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The current in a semiconductor located in crossed electric and magnetic fields is investi
gated theoretically. The energy the electrons receive from the electric field upon scattering 
is greater than that they can impart to the lattice. This leads to an increase in the tempera
ture of the electron gas. It is shown that the electrons have a Boltzmann distribution but with 
an effective temperature proportional to the square of the electric field. The dependence of 
the semiconductor resistance on the magnetic field strength and on the electric current is 
derived. In the limiting quantum case, when all electrons are on the lower Landau level, the 
resistance decreases as the cube of the current. 

As shown earlier by Davydov, [t] deviations from 
Ohm's law can be observed in semiconductors even 
for comparatively weak electric fields E. This ef
fect is associated with the fact that the electrons 
very slowly lose the energy acquired from the elec
tric field. Collisions of the electron with impuri
ties are elastic, while, in the emission of a phonon, 
the electron gives up only an insignificant (of the 
order of s/v) amount of its energy ( s is the ve
locity of sound in the crystal, v is the velocity of 
the electron). Therefore, the energy eEl acquired 
by the electron in the mean free path l can be shown 
to be larger than the energy given up to the lattice in 
the same time. 

As a consequence of this, the electron distribu
tion function F(p) undergoes significant changes. 
Its part f(p) that is nonsymmetric in the quasi
momentum of the electron p remains much 
smaller than the symmetric part F0 just as in 
the case of a weak electric field. This is con
nected with the rapid relaxation in the momentum: 
in the collision the momentum of the electron 
changes by an amount of its own order of magni
tude. However, in contrast with the linear approx
imation in E, the function F0 becomes essentially 
nonequilibrium, since the electron gas is heated 
and the mean kinetic energy of the electrons is 
changed. This heating takes place up to the tern
perature at which the energy of the radiated pho
nons becomes equal to the energy acquired by the 
electrons from the electric field. The symmetric 
part of the distribution function F 0 is determined 
from the condition of conservation of the number 
of electrons with a given kinetic energy. The F0 

found from this condition depends on E, which 
also determines the nonlinear effect. 

The present research is devoted to the study of 
the current which flows through a semiconductor 
located in strong crossed electric and magnetic 
fields. Here we consider both the classical case 
tm « T and the limiting quantum case nrl » T, 
where Q = eH/mc, H is the magnetic field in
tensity, m is the effective mass of the conduction 
electron, c is the velocity of light, and T is the 
temperature in energy units. 

The considerations given above relative to the 
nature of the nonlinearity of the current as a func
tion of the electric field remain in force also for 
the case of crossed fields, except that the mean 
free path of the electron l is replaced by its 
Larmor radius R. The latter is connected with 
the fact that, as the result of the collision, the 
electron in this case is displaced by a distance 
of the order of R in the direction of the electric 
field. Moreover, the degree of heating of the elec
tron gas will depend on the value not only of the 
electric, but also of the magnetic field. 

1. In classical theory, the condition for finding 
F0 can be obtained by averaging the kinetic equa
tion over the states with a given energy E. The 
kinetic energy has the form* 

(1) 
where 

F (p) = Fo (ep) + f (p), f (- p) = - f (p); 

/p (F) = 2j {F (p) Wpp' - F (p') Wp•p} 
p' 

is the collision integral, Wpp' is the transition 
probability of the electron per unit time from the 

*[vH] = v x H. 
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state with momentum p to the state with momen
tum p'; v = p/m; Ep = po/2m. 

Equation (1) can be rewritten in the form 

eEv ~Fo + eE~- Q ~f + /p (F0) + /p (f)= 0, (2) 
vBP up u<p 

aw (e) 2n: ~ I 2 ( 
- 0-e- = T ~ Cq I 6p'+q. p 6 ep - ep• -1iroq) 

pp'q 

X [6 (ep' -e) - 6 (ep - e)l {(Nq + I) F 0 (ep) 

- Nq F0 (ep·)}. (5) 

where H is directed along the 
polar angle in the PxPy plane; 
tion of cp with period 21r. 

z axis and cp is the Expanding Eq. (5) in powers of the small param-
f is aperiodic func- eter tiwq/E ~ s/v, we get 8w(E)/8E == 8Q(E)/8E, 

where 

We average Eq. (2) over the states with energy 
E. For this purpose, we multiply (2) by 6( Ep- E) 
and sum over p. The equation thus obtained for 
F0 is fully equivalent to the equation of Davydov, [l] 

but is more descriptive. In the summation, the 
first and fifth terms on the left side of (2) vanish 
because of odd parity, while the third vanishes be
cause of the periodicity of f in cp. As a result, 
we get 

eE~:f 6 (ep- e) 
p p 

= ~ F0 (ep) Wpp' [6 (ep• -e) -6 (ep -e)], (3) 
pp' 

where we have relabelled the summation indices 
p and p' in the first term on the right side of (3). 
It is evident that only the inelastic scattering of 
the electrons gives a contribution to the right side 
of (3) when Ep' "" Ep. Integrating the left side of 
Eq. (3) by parts, and keeping in mind the relation 

a a ap 6 (ep -e) = - Fe v6 (ep -e), 

we put it in the form aw( E )/8E, where 

w(e) = ~eEvf(p)6(ep-e) 
p 

is the power absorbed by electrons with energy E 
from the electric field. 

Let us first consider the case in which the scat
tering of the electrons is brought about by their in
teraction with acoustic phonons. Then, in the Born 
approximation, 

w~~)= 2: ~I Cq [2 {(Nq + I) 6p'+q, p 6 (ep- ep• -1iroq) 
q 

+ Nq 6p', P+q 6 (ep + 1iroq - ep•)}. (4) 

Here Nq is the phonon distribution function; I Cq 12 

for longitudinal acoustic phonons has the form 

I Cq 12 = 01iq2/2proqV0 , 

where C is the constant of the deformation poten
tial, p is the density of the crystal, V0 is its vol
ume, wq == sq is the frequency of a phonon with 
wave vector q. 

We substitute expression (4) in (3), and in the 
term corresponding to phonon absorption we re
label the summation indices p and p'. As a result 
(3) takes on the form 

Q (e)= 2n ~ roq 1Cql26q'+q. P 6 (ep- ep•) 6 (ep -e) 
pp'q 

X { 1 + 1iroqNq a:p }Po (ep) (6) 

is the power radiated by electrons with energy E 
in the form of phonons. Taking it into account that 
in the stationary state all the energy received by 
the electrons from the electric field is radiated 
in the form of phonons, we get the relation 

w (e) = Q (e), (7) 

which represents the differential energy balance. 
2. From the equation for the density matrix, we 

can also derive Eq. (7) from quantum theory. The 
difference is that for this equation to be satisfied 
in the quantum limit tin » ( E- tirl/2) the small 
quantity must be 

s V m1iQ I (e -1iQj 2), 

and not s/v as in the classical case tm « E. This 
is connected with the fact that the phonons inter
acting with the electrons have in this case a mo
mentum of the order of the transverse momentum 
of the electron -../ mtin . Moreover, one can expect 
that the current created by electrons with the given 
energy and the power radiated by them are ex
pressed in terms of the symmetric part of the 
electron distribution function F 0 just as in the 
theory that is linear in E. This is a consequence 
of the fact that the work done by the electric field 
over a distance equal to the Larmor radius R is 
small in comparison with the characteristic en
ergy of the electrons E, so that the effect of the 
electric field on the state of the electron can be 
neglected in the absence of scattering. 

Let us expand the condition (7) in the quantum 
case. For simplicity, we limit ourselves to con
sideration of the isotropic quadratic spectrum of 
conduction electrons and do not consider their 
spin. The states of the electron in a magnetic 
field are characterized by the magnetic quantum 
number n, the projection of the quasimomentum 
in the direction of the magnetic field tipz, and the 
coordinate of the center of rotation X, while the 
energy eigenvalues have the form 

e<X = 1iQ (n + 1/2) + 1i2p;!2m, 
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where a denotes the choice of the quantum num
bers n, Pz, and X. 

We have already noted that jx( E), the current 
of electrons with energy E in the direction of E 
(x axis), is expressed in terms of F0 in the same 
fashion as in the linear theory by means of the 
equilibrium distribution function. Therefore, in 
accord with Titeica, [2] we have in the case of a 
strong magnetic field, nT » 1 ( T is the relaxa
tion time of the electrons ) 

where W a{3 is the probability per unit time of an 
electron transition from state a to state {3. In 
the case of phonon scattering, wW~) is obtained 
by replacement of p and p' in Eq. (4) by the states 
a and {3. Here Op' ,p+q must be replaced by the 
square of the modulus of the matrix element of 
eiq•r between the wave functions of the electron 
a and {3: 

I(~ Jeiqr /a) 12 = {jp~, P2 +q 2 6x•, XHy/Y [Q~n'-n) (q3._j2y)] 2, 

(9) 

Lhm) ( u) is the associated Laguerre polynomial, 
normalized to unity; qi = qi + q~; y = eH/lic is the 
square of the inverse of the "magnetic length." 

The phonon distribution function Nq, generally 
speaking, is not an equilibrium one. However, if 
the relaxation time of the phonons is smaller than 
the mean time between two successive acts of ra
diation of phonons by electrons, then it can be as
sumed that 

It follows from Eq. (9) that the momenta of the pho
nons interacting with the electrons are equal in 
order of magnitude to the momentum of the elec
tron. In the quantum case E -lin/2 « lin, the 
longitudinal momentum of the electron is much 
less than the transverse one, so that the momenta 
of the radiated phonons lie principally in the xy 
plane. Therefore the maximum energy of the pho
nons emitted or absorbed by electrons with energy 
E is equal in order of magnitude to s ,j mE in the 
classical case and s ,j mlin in the limiting quan
tum case. Assuming that in both cases this energy 
is small in comparison with T, we get 

Nq = T!nwq. 

The power absorbed by electrons with energy E 
from the electric field is w (E) = Ejx (E); therefore, 
Eq. (7) for F0( E) can be written in the form 

(10) 
q q 

where 

f.t (q, e) = ~Wq I (~leiqr I a) 12 o (e"- e) o (e~- e), 
"~ 

while in Eqs. (8) for jx( E) we neglected the in
elasticity. In the classical case lin« E, the quan
tity ry( E) is equal to lfa, while in the limiting quan
tum case it is %. This corresponds to the fact that 
in the first case the phonons are emitted uniformly 
in all three directions, while in the second they are 
emitted principally in the plane perpendicular to 
the magnetic field. 

Thus, in both limiting cases F 0( E) has the form 
of a Boltzmann distribution with effective tempera
ture Teff: 

F0 (e) = z-1 exp (- e!Teff), Z = ~ exp (- e,_!Teff). (11) 

Tetf = T {1 + 'I'J (cE!sH) 2}. (12) 

It follows from (12) that the heating of the electron 
gas and the nonlinearity associated with it becomes 
important for 

cE!sH > 1. (13) 

This condition has a rather simple physical mean
ing. Let the electron pass from state a to state {3 
with emission of the phonon q and acquire thereby 
from the electric field an energy 

eE (X!l- Xa) = eEq11/y = ncq11EIH. (14) 

The condition that this energy exceed the energy of 
the emitted phonon liwq is identical with (13). 

As the magnetic field H decreases and the Lar
mor radius R becomes larger than the electron 
free path Z, one must replace R by l in the pa
rameter cE/sH ~ cER/liwq which determines the 
heating of the electron gas. In this case, Eq. (10) 
transforms into the equation of Davydov [l] for a 
weak magnetic field, and F0( E) ceases to be a 
Boltzmann function. 

3. In the case in which the scattering of the 
electrons is principally determined by the inter
action with impurities, the transition probability 
W a{3 in Eq. (8) contains a component W~h which 
is due to scattering on impurities. It is not diffi
cult to show that Eq. (10) for F0( E) takes the form 

F0 (e)+ T { 1 +'I'] (e) (f~Y [1 + V; (e)/vph (e)l} 0Je" = 0 
(15) 

in this case, where ~'ph ( E ) and Vi (E) are the col-
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lision frequencies of electrons with energy E with 
phonons and impurities, respectively. In the case 
of neutral impurities, the ratio vi I Vph• both in 
the classical and quantum limits, does not depend 
on the energy E and the value of H. If the impuri
ties are ionized, then, in the Born approximation, 

e ~ n~2. 

(e -nQ/2) < nQ. 

Thus, in the quantum limit, for all scattering 
mechanisms considered, the distribution function 
is shown to be Boltzmann but with an effective 
temperature proportional to the square of the 
electric field. 

4. Now it is not difficult to find the dependence 
of the transverse current density jx on the elec
tric and magnetic fields. As was noted above, to 
obtain jx it suffices to replace the equilibrium 
distribution function in the linear approximation 
formula by the nonequilibrium but symmetric F0• 

Inasmuch as the latter differs from the Boltzmann 
distribution by the replacement of the temperature 
T with the effective temperature Teff, to calcu
late the current produced by the scattering of 
electrons on the impurities it is necessary to put 
T eff in place of T in the linear approximation 
formula for ji_0>. In the case of the scattering of 
electrons on phonons, it is necessary in the for
mula for ji0> to put T eff in place of all factors T 
except the one which arises from the phonon dis
tribution function. The dependence of the trans
verse current ji_0> on the electron temperature is 
different in the quantum and classical limits. For 
scattering of electrons on acoustic phonons or on 
neutral impurities, [3) we have in the case of a 
constant concentration of the conduction electrons, 
ne = const, 

j~O)- ET'I, (n,Q)-2 

(16) 

Substituting Teff for T in (16), we obtain the de
pendence of jx on E and H: 

. e'n,E 2T k-", [ cE \2 ]k 
lx = mQ'-r (nn) I+ 'I') (sH) (I+ vtfvph) , (17) 

where k = Y2 for tm « T eff and k = -% for 
:IH2 » Teff· It follows from this expression that 
for Teff » T 

jx- £2fH8 
jx- HBf£2 

liQ < Teff, 
liQ ~ Teff• 

(18) 
(19) 

We note that the dependence of jx on E and H is 
determined by Eq. (18) even in the case tm » T, 
if the condition tm « T eff is fulfilled. 

The Hall current jy has the form 

jy = cen,E/ H. (20) 

We note that Eqs. (17) and (20) for h and jy are 
valid only for jx « jy-

In the experiment, the resistivity of the crystal 
Pik is determined by the relation 

(21) 

In the case jx « jy the angle between the vectors 
j and E is close to rr/2 and Pxy = pi_V = H/cene. 
By using Eqs. (17) and (20), it is not difficult to 
show that in the case under considerations, 

[ ( · )2 -lk (2T k-'f, 
Pxx (j) = o01 1 + 'I') s:ne (1 + v;/Vph) /iQ) 

where a0 is the conductivity of the crystal for 
H = 0 and E- 0. 

(22) 

The dependence of Pxx on the current density 
j for ne = const is shown in the drawing. Curve 1 

Pzz 

.1 

,....._ _____ -r 

corresponds to the classical limit tm « T, while 
curves 2 and 3 correspond to the quantum case 
tm » T. In the region of small j, Ohm's law is 
valid, and Pxx does not depend on j. In the clas
sical case, p~ does not depend on the magnetic 
field and in the limiting quantum case it is propor
tional to H2 (curve 3 corresponds to a larger value 
of the magnetic field than curve 2 ) . With increase 
in j the second component in the square brackets 
in (22) is increased. Curve 1, which corresponds 
to k = %, deviates in the direction of large values 
of Pxx and for T eff » T, the value Pxx ~ j. 
Curves 2 and 3 in the region T « Teff « tm 
(k = -%> deviate from a straight line in the direc
tion of lower values of Pxx. and coalesce into 
curve 1 in the region of tm « Teff, (k = Y2>· 

Such is the dependence of Pxx on j for scatter
ing of electrons on phonons and neutral impurities. 
If the scattering is determined chiefly by the in
teraction with ionized impurities, then the depend
ence of Pxx on j and H is different. However, in 
the region T « T eff « tm, the dependence of the 
resistance Pxx on the current remains as before: 
Pxx"' j-3• 

5. Everything pointed out above refers to the 
case of a constant concentration of conduction 
electrons. This case can be realized, for example, 
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in InSb. In this semiconductor, all the impurities 
are ionized and ne = const even at low tempera
tures. At the same time, the quantum limit in InSb 
can be achieved at a comparatively high tempera
ture thanks to the small effective mass. 

In certain cases, the dependence of ne on the 
electric and magnetic fields can easily be estab
lished. Impurity semiconductors can serve as an 
example in those cases in which impact ionization 
of the atoms of the impurity and the reverse proc
ess-triple impact-predominate over multiphonon 
ionization and recombination. Under these condi
tions, the electrons of the impurity atoms and the 
conduction electrons are in statistical equilibrium 
and the concentration of conduction electrons is 
determined by the usual formula, in which we have 
Teff in place of Vi· 

ne = (naZ)'1• exp (- Vtf2Teft). Tetf ~ V;. (23) 

6. We now estimate to what degree the angle 8 
between the directions of the electric and magnetic 
fields can depart from a right angle, without chang
ing the results obtained in the research. 

Let H II Oz; Ex= E sin J.; Ey = 0; Ez = E cos 8, 
whence tan 8 » 1. In the case when 

(24) 

heating of the electron gas, which is connected with 
the longitudinal current jz, is not important and 
this current can be computed in linear approxima
tion. The effect of Ex on the effective temperature 

of the electrons can be taken into account as above. 
In the classical case tm « T eff, in scattering 

of electrons on phonons or neutral impurities, 

where T' is the relaxation time of the electrons for 
E = H = 0. 

Substituting (25) in (24) and setting J. = 1r/2 
- t.J., we put the condition (24) in the form 

( L'l\))2 ~ TettiT ( Q-r)2 • (26) 

It can be shown that in the quantum limit tm » T eff 

jzfjx ~ (T/1iQ) (TTettfh) 2 dg 'l't, 

and the condition (24) has the form 

(27) 

(28) 
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