parab
ola (5) with z = p,2 and the strip (- p,2, 0 ). A sin
gularity now occurs when the point 1 crosses the 
new contour of integration (i.e., when the point 1 
reaches the point 1' ). This gives b = -{Z + p,. 

We have thus been able to continue f ( z, t ) ana
lytically beyond the parabola (5) into the upper 
half-plane up to the parabola 

1 ~~-
Ret= V (Imt)2 - (r z + fl) 2 • 

4 ( z + f1) 2 
(7) 

The analytic continuation of the function f ( z, t ) in 

the new region of analyticity will, as before, van
ish at least as rapidly as t-1 for I t I - oo (by 
reason of its integral representation). Formula 
(6) enables us to continue the function if! ( t) ana
lytically into the upper half-plane up to the parab
ola (5) with z = (2p,) 2 and to determine its behav
ior at infinity. This again makes it possible to de
form the contour of integration in (3) even further, 
thus allowing a further analytic continuation of 
f(z, t ). Let us assume that we have, at some stage, 
continued lf!(t) into the upper half-plane up to the 
parabola (5) with z = (nJ.£) 2 and that the function 
1/J(t) vanishes in this region at least as rapidly as 
t-2 for It I - oo. We place the integration contour 
in the q2 plane on this parabola and on the strip 
on the negative half-axis. A singularity of f(z, t) 
occurs when the point reaches the parabola, i.e., 
when simultaneously 

Re q2 = a2- 4~• (Im q2)2, 

1 
Req2 = 4(nf1)•(Imq2)2-(nf.t)2, (8) 

where Im q2 = 2a(b- /Z). Solving this system of 
equations for b with fixed a > 0, we find b = np, 
+ -fZ. The function f(z, t) can then be continued 
analytically up to the parabola 

Ret= 1 -v (Imt)2 -(nf-i+Yz)2 , 
4 (nfl + z)2 

and if! ( t ) can be continued up to the parabola (5) 
with z = ((n+1)J.£) 2• It follows from. the integral 
representation that in the new region the function 
1/J(t) also decreases at least as rapidly as c 2 

when I t I - oo • 

We have thus proved by induction that 1/J(t) can 
be continued analytically into the entire upper half
plane, and we have determined its behavior as I t I 
- oo • By deforming the contour in the downward 
direction, we can prove in an analogous manner 
that the function can be continued into the lower 
half-plane. The negative half-axis coincides with 
the cut for t ~ - J.£2 (we have made essential use of 
of the fact that a >" 0 ). 

3. DISCONTINUITY OF THE FUNCTION l/l(t) 
ON THE NEGATIVE HALF-AXIS* 

The discontinuities of the functions 1/J(t ), cp (t ), 
and f(z, t) on the negative half-axis are pure 
imaginary and equal to twice the imaginary parts 
of the corresponding functions. Let us begin the 
discussion with the discontinuity of the function 
f( z, t ). We make use of the proven analyticity of 
cp (t ). We select the branch of the root appearing 

*See also the paper of Blankenbecler and Cook.['] 
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' ' '-A 
' 

A- parabola Re q2 = (l/4f!2)(1m q2) 2 -fl', B- parabola 
Re q2 = a 2 - (l/4a2)(1m q2) 2, C- contour of integration. 

under the integral sign in (3) such that the cut 
lies on the negative half-axis (- oo, 0 ). 

Let a > 0 and b < ..fZ. As we have seen, the 
singularities of the integrand as a function of q2 

consist of a cut on the negative half-axis and the 
two poles q~ and q~ shown in the figure. If a < 0, 
the points q~ and q~ interchange places. Let us 
now replace the integration along the positive half
axis by one along the upper or lower branches of 
the negative half-axis. We use the notation 

F ( • - <p (q•) z + t -- q• 
q ) = -q- (z + t + q2 ) 2 - 41q2 • 

(9) 

It is clear that for Im t > 0 (a > 0 ) 
0 

f (z, t)= 2:rti Res F (q2)- ~ F+ (q2) dq2 

q'=q~ -co 

0 

=- 2:rti Re~ F (q2)- ~ p- (q2) dq•, 
q2=q1 -00 

(10) 

and for Im t < 0 (a < 0 ) 
0 

f (z, t) = 2:rti Res, F(q2) - ~ F+(q2 ) dq2 

q'~=q -00 
1 

0 

=- 2:rti Res, F(q2)- ~ F-(q2) dq2 • 

ql=q -co . 
(11) 

Here F+ and F- are the values of F above and 
below. The integrals along the large semicircles 
vanish, since we have shown that qJ (q2 ) does not 
increase as I q2 1 - oo. The integrals on the right
hand side are analytic functions of t with a cut 
along the real axis. The first two expressions 
therefore continue f( z, t) into the entire upper 
half-plane, and the last two expressions, into the 
entire lower half-plane. The discontinuity of 
f( z, t) on the negative half-axis is the sum of the 
discontinuities of the integrals and of the remain
ing terms. It is easily seen that for b < ..fZ, 
t < 0 

f+ (z, t) - t- (z, t) = 0, 

and for b > ..fZ , t < 0 

(12) 

f+ (z, t) - t (z, t) =- 2:rti {Res. F+ (q2) + Re~ p- (q2 )} . 

q'=q q'=q 
1 1 (13) 

Let us denote Im qJ + ( t) = 17 ( v ) , where v = + H , 
and define 7J(V) for v < 0 as being equal to zero. 
Then it follows from (12) and (13) that 

Im f+ (z, t) = rrv-11'] (v - Vz). (14) 

The discontinuity of 1/J ( t) is found from this for
mula with the help of (6). 

Let us use this relation for an actual construc
tion of the function 1/J ( t). Differentiating 17 with 
account of the definition of qJ (t) and formulas (6) 
and (14), we obtain 

00 

11' (v) = u• ~ x" ~ 1'J(v - Vz) p(z) dz + db(v - x), (15) 
p.' 

00 

d = + ~ Re f (z, - x2) p (z) dz. 
p.' 

(16) 

We have thus arrived at an integra-differential 
equation (15) for the determination of 17· It is 
solved rather easily. Let us assume first that 
0 < v <min (J..t, K ). Then (15) implies that 17' (v) 
= 0. Furthermore, it is clear from (15) that 7J(V) 
is continuous except at the point v = K. For the 
chosen values of v we thus have 17 = 0. If K > J..t, 
we consider the interval J..t < v < min ( 2J..t, K ) and 
show in an analogous manner that also here 17 = 0, 
etc. The final result will be the following: 

11 (v) = 0; v<x (17) 

(this also confirms our earlier assertion that 
Im 1/J+(t) = 0 for t > -(J..t + K ) 2 except for the con
tribution from the pole ) . 

In the point v = K the function discontinuously 
becomes equal to d. Let us consider the interval 
K < v < K + J..t· Here v- ..fZ < v- J..t < K and, accord
ing to (15), 17'(v) = 0. Hence 17 is here also con
stant and equal to d. For K + J..t < v < K + 2J..t we 
have v - !Z < K + J..t, and the function under the 
integral sign in (15) is then either zero or equal 
to d. Knowing 17' (v) and using continuity, we find 
17 also in this interval. The next interval, K + 2J..t 
< v < K + 3J..t, is treated in the same way, etc. Pro
ceeding thus in steps of J..t, we determine the func
tion 17 ( v) for all values of J..t. 

Having found 7J(V), we write qJ(t) as an inte
gral of the Cauchy type: 

-x• 
(t) = _!_ , 'I] <v=-t') dt' + c 

cp 1t ~ 1'-1 
(18) 

-00 
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and obtain the desired function l/J(t) by differentia
tion of ~ ( t ) . 

We must now investigate the convergence of the 
integral (18), which is closely connected with the 
behavior of our functions ~ and 1/J at infinity. We 
have seen that the desired solution 1/J(t) must van
ish at infinity at least as rapidly as t-2, which im
plies that T/ ( v) - 0 as v - oo • Conversely, if 
Tj(V)- 0 as v- oo, then l/J(t) behaves no worse 
than C 2 as It I - oo. Indeed, if Tj(v)- 0 as 
v- oo, then Im f+(z, t), according to (14), van
ishes more rapidly than c 112 as I t I - oo , so that 
f(z, t) decreases more rapidly than t-1/ 2• Hence 
1/J(t) is better-behaved than c 312• It follows at 
once that T/ ( v) vanishes more rapidly than v- 1 as 
v- oo. This means that f( z, t) vanishes at least 
as rapidly as t-1 and 1/J ( t) at least as rapidly as 
t- 2, q.e.d. Therefore 

'l'J(V)---+0 for v-+oo 

is the necessary and sufficient condition for the 
correct behavior of our ~ and 1/J at infinity. 

(19) 

It would seem that, besides condition (19), we 
should also satisfy Eq. (16). It turns out, how
ever, that (16) and (19) are completely equivalent. 
This follows from the fact that any function Tj ( v ) 
which satisfies Eq. (15) also satisfies the relation 

1 f r 11 cV -r- Vzl dt' - d- ( ) (20) 
2 .\ P (z) dz J t' + x• V- t' - '11 oo . 

!J-2 -00 

In order to construct the solution l/J{t ), we 
must therefore find Tj by successive integration 
of Eq. (15) and then require that (16) or (19) be 
satisfied. The functions T/ obtained in this fashion 

provide us with the required eigenfunctions 1/J(t ), 
and conditions (16) or (19) determine the eigen
values - K 2• 

4. CONCLUSION 

Let us summarize the results obtained. We 
have shown that the wave function I/J(k2 ) of the 
bound S state for a superposition of Yukawa po
tentials is an analytic function of the complex 
variable k2 = t in the entire complex plane except 
for a pole at t = -K 2 and a cut for t:::: -(p, + K ) 2• 

We have established Eq. (15) for the discontinuity 
of the function ~ (t) = J 1/J(t) dt. The discontinuity 
can be determined from this equation in succes
sive steps of p, in the direction of increasing It 1. 
This corresponds to a successive determination 
of the wave function at ever closer ranges in coor
dinate space. The condition that the discontinuity 
vanish at infinity (19) or the equivalent condition 
(16) provide equations for the determination of 
the eigenvalues - K 2• 

We hope that a further study of the field theo
retic quantities related to bound states will reveal 
a picture which is not too different from the one 
obtained here. 
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