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The nature of cyclotron and aperiodic instabilities in a relativistic plasma is investigated. 
It is shown that the stability of a relativistic plasma against cyclotron resonance and a peri­
odic instability is greater than that of a nonrelativistic plasma. 

THE problem of the behavior and stability of a 
nonrelativistic plasma with an anisotropic velocity 
distribution has been studied in a number of re­
searches (see for example, [i-a]). Such features 
of the relativistic plasma as the increase of the 
radiation in a magnetic field, the dependence of 
the mass of the particles on the velocity, the sharp 
break in the "tail" of the velocity distribution 
(v ~ c), permit us to expect definite changes in 
the behavior of the plasma. For example, the cy­
clotron instability [2] depends on the shape of the 
"tail" of the distribution function. Some proper­
ties of the relativistic plasmas are considered 
below in the kinetic approximation for the case 
of anisotropy in the velocity distribution. 

1. CYCLOTRON INSTABILITY OF A RELATIV­
ISTIC PLASMA 

Let us consider the problem of the cyclotron 
instability of a plasma with relativistic electrons 
in a constant magnetic field H0• We are interested 
in processes with characteristic frequencies 

(1) 

where rn is the scattering time for collisions. In 
the scattering of relativistic electrons on nonrela­
tivistic particles, it is easy to get 

(2) 

from the results of Belyaev and Budker. [4] Here, 
e, m, v are the charge, mass, and velocity of the 
electrons; e', n' are the charge and density of the 
nonrelativistic particles; L is the Coulomb loga­
rithm; y= (1-v2jc2)-1/2. 

We also note that systematic account of the 
bremsstrahlung would lead to the problem of the 
stability of the nonstationary states (here, in 
particular, it would be impossible to look for a 
correction to the distribution function with a time 

dependence merely of the form eiWT). However, 
as will be seen from what follows, in cases of 
practical interest the cyclotron instability arises 
at frequencies for which 

Re W > 1/T rad, (3) 

where the bremsstrahlung time Trad for y 2 » 1 
is equal to 

(4) 

The inequality (3) allows us to investigate the con­
ditions for the appearance of the instability without 
account of the radiation. The nature of the devel­
opment of the instability will depend here on the 
relation between Trad and 1/Irn w. 

The relativistic kinetic equation for the electron 
distribution function f (t, r, p ), under the assump­
tions (1) and (3), has the form 

at at { e } at at+ var + eE +-c!v(H0 +H)] ap = 0. (5)* 

Here E and H are the fields of the excitation 
wave, equal to 

(5') 

We seek a solution of Eq. (5) in the form f = f0 
+ f1, where f1 is a small correction, and t 

fo = fo (~, (uaHoaY) 

is the solution of 

(6) 

(6') 

Taking into account the relativistic invariance of 
the distribution function, [4] it is not difficult to 
write f0 in an arbitrary system of units: 

fo = fo (U,u,, (EtktmUtUkFtm)~). 

*[v(H0 +H)]-+ v X (H0 +H). 

tGreek indices run over three values, Latin ones over four. 
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Here ui and Ui are the 4-velocities of the particle 
and of the average motion (Ua = 0 in the system 
of units considered), respectively, Fzm is the 
electromagnetic field tensor that is associated 
with H0; Eiklm is an antisymmetric unit tensor 
of fourth rank. 

By calculations similar to those of Trubnikov, [S] 

it is easy to obtain a generalization of the expres­
sion for the dielectric permittivity tensor E a{3 in 
a relativistic plasma with an arbitrary momentum 
distribution of the form (6). For a wave with fre­
quency w propagated along H0 (k II H0 ), we have 

(1)2 \ 1 
Exx = 1 + 2~ .)dp·p}_ ~ (- i:rtb+ +wF2), 

n=1, -1 

iw2 
\' ( 1 ) 

l!xy = - Eyx = - -2; .) dp. p3_ ~ n - i:rtF A --+--- w F 2 • 

n=1, -1 

2iw~ ~ ato 
Ezz = 1--- dp·p2 -6 (I (w -kvu)) 

w II ap~l -1 , 

Eyy = Exx, Exz = Ezx = Eyz = Ezy = 0. 

Here 

Q=/eH01mc/, 

n0 is the electron density. 
In the nonrelativistic limit, the components for 

Eaf3 coincide with the corresponding expressions 
from the work of Sagdeev and Shafranov, [2] with 
k II H0• The dispersion equation for the extraordi­
nary wave ( n = 1 ) has the form 

(~Y = 1 + :~ ~dP·Pi{- i:rtb+t(w -kvn> 1- QJ 

x [ ar; + wn (at; _ at;)] + ~- (at; _ at;)}. ap II r ap j_ ap II ap j_ ap II (7) 

If 

then, as is well known, [2] the cyclotron instability 
is connected with the build-up of the extraordinary 
wave. 

It is convenient to choose for f0, the function 

fo =A exp {-a (V1 + (plmc)2 

(8) 

which satisfies (6'). Here A is a normalizing fac­
tor, a and a 1 are the parameters of the distribu­
tion. In the nonrelativistic limit, (8) transforms to 
a Maxwell distribution with two temperatures 
(Tl,TII). 

For weak anisotropy ( aiu~ I a 2 « 1 ) we have 
from (8) 

A = G [ 1 + 1 ( G1 ) 2 Ka (G)] 
4n: (mc)3 K. (G) 2 --::;- K2 (u) ' 

( Gl ) 2 - K. (G) l:!.P a - Ka(G)P' 

(9) 

(10) 

where Kl-' (a) is the MacDonald function of index ~-'• 

P = P1 ~ Pu, ~P = P1-P11 > o (Pu is the pres­
sure along H0, P 1 is the pressure in the direction 
perpendicular to H0 ). 

Substitution of (8) in (7) and a somewhat involved 
but simple integration lead, for vYfc .<: 1, to the 
following expressions for the real and imaginary 
parts of the square of the index of refraction, N2: 

Re N2 = 1 + w~/wQ, (11) 

w2Q ( )a 
Im N2 = -2:rt2 - 0 -A ~ 

w (kc)2 c 

[ (c1 /G)2 Q I J 
X V 1 + (xcr1 I c)2 w --

(12) 

where K = n/kc. To derive (11) and (12), we used 
the inequalities 

We now consider perturbations of the type 
ei(k·r-wt); therefore, the instability arises if the 
expression for Im N2 becomes negative. 

By making use of (9), (10), and (12), we easily 
get, for weak anisotropy, the minimum build-up 
time and the condition of instability for ultrarela­
tivistic electrons (ay ~ 1, a« 1). Thus, for 
(Katfa) 2 « 1, the growth time is equal to 

-•;, Wo (f:!.p)-'1' { Q (- f:!.p)-•:,} 
'Tgr ~ r Q• p exp w;; r p (13) 

and the instability arises for the frequencies 

w < crQ/1P/P. (14) 

Similarly, for the case (Ka1/a) 2 » 1, 

'Tgr ~ r'i, Q-1 (l:!.:r•;, exp { ~; (rl:!.:r·l' (15) 

w~ l:!.P 
w<o----n----p· (16) 

Inasmuch as in the nonrelativistic case the bound­
ary of the instabilityC2J is determined by the in­
equality w < n~P/P, the region of instability con­
tracts in the ultrarelativistic case, in accord with 
(14) and (16), in proportion to a, and the boundary 
of the instability is displaced in the direction of 
the long waves. The latter circumstance can lead 
to increase in stability of a relativistic plasma of 
restricted dimensions. 
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We note that, for example, for (Ka1/a) 2 » 1, 
condition (3) for frequencies with minimum value 
of the time of the build-up takes the form 

_o_r- I+- r--- ~I H - 3 [ [22 (- t..P)-'1'] 
erono w~ P 

and is satisfied in a sufficiently wide range (r0 is 
the classical radius of the electron). 

The presence of an exponential factor in ex­
pressions (13) and (15) leads to a strong change 
in the relation between Tgr and Trad· Thus, for 

n~ I012 cm-3 , H 0 - 104 Oe, 

r ~ w, !l.PIP ~ I0-2 

we get from (15) and (16), 

't'gr ~ 104 sec, 't'rad ~ 1 sec, f..~ ]lk > 100 em, 

and for n,..... 1013 em -a and the previous values of 
the other parameters, Tgr ,..... 10-6 sec, Trad ,..... 1 
sec. Strictly speaking, Eqs. (13) and (15) are valid 
for Trad » Tgr· 

Let us make some remarks on the effect of ra­
diation on the stability of a nonrelativistic two-tern­
perature Maxwell distribution, where the physical 
picture is more illustrative. Setting the radiation 
force equal to 

and choosing the initial distribution in the form 

ft=o (v .l, v 11 ) = n0 (2nmT .l)-1 (2nmT 11 )-'I, exp {- mv3_12T .l 

- 'mvV2T 11 }, 

we obtain a solution of the kinetic equation with 
account of radiation for the transparent plasma 

f (t, VJ., vn) = n0 (2nmTJ.)-1 (2nmT 11 )-'1' 

{ 
mv2 mv2 } 

X exp Kt --11 _ _.loeKt . 
2T II 2T .l 

Here 
4 e4H2 

K = ---0 = 2(-rlnonrel) 
3 m3cf> rad 

(17) 

(18) 

and nonrelativistic radiation time ri!~arel is intro­
duced. We obtain the change in the anisotropy with 
time, as seen from (17), by introducing the new 
temperature 

(19) 

Any existing initial anisotropy T1 > T11 vanishes 
in accord with (17) and (19), after a time 

't' = -} 't'~~~nr-'!1l In (T .l / T 11 ) . 

For t > T an anisotropy of opposite sign appears, 
which, however, does not lead to cyclotron insta­
bility. [2] 

We now consider the problem of cyclotron in­
stability for frequencies 

]IRe w <min {'t', 't'~~~nrel)}. 

Then it is possible to fix the distribution function 
at a certain instant of time 

and solve the problem of the instability for the ini­
tial distribution f ( t 0 ), taking t 0 as the parameter. 
An expression was obtained by Sagdeev and Shafra­
nov [2] for the maximum increment in the build-up 
of the waves: 

' 'I ' 'I Vit ( T .l - T II) 'T .l (2T II) ' Im w = - w0 , - -. 
4 T.l T 11 me 

x exp {- _!!L T~ } • 
8nnoT II T~ - T II (20) 

With account of (19), Eq. (20) shows the time vari­
ation of the increment; the latter is decreased by 
the presence of the radiation. It is not difficult to 
see that the region of instability obtained in [2] is 
lessened, and the boundary of the instability is 
shifted in the direction of longer waves. It must 
be noted that if Im w « 1/r, then the instability 
is generally unable to develop. Inasmuch as the 
blocking of the radiation in the plasma falls off 
with increase in temperature, [6] the discussions 
given above are qualitatively applicable only for 
sufficiently hot nonrelativistic electrons. 

2. INSTABILITY IN THE ABSENCE OF EXTER­
NAL FIELDS 

As seen from (7), the cyclotron instability van­
ishes when H0 = 0. It will be shown below, how­
ever, that an instability of the aperiodic type ex­
ists in the absence of external fields in a plasma 
with anisotropic velocity distribution. 

The initial linearized set of equations has the 
form 

~ + v iJ{l + {eE + _!_ [vHJ} .iJfo = 0 at ar c ap ' 

4ne \ 1 iJE 1 iJH (21)* 
rot H = c j vf 1 dp + c ar , rot E = -car , 
where f0 is the initial distribution in the form (8), 
f1 is a small correction to f0 due to the perturba­
tion fields E and H, taken, as usual, in the form 
(5'). Choosing the z axis along k, the x axis 
along E, and substituting (5') in (21), we get an 
expression for the correction f1: 

(22) 

and finally the following dispersion equation 

*rot = curl. 
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'!!:_- k2 = w~ (' Pxdp f(.!'!_ m- __!_ ) _!_&_ 
c• c jpz-mrw I k L kc rc Pz apx 

+ ~_!_&_]. (23) 
rc apz 

We shall be interested in the solution with small 
Re w. In this case we find the boundary of the re­
gion of instability by setting w = 0 in (23). For 
the boundary value k = k0, we have 

(24) 

As is seen from (24), an instability of the type con­
sidered ( ka > 0) is possible for an anisotropic 
function. Carrying out the integration in (24) for 
weak anisotropy, we get 

(25) 

Making use of (10), we convert (25) to the form 

k~ = w~c-2 (f:.T/T), 

~ = GW~!:-2 ( f:.P I P), 

a~ 1, 

a< I. 
(26a) 

(26b) 

Let us establish the values of k for which the in­
stability arises upon transition through the bound­
ary k0• For this purpose, we solve Eq. (23) close 
to I w 1/kc « 1. Limiting ourselves to the ultra­
relativistic case and to a weak anisotropy, we get 
from (23) 

+1 

X ~ d~ ( 1 - ~2) [: + ~pmc ( cr~c-n ~ -~I kc (27) 
-1 

[Inasmuch as growing solutions are of interest to 
us, the contour of the integration in (23) is taken 
over the real axis ] . Finally, we get 

w . 4 c2 k2 -k~ 
-= -t------- (28) 
kc ll w~ cr + 3 (crd cr)2 • 

It is then evident that growing solutions are ob­
tained for k < k0• Inasmuch as the problem has 
been considered for an unbounded plasma, one can 

confirm that an instability arises if the character­
istic dimensions d » 1/k0• From (26b), we see 
that in the ultrarelativistic case the region of in­
stability is decreased in proportion to fa and the 
boundary of the instability is shifted, as in the case 
of cyclotron instability, to the region of long waves. 

Taking it into account that the minimum build-up 
time of the aperiodic instability is 

'ta ~ w;I"y'1'(f:.PjP)-'1', 

we have for the ratio of times 

'tn/'ta ~ r'1' (f:.P I P/1'/ r'ri' VIi L, 

(29) 

(30) 

where n' ::::; n0• Equation (30) shows that the neglect 
of collisions in the investigation of a given instabil­
ity is valid in all cases of practical interest. 

As is easy to see from (22) and (8), the mean 
perturbation current arising in the magnetic field 
as a result of the velocity anisotropy is directed 
against the electric field, which also leads to in­
crease in the perturbation for k < k0• 

The authors express their gratitude to G. I. 
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