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We consider relaxation of a system consisting of a dynamic subsystem having a finite number 
of degrees of freedom and a discrete spectrum and of a dissipative subsystem with an infinite 
number of degrees of freedom and a continuous spectrum. A kinetic equation for the density 
matrix, which is diagonal with respect to the continuous indices of the dissipative subsystem 
and generally speaking nondiagonal with respect to the discrete indices, is derived from quan
tum theory under the assumption that the interaction energy is small. It is also assumed that 
the diagonal singularity condition is fulfilled and that two time scales exist. 

The equations derived by Van Hove, Bloch, and Wangsness as well as the usual transport 
equations with Einstein coefficients are deduced from the kinetic equations as particular 
cases. 

1. INTRODUCTION 

IN the investigation of relaxation processes of 
various physical systems we are concerned with 
the following characteristic situation. Relaxation 
occurs as a result of the interaction of some dy
namic system with a dissipative one. That part 
of the system which has a finite number of degrees 
of freedom, discrete energy levels, and is de
scribed in principle by simple dynamic equations, 
will be called the dynamic system (or dynamic 
subsystem). This dynamic subsystem interacts 
with a dissipative system that has in the limit an 
infinite number of degrees of freedom and a con
tinuous energy spectrum. The dissipative system 
represents the macroscopic body. A simple ex
ample of a relaxation process is the spontaneous 
emission of an atom in free space. Here the atom 
plays the role of the dynamic system, and the dis
sipative system is the radiation field in free space. 
The radiation field in free space has a continuous 
energy spectrum, whereas the atom has a discrete 
spectrum. 

Relaxation processes are described by kinetic 
equations. Boltzmann was the first to derive ki
netic equations from the equations of classical 
mechanics. Boltzmann's derivation was based on 
the assumption of molecular chaos (Stosszahlan
satz ). This assumption does not follow from the 
equations of mechanics; hence it is of interest to 
derive the kinetic equations without assuming mo
lecular chaos. In the classical case this problem 
was considered by Bogolyubov [t] and by Prigogine 
and his co-workers. [2] 

Quantum -mechanical derivations of the kinetic 
equations were undertaken by Landau, [3] Pauli, C4J 
and Bloch. [S] They deduced the transport equation 
(assuming molecular disorder): 

dPm ~ 
1ft = LJ (W mnPn- W nmPm)• (1) 

n 

Here Pm is the probability of finding the system 
in state m, and Wmn is the transition probability 
per unit time. The derivation of the transport 
equation without the assumption of molecular dis
order was accomplished by Van Hove, [6, 7J and by 
by Sher and Primakoff. [SJ Van Hove considered 
also the case when the perturbation causing the 
transitions is not small; in this case the relaxation 
process has a non-Markov character.* Van Hove 
[ 6, 7] considered the case where the relaxing sys
tem has a continuous spectrum. Of interest would 
be the case in which the spectrum of the system is 
characterized by both discrete (dynamic part ) and 
continuous indices (dissipative part). Just such a 
case was also considered in the aforementioned 
works of Landau, Pauli, and Bloch. 

Equation (1) contains only the diagonal elements 
of the density matrix of the system 

Pmm = Pm. 

Hence this equation does not give the likelihood of 
determining all the average properties of the phys
ical system. The latter, generally speaking, are 

*The question of the derivation of a quantum kinetic equation 
for rarefied gases was also considered in the work of Bogolyubov 
and Gurov [•] and in the work of a number of authors who used 
their method (see, for example, [10] ). 
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determined by both the diagonal elements of the 
density matrix and the non-diagonal ones. Bloch 
and Wangsness [ 12- 14] obtained for a density matrix 
an equation that was non-diagonal in the discrete 
indices. In this case it is assumed that the dissi
pative part of the system, characterized by the 
continuous indices, is in a state of thermodynamic 
equilibrium. (On the other hand, Van Hove con
siders in essence the case of relaxation of a dissi
pative system.) 

In a number of cases, the assumption that the 
dissipative subsystem is in a state of equilibrium 
is not fulfilled. In Sees. 2 and 3 of this paper a 
quantum kinetic equatiqn is derived for a density 
matrix Pma;na• nondiagonal in the discrete in
dices m, n and diagonal in the continuous indices 
a.* As particular cases, the equations derived by 
Van Hove and by Bloch and Wangsness are obtained 
in Sec. 4. In Sec. 5 the question of the application 
of the various quantum kinetic equations in quan
tum radio physics is briefly discussed. 

2. DERIVATION OF THE QUANTUM KINETIC 
EQUATION (IN THE ABSENCE OF EXTERNAL 
FORCES) 

In the case of the absence of external forces the 
dynamic subsystem, which interacts with the dissi
pative subsystem, forms together with the latter a 
closed system. The Hamiltonian of this system we 
shall write in the form 

ffe =§eo + V, 
where V is the energy of the interaction between 
the dynamic and dissipative subsystems. Clearly, 
the operator JC is independent of time. In what 
follows we will make use of the following assump
tions: 

(a) The interaction energy satisfies the diagonal 
singularity conditionC6] in the continuous indices a, 
i.e., the matrix element of VAV diagonal in a is 
singular. Here A is assumed to be a matrix diago
nal in a; 

(b) If A. is a dimensionless constant character
izing the order of smallness of V, and the proba
bility per unit time found from perturbation theory 
has the form A. 2r (where r does not depend on 
A.), [iS] then it is assumed that the condition 

(2) 

holds, where o1E is a difference in the energy lev-

*The equations derived below, as well as those of Van Hove, 
are equations for the density matrix of the entire system, In this 
they differ from the usual kinetic equations; in the foreign lit
erature they are called "master equations" (see, for example, 
[ 11] ). 

els of JC0 such that any dependence of the matrix 
elements of V on E can be neglected in the inter
val o1E, and o2E is the characteristic difference 
of the energy levels of the dynamic subsystem. 

In the interaction representation the equation 
for the density matrix has the form 

(3) 

Our task will be to obtain the quantum kinetic equa
tion, starting from this equation and using the ap
proximations just mentioned. 

We shall be interested in the behavior of the 
density matrix p, on the basis of a time scale of 
the order 1/(A.2r ). This means that when we later 
refer to a change in the density matrix in an infi
nitesimally small time, we shall mean a change in 
a time much shorter than the accepted time scale 
1/(A.2r ). But, on the other hand, this small time 
should be very large compared to the other time 
scales (li/o1E and li/o2E). Thus, in considering 
spontaneous emission from an atom, the time, 
short in comparison to the time of emission Tr, 
should be long relative to the period of the radia
tion 271/ w0• It should be emphasized that it is pos
sible to neglect changes in the density matrix in 
times comparable to li/o1E and li/o2E only in the 
interaction representation. The point is that the 
transformation to the interaction representation 
really implies freedom from high-frequency de
pendence. The density matrix p in the interaction 
representation represents, roughly speaking, the 
amplitude of the density matrix in the Schrodinger 
representation. An essential change in this "am
plitude" with time is associated with processes of 
relaxation and because of the smallness of A. 2 is a 
relatively slow change. 

An increment in the density matrix in a time T, 

as we shall see below, can be written in the form 

p (t + T) - p (t) =A 1(t) A.2-r + B (t) A+{; (t) A.2' (4) 

where T satisfies the condition 

Allowing A. - 0 and A. 2r - 0 (the latter implies 
only smallness in the A. - 2 scale ) , and keeping 
A. 2t finite, we arrive at the differential equation 

(5) 

(6) 

Here, in order to find A. 2A., use is made of Eq. 
(3) for the density matrix. From this equation we 
obtain, correct to terms of the order of A. 2, 

'< 

p(t+ T) -p(t) =- ~ ~ [V(t+ -r'), p(t)ld-r' 
0 

~ -r' 

- ;. ~ d-r' ~ d-r"[V (t + -r'), [V (t + -r"), r (t)l]. (7) 
0 0 
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The first term in the right hand member of Eq. (7) where we have introduced the symbol 
can be written in the form " ,, 

. , (Jl, (u; u + v) = ~ d<' ~ d't' eiu,'+iv'" 

(~1 P)mn =-* ~ ~ [V mk (t + 't') Pkn (t)- Pmk (f) Vkn (f + 't')] d't' o o 

k 0 (u + v) (iu'- 1)- u (i lu+v)' -- 1) , 
=- {-~ ~ {V mk (f) Pkn i"'mk''- Pmk (t) Vkn (t) e1"'kn''} d't', 

k 0 (8) 

where Wmk = (Em - Ek )/ti, and Em and Ek are 
eigenvalues of the Hamiltonian operator JC0• The 
indices m and k symbolize the complete set of 
indices characterizing these eigenvalues. A part 
of these indices is continuous. We shall use Greek 
letters for the continuous indices and Latin letters 
for the discrete ones. It should be kept in mind 
that summations over the Greek indices are to be 
changed to integrals. In deriving Eq. (8) we have 
made use of the fact that in the interaction repre
sentation 

V mk (t) = V mk (0) i"'mkt. 

Equation (8) can be rewritten in the form 
1 

( ~1P )m<X; n<X = h ~ {V m<X; k<X'(f) Pk<X'; n<X (f) ~, (ffim<X; k<X') 

k<X' 

- Pm<X; k<X' (t) Vk<X'; "" (t) ~, (ffim<X; k<X')}, 

where 
, 

~, (x) = - i ~ e1n- d't'. 

(9) 

For T satisfying the condition (5), tT(x) trans
forms into a singular function t(x) (see, for ex
ample, [15]). According to the definition of 
t(x ), [15] 

~ dx~ (x) F (x) = ~ dx _!:_;-1_ - inF (0), 

where the first integral on the right hand side is 
understood as a principal value. Replacing tr 
by t and transforming the summation over a' 
into an integral in the right hand side of Eq. (9), 
we find that ( Ll1p >ma ;na does not depend on T and 
is of order A.. Thus we can neglect ( Ll1p )ma ;na 
in our approximation. 

The second term on the right side of Eq. (7) can 
be represented in the form 

(~ o) __ ..!_ 
2 : ma; na.- h/• {V m<X;k<X' (f) 

k, l, a', a" 

X Vk<X';l<X" (t) Pt<X";n<X (t) (Jl, (ffim<X; k<X'; ffim<X; t<X") 

- V m<X; k<X' (f) Vt<X"; ""(f) Pk<X'; l<X" 

X [qJ, (ffim<X; k<X'; ffim<X; k<X' ·+ ffii<X"; n<>) 

+ (Jl, (ffit<X"; n<X; ffim<X; k<X' + ffi{<X"; n<X/';-

+ Vk<X'; t<X" (t) Vt<X"; "" (t) Pma.; k<X' (t) (Jl, (ffit<X"; ""; ffik<X'; "")}, 

(10) 

uv(u + v) 

The function cpT(x, y) has, for sufficiently large T 
satisfying condition (5), the following form: 

(Jl, (x, y) 

_ {m6 (x) by, 0 , if y takes discrete values 
- -n6 (x) ~ (y), if y runs over a continuous series of values; 

here 6(x) is the Dirac 6-function, and 6y,o is the 
Kronecker symbol. 

Using these asymptotic properties of cpT(x, y) 
and the condition of diagonal singularity introduced 
above, it is possible to find quite simply that terms 
of the form A2 in the right hand member of Eq. (10) 
equal* 

- V mu; ka'VIa'; naPka'; Ia' (f) [ 6"'mk+"'ln; 0 (6 (ffima; ka') 

+ 6 ( ffita'; na) )] 

+ Vka; I<:<,YI<:<'; naPma; ka (f) 6 {ffilcx'; na) b"'kn; o}• (11) 

Here the matrix elements of V no longer depend 
on time. The time dependence has vanished be
cause of the Kronecker symbols. 

Using Eq. (6), we finally obtain the sought-for 
kinetic equation, 

apma; na _a_;_ 

~ 2} {V rna; ka.Yia'; ncxPk<:<'; Ia' [ 6 (Em + Ecx- Ek- Ea:) 
k, I, a' 

+ 13 (Ez + Ea:- E,.- Ea)]b"'mk+"'ln; o 

- V ma; ka'Vk<:<'; ta.Pla.;n<x6 (Em+ Ea- Ek- Ea•) 6"'ml; o 

-- Vkcx; la'Vta'; ncxPm"· k<X/3 (Ez + Ecx•- E,.- Ecx) 6.,k,.; o}. 
. (12) 

This equation connects matrix elements of p that 
are diagonal in the continuous index with matrix 
elements that also are diagonal in the continuous 
index. It is not difficult to see that the various 
average values belonging to the dynamic subsystem 
are determined by just such a matrix. In fact, since 
the continuous index labels the eigenvalues of the 
dissipative part of the system, the operator of a 
quantity A belonging to the dynamic subsystem 
can be represented by the matrix 

*The remaining terms in the right hand member have the form 
C).,,' and we shall discard them, 
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and the average value of this quantity equals 

A= Sp pA = ~ Pna'; maAma; na' = ~ Pnot; maAmn· 
n., m, ex.', a n, m, a. 

3. ACCOUNT OF EXTERNAL FORCES 

In the preceding section we considered a re
laxation process proceeding in the absence of an 
external field. In this case it is clear that the 
Hamiltonian function of the system is independent 
of time. The Hamiltonian of a system under the 
influence of an external perturbation is written 
in the form 

it = :feo + V + W (t), (13) 

where W ( t) is the interaction between the dynamic 
system and the external field in time-dependent 
form. We shall consider for what follows that the 
perturbation W is rather small. This means that 
w, the order of magnitude of the quantity W(t), 
satisfies the inequality 

(14) 

In this assumption, limiting ourselves to terms 
linear in w, we find 

~ 

p (t + T)-p (t) = - * ~ [W (t+ ,;'), p (t)] d-r:' + ~2P, (15) 

where t:..jl is given in the preceding section by 
Eq. (10). Here W(t) isanoperatorintheinterac
tion representation. We now consider the inter
action energy to be V + W. 

In order to go from the integral equation (15) 
to a differential equation it is necessary to assume 
that W and p contain only such frequencies w 
that satisfy the condition 

(!)'(~ 1, 

i.e., W and p should be gradual functions. 
In particular, this condition is fulfilled if the 

Schrodinger operator W ( t) depends on time in 
resonance fashion, i.e., 

W = W0 cosro1 t 

(16) 

and w1 ::::; w0, where w0 is one of the characteris
tic frequencies of the dynamic system. In this 
case, after transformation to the interaction rep
resentation, the matrix W will contain resonant 
terms with the low frequency w1 - w0 and high 
frequency terms with w1 + w0• However, it is not 
difficult to see that the contribution of these high 
frequency terms to the density matrix is much 
less than the contribution of the resonant slow 
terms. To the approximation that we neglect 

terms with frequency w 1 + w0 it can be consid
dered that even in this case the condition (16) is 
satisfied.* 

After these observations, we transform the in
tegral equation (15) into a differential one. As a 
result we obtain the following kinetic equation: 

8Pma·na. i" " -a-1-'- + r; [W (t), Pima;"" 

= : ~ {V ma; ka.VIa'; """ka'; Ia' [ 6 (Em+ Ea- Ek- Ea•) 
k, I, a' 

+ 6 (EI + Ea•- En- Ea)]t'!"'mk+"'ln; o 

- V ma; ka.Vka'; !aPia; na.t'! (Em+ Ea- Ek- Ea•) {)"'ml; o 

- Vka; la.VIa'; naPmo:; krx.{) (EI + Ea.'- En- Ea.) {)"'kn; o}. 
(17) 

4. SOME PARTICULAR CASES 

We shall now consider some particular cases 
of the general equation (17). First of all, we shall 
consider the case when m = n in the left member 
of Eq. (17) and there is no external field: 

X ~ V ma; ka.'VIrx.'; ma.Pka.'; Ia.'{) (Em+ Ea.- Ek- Ea•) 6w1k; 0 

k, I, a.' 

- : ~ V mrx.; krx.,V ka.', lrx.P Ia.; mrx. 
k, I, a.' 

(18) 

As can be seen in Eq. (18), in general the matrix 
p, which is diagonal in all indices, is connected 
with nondiagonal matrix elements of V. This 
means that in the case considered the transport 
Eq. (1) is not obtained. 

Let us now consider the case in which the en
ergy levels of the dynamic subsystem Em are 
nondegenerate. Then it is easy to find from Eq. 
(18): 

aPma; mrx. 2n "'V I v 2 (E E E E ) -a-1-=----,;: ..:::J mrx.;krx.'l Pka';ka:6 m+ a- k- a.' 
ka' 

- 2: Pmrx.; mrx. ~ J V mrx.; Ia' [2 6(Em + Ea- E1- Ea•). (19) 
Ia.' 

This equation agrees with the transport equation, 
since the coefficients of Eq. (19) 

*It should be kept in mind that in the condition (16) we can
not choose r as small as we desire, since condition (5) must be 
satisfied at the same time. 
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2: IVmct;ka.'I 2 6(Em+Ea.-En-Ea.') 

are the transition probabilities per unit time from 
state rna to state ka'. The presence of the o
function, as usual, guarantees that energy will be 
conserved in these transitions. 

The equations derived by Van Hove [S] are ob
tained from Eq. (19) if the index m is eliminated, 
i.e., for the case of relaxation of only the dissipa
tive system. Equations (17) become the equations 
of Bloch and Wangsness [a] if the following assump
tion about the form of the density matrix is made: 

Pma.; na. = GmnP (<X), (20) 

which implies a quasi-independence of the motions 
of the dissipative and dynamic subsystems. In par
ticular, Bloch and Wangsness assumed that 

p (<X) = e-E(a.)!kT j ~ e-E(a.)!kT. (21) 
a. 

This assumption means that the dissipative system 
is at all times in a state of thermodynamic equilib
rium at a temperature T. To what extent such an 
assumption is justifiable can be in principle de
cided by an analysis of the general equation (17). 

In the works by Landau and Bloch quoted in the 
introductionC3•5J it was considered that the dissi
pative system (specifically, the radiation field in 
free space) exists in a vacuum at all times. The 
equations of Landau and Bloch [3, 5] are easily ob
tained from Eq. (17) if one sets T = 0 [and W(t) 
= 0] in Eqs. (20) and (21). In particular, we find 
for the diagonal elements of the density matrix 
from Eq. (19) 

a~mm 2:n: 'V "' 12 
- 0-1- = T LJ LJ IV rna.; ko Gkk6 (Em- Ek + Ea.) 

k>m a. 

- 2: Gmm ~ ~IV mo; Ia.' 12 6 (Em- Ez- Ea.•J. (22) 
l<m a' 

Here the index 0 means vacuum, and it is assumed 
that the larger indices correspond to greater en
ergy. Equation (22) can be rewritten in the more 
customary way: 

~ WmkGkk- ~ WkmGmm, (23) 
k>m k<m 

where 

Wmk = 2: ~IV rna.; ko j2 6 (Em- Ek + Ea.) 
a. 

is the probability per unit time of a transition from 
state k to state m. 

5. CONCLUSION 

One of the important problems of quantum radio 
physics is the problem of the interaction of a dy-

namic system with a given external field in the 
presence of simultaneous relaxation processes. 
In general, this problem is resolved by an appli
cation of the equations derived in the present 
paper (and in the papers cited above). The prob
lem is greatly simplified if the dissipative system 
can be considered to be in a state of equilibrium 
at all times. In particular, if the dynamic system 
is represented by a spin and the dissipative system 
by a lattice that is assumed to be in thermodynamic 
equilibrium, then we have the case of spin-lattice 
relaxation. In the case of processes of the spin
lattice relaxation type the density matrix umn of 
an individual spin is connected by the kinetic equa
tions to the density matrix of the very same spin. 
And, in the general case the density matrix depends 
also on the variables of the dissipative system. 
Thus, for example, in the case of spin-spin relaxa
tion the spin system can be considered to be the 
dissipative system, and an individual spin the dy
namic system. However in this case it is already 
impossible to consider that the dissipative system 
is in a state of equilibrium. Hence, it follows that 
in the spin-spin relaxation case it is impossible to 
use simple equations of the Bloch type [16] 

dM • Mx . My Mz- M~ 
lit= r [MHJ-, r;:- 1 r;-- k --r-1 - , (24)* 

which are obtained from Eq. (17) in the case of 
spin-lattice relaxation. t When we speak of spin
lattice and spin-spin relaxation, we certainly do 
not have in mind the relaxation only of spin sys
tems. The relaxation of an arbitrary system can 
be divided into two relaxations of this kind. For 
example, spontaneous radiation in free space has 
a spin-lattice character. Everything which has 
been said here about the relaxation of a spin sys
tem pertains, in particular, to the relaxation of 
energetic spins. [17] 

We make the following further observations: If 
the external alternating field has a coherent char
acter, as is usually the case in the radio-frequency 
region, then the calculation of this field is possible 
only in the framework of the completely quantum
mechanical formalism, e.g., as was done in Sec. 3. 
It will be invalid to regard the external field in the 
transport equations as the source of the probability 
of an induced transition. The calculation of the ex-

*[MH] = M X H. 
tVery frequently, these equations are used to calculate 

spin-spin relaxation, and thereby T 2 is called the spin-spin 
relaxation time. In solving such equations we obtain order-of
magnitude results (if the true value ofT 2, the characteristic 
spin•spin relaxation time, is found). But, of course we cannot 
consider this an accurate quantitative and qualitative descrip
tion of the behavior of the system. 
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ternal field in the framework of the transport equa
tion leads, generally speaking, to invalid qualitative 
and quantitative results. 

Note added in proof (March 5, 1962). The calculation of 
the external field can be carried through without any assump
tion about the smallness of W(t) (see [14]). The equation ob
tained in this way has the form 

op -- _!___ ~ ei(<"r+w,)l 
at - n" LJ 

r ,s 

X [ y<r) [ ( ~ e -ift' V (s) e -iw, I' ed't' dt') , p J] , 
0 

where by p is understood that part of the density matrix that 
is diagonal in the'continuous indices, and V(r) and Ws are 
defined by the equalities 

S V :s-l = ~V(r)/"'rl, 
r 

;.. i A .... 

S = 1i: SE(t) 

[ E(t) is the Hamiltonian operator of the dynamic ·subsystem, 
and 1rF is the Hamiltonian operator of the dissipative sub
system]. This equation also differs from Eq. (12) in that: 
(1) smallness of 1r/82 E is not assumed and (2) that part of 
the function Cf1or that corresponds to a shift in the energy 
levels is regarded as imaginary. 
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