
~~- -~~- ~~--~ ----------------------

SOVIET PHYSICS JETP VOLUME 15, NUMBER 3 SEPTEMBER, 1962 

COLLISION INTEGRAL FOR CHARGED PARTICLES IN A MAGNETIC FIELD 

V. M. ELEONSKri, P. S. ZYRYANOV, and V. P. SILIN 

Metal Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor October 30, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 42, 896-904 (March, 1962) 

The collision integral for Coulomb interactions is derived with shielding due to polarization 
of the medium taken into account. The polarization is introduced by means of a complex di­
electric tensor in which both frequency and spatial dispersion are included. 

1. In an investigation of the correlation function 
and the collision integral for charged particles in 
the absence of external fields one of the present 
authors [1] has pointed out that the Coulomb field 
should not be used in computing the collision prob­
ability; instead, in computing the field one must 
take account of the polarization of the medium by 
introducing the effect of shielding into the field 
produced by the charged particles. The explicit 
physical picture in this work makes it possible to 
write an expression for the collision integral in 
the presence of an external field without solving 
the equations for the correlation function. In the 
present work we obtain the collision integral for 
charged particles in the presence of a strong mag­
netic field.* 

The collision integral for Coulomb particles in 
a strong magnetic field has been considered in 
turn by E. Lifshitz [a] and by Belyaev. [4] The colli­
sion integral obtained in the present work differs 
in two respects from those obtained by these au­
thors: first, we take account of the polarization of 
the medium, thus making the collision integral 
convenient for describing remote collisions, sec­
ond, we take account of quantum effects (in the 
Born approximation) thus making the collision in­
tegral suitable for analyzing close collisions (pro­
vided one is considering a plasma for which the 
Born approximation is adequate). For the particu­
lar case of classical collisions and spatially uni­
form distributions our results correspond to those 
obtained by Rostoker.[5J A complete correspond­
ence holds only for electron-electron collisions. 

2. Assuming that the Fourier components 
[ ~ exp (- iwt + ik · r)] of the electric field and the 
electric induction are related by the expression [sJ 

D;(w,k)= ~dk'e;11(w,k,k')£1 (w,k'), (1) 

*Some of the results reported below have been published 
earlier in a brief communication.[ 2] 

as in [1], we obtain an expression for the matrix 
element describing the scattering of particle a on 
particle (3 

~ dk dk' 4:rtea e13A-1 ( E (v~)-;; E (va) , k, k') 

(2) 

Here, II a and ~~~ represent sets of quantum num­
bers describing the state of the particle before and 
after the collision, E ( 11 a) is the energy of the 
particle and A - 1 ( w, k, k') represents a solution of 
the equation 

~ dk" k1e11 (w, k,k') k; A-1 (w, k",k') = o (k- k')· (3) 

In the particular case of a uniform medium 

e11 (w, k, k') = e,1 (w, k) o (k- k'), (4) 

where Cij( w, k) is the complex dielectric tensor,CGJ 
so that (2) assumes the form 

(v~ I e'kr I vo:> (v~ I e-ikr I vll) 
I dk 4neaell ------,-, ----=------:­
J k;B;i ([E (va)- E (va)Jfn, k) k1 

(5) 

Using the elements of the scattering matrix (2) 
we obtain the probability for transition of particles 
a and ,8 from states II a• 11(3 to the States II a• ~B 

W (vavll; v~ "~) = 2:n:li-1 o [£ (v~) + E (v~)- E (va)- E (vll)l 

X j4:n:eaell ~ dk dk' A-1 ( E (v~)-;; E (va), k, k') 

(6) 

Using this expression we can write the collision 
integral in the following form: 

][fa {va)J 

2J W (vavll, V~v~) {fa (v~) fll·(v~)- fa (va) f~ (vll)}. 

llv~v~v~ (7) 

We note here that the form of the collision integral 

619 



620 V. M. ELEONSKil, P. S. ZYRYANOV, and V. P. SILIN 

(7) is retained for distributions that are spatially 
nonuniform and time dependent, provided that the 
changes in the impact parameters and collision 
times characteristic of the distributions can be 
neglected. 

3. To write the collision integral in the pres­
ence of a magnetic field B we must obtain explicit 
expressions for the quantities given by (2), (6), and 
(7). Evidently it is sufficient to determine the form 
of the matrix element 

( 8) 

We use the Landau representation in what follows. 
Thus, if B is assumed to be along the z axis the 
energy eigenvalue E ( v a) and the eigenfunction 
Iva > are given by 

/Vex) -j nexp~p~) 

= (2n1it1 exp {ip~xjli + ip~zjn} <Dnex [(y- y~)/Aex], (9) 

where na = I ea IB/c!-La. :\~=till-lana, y~ 
= - cp~/eaB is the projection of the center of the 
Larmor orbit on the y axis and cl>na is the nor­
malized wave function for the one-dimensional os­
cillator. 

Using (9) we obtain the following expression for 
the matrix element (8): 

(v~ I e-irk I Vex)= 6 ( kz- p~ ~ p~ex ) 6 ( kx- p~ ~ p~"- ) 

-I ' 

X exp {- { ku (y~ + y~ex)} ~ L~na.-nrz I (I X ex 12) 

nex! nex! nex 

X X~n~-nexl exp(-IXex/ 2/2), (10) 

where na = min ( na, n~) 

-. j eli [ I eex I B ex 'ex . • . J 
Xex = V 2 1 eex I B ~(Yo -Yo) Sign (na.- nex) -tku , 

and L~ is the Laguerre polynomial: 
s t 

Lr ( ) _ ..,_, (n + ') (- x) 
• X - ...::J n- t t! ' 

1=0 

We can now write an explicit expression for the 
transition probability and the collision integral, 
which assumes the form 

I lf "- (nex, p~, y~)] = ~ (2n1it3 ~ dp~exdp~dp~M 
(3n~n13n~ 

x (P~ + p~- p~"-- p~) (2n1it3 ~ dp~"-dp'fdp~M 

X (p~ + p~- p~ex- p'f) ~ [Ea. (v~) + £13 (v~)- Eex (va.) 

- £13 (v13)] 2: I ~ dkydk~ 4necxef3A~l 

xexp { + f ku(Y~ + y~')- ~~ k~(y~ + y~) 

X x~n>nex I X~ I n~-n(3\ I 2 {fex (n~. p:ex, y~ex) f(3 (n~. P!. y~) 
. - fex(nex, p~, Y~)f13 (n(l, p~, y~)}. (11) 

Here 

• , /-eli- [I ef31 B fl 'il . , . ' J x{l = v 2\ e~ I B -cii (Yo- Yo) sign (n(l- n{l) -lky . 

In writing ( 11) we take account of the fact that 
if the density matrix is diagonal in the Landau 
representation it is possible to have a spatially 
nonuniform distribution which depends on the y 
coordinate only. In this case 

B;j (w, k, k') = ~ (kx- k~) ~ (kz- k:) B;j ( 00, kx, kz; ky, k~), 
(12) 

so that 
A-1 (oo, k, k') = ~ (kx- k~) ~ (kz- k:) A~1 (oo, kx, kz; ky, k~). 

(13) 
A further simplification is possible when the 

particle distribution is spatially uniform. This 
case occurs when the density matrix is diagonal 
in the Landau representation and is independent of 
y0• Then 

I lfex(nrz, P~)] 

= ~ (2n1it3 ~ dp~exdp!dp~ M (p~ + p~- p~ex- P!) 

(3n>~n(l 

X ~ [Eex (nex, p~) + £13 (n13, p~) 

- E" (n~, p:")- E{l (n~, P'!)l 

x I e13 / Bc~1 (2nt2 ~ dkxdku 2: I e 

(E" (n~, P~ex)- Eex (nex, p~) k p~"-- P~) ,-2 
X li ' .L• li 

[ 4neexe(3 ]2 

X k3_ + [(p~- p~")!liF 

X [ clik3_ ]\ n~- n" \ [ clik21 ]\ n~- n(3 \ 
2 I eex I B 2 I e13 I B 

{ clik3_ [ 1 1 ]} (n"! ii(3!)2 

X exp --- --+-
2B I ea. I I ef31 n:! nrz! n~l n13 t 

X {fa.(n~, P~")f13 (n~, P!)-f"(na., p~)f13 (nf3, p~)}. (14) 

Here, kl = ISc + k} and c is defined by the rela­
tion 



COLLISION INTEGRAL FOR CHARGED PARTICLES 621 

The fact that £ depends on k 1 follows because 
E a depends only on n and Pz• corresponding to 
the isotropic distribution in the plane perpendicu­
lar to the fixed magnetic field. 

The collision integral we seek is given by ( 11) 
and (14). The particular importance of this colli­
sion integral is the fact that it does not diverge at 
small values of the transferred momentum. This 
result is obtained because we have taken account 
of the polarization of the medium and this leads to 
a shielding of the Coulomb interaction. 

4. In kinetic plasma theory wide use is made of 
the kinetic equations written in the form given by 
Landau and the corresponding Fokker-Planck 
equation. [7] Equations of this type can be easily 
obtained from those written above by taking the 
limit ti = 0. In this case the asymptotic expres­
sions for the Laguerre polynomials [sJ are used: 

(n+m)IJ [V(4n+2m+2)x] 
e-x/2'X m/2 L m (x) = m + 0 (nn/2-'l•), 

n n I [(2n + m + 1)/2Jmf2 

(16) 

where Jm is the Bessel function. Using (11) we 
obtain a collision integral for distribution functions 
depending on the longitudinal and transverse mo­
menta and the y component of the radii of the 
Larmor orbits: 

l[f11 (P~. Pl_, Y~)l 

L} (2nnr3 ~ dp~ p_ii ~ dp~ ~ (2nr3 dkxdk.dy~ 
{3,mo.,m{3 

X nil (kzv~ + mcS~a - k.v~ -m13Q~) I~ dkydk~ 4neae~A~1 

X (mo.Qa + kzV~, + kx, + k.; ky, k~) 

(vtk J. ) (vfk~ ) 
X exp {- ik~y~ + ikyy~} Jl mo. I ~ J1 m(ll ~ 

k ik l mo. I 
x [k; sign (eamo.) + k: J 

k ik' I m~ I 2 

x [--:-sign (e13mr>) - +] I 
kj_ kj_ 

{ a ckx a m<XQI% a a 
X k -----+-----kz-

z apa. e«B ay"' vl. apo. ap" 
• 0 0. j_ z 

Here k2 = k2 + k2 and k' 2 = k2 + k' 2 
' 1 X y 1 X y· 

An important feature of the collision integral 
( 17) is the fact that it is an inte. gral o~erator with 
respect to the dependence of f B on ylij. In the par­
ticular case of a spatially uniform particle distri-

bution, using (17) or (14) [in the latter case we 
must take account of (16)] we have 

I [f"(p~. Pj_)l = ~ (2nnr3 ~2ndp~pi ~dp~~ <2d:ls 
{l, m13, m11 

In the case of electron-electron collisions ( 18) 
is the same expression as that obtained by Rosto­
ker [5] except that it is written in somewhat differ­
ent form. 

5. In order to indicate the value of the results 
given above we consider applications to a case 
which could not be studied before either by means 
of a theory of two-body collisions, neglecting the 
effect of waves in the plasma, or by means of the 
diagram temperature technique, which is suitable 
only for weak deviations from total thermodynamic 
equilibrium. As an example we compute the coef­
ficient in front of the second derivative in yff in 
(17); this quantity represents the diffusion coeffi­
cient for the guiding centers of the Larmor orbits. 

We have 

fa.= [na. + l'>na. (y~)l 11
2 (p~) cpa. (p~- f-ta.V 0), na. = const, 

:rtpj_ 

II (pi) . 
f13 = n13 2 fl Ffl (p~ ), n13 = const. 

:rtpj_ 

We assume that the density ona is small and that 
its effect on the dielectric properties of the plasma 
can be neglected. Furthermore, we assume Fs to 
be constant for I p~ I < f..l(3V(3 < f..l(3Vo and zero for 
large values of the argument while cpa to be non­
vanishing only when I p~ - f..laVo I < f..lal::!.v, in which 
case 

p~- fla. (vo- Llv) 
{jla. = fta.Vo > P~ > 1-la. (v0 - .:1v). 11! (Llv) 2 

After some elementary calculations we obtain 
the coefficient in question in the form 

where, in the usual way kmax is determined by 
the limits of applicability of perturbation theory 
or the classical expansion, while 
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1 (!)2 

e(O k )-J--'V L~ 
' _]_ - k2 ..::J (v<X)2 - v2 

j_ 13 2 13 

We average D over the distribution cpa· Since 
l::!.v « v 0, we can write 

where 

In the limit of low beam density, in which case 
a2 » b2, we have 

<D) = n ~ e~ c• !'!_In Vo + v/3 {In kmax + (..!!...)2}· 
..::J B2 V13 Vo - V13 a b 

13 

Whence it follows that for the particular case 
Vo » V{3, 

e~ c• { Vokmax ( ro L/3 .iv )2} 
<D> = 2n f B•vo In {~ rot/3)'/• + f roL<X Vo . 

13 

This expression differs in two ways from that 
which is obtained when plasma waves are neglected: 
first, by the more exact logarithmic term (when 
the logarithmic term is important the difference 
can be appreciable at large values of v 0 ); second, 
and this is more important, by the appearance of 
the additional term (the nonlogarithmic term), 
which becomes important at low beam densities. 
At low densities there are oblique plasma waves, 
characterized by the spectrum 

ro2 = (k./k)2 }; roE13 ~ k; v~ 
13 

which have a rather small damping factor 
'Y = 7rwi,O'w/2( kl::!.v )2 (or growth rate ')1). Under 
these conditions the magnitude of the diffusion co­
efficient is determined by the second term in the 
curly brackets in the last expression for < D > 
and may be considerably greater than the value ob­
tained from the theory of two-body collisions. In 
this case our results hold as long as the ampli­
tudes of the oblique waves do not become appreci­
ably greater than the amplitude of the stationary 
noise wave with positive 'Y given by 

2 

(£2) ~~ 4rr.k2 
kzv,+o,k ~ \ kzl.iv [k'- ~13ffiE13/v~J' + rr.• froLI1/.iv]• • 

APPENDIX A 

In this appendix we obtain the formulas for 
ki£ij ( w, k, k ') kj. We consider the charge density 
of the plasma particles due to a scalar potential 
cp which is a periodic function of time and coordi­
nates exp ( -iwt + ik · r ). In the linear approxima­
tion in cp we have* 

}; <v11 /e1111(r-r11)/v11)f11 (v11) = -}; e!~ (:!)3 elkr-l"'t<p 
cx.va cx. 

I lkr I , , I lk'r I X _2J <vl1 e- 11 'V11 ) < 'V<X e 11 Va) 
, 

"a. "a 

It follows immediately that 

k1e11 ( w, k, k') k; = k2 11 (k -k') 

ava"a 

(A. I) 

(A.2) 

It is convenient to use the Landau representation 
for the case of charged particles in a fixed mag­
netic field when the distribution function is inho­
mogeneous in the y direction. Then ( A.2) assumes 
the form 

ktBiJ (w, k, k') k;- k2 11 (k- k') = -II (kx- k:) II (k2 - k:) 

2 \ dp~ dp~ { ic ' ( 11 1 )} 
X 2J, 4nel1 J (2rr.1i)• exp e11B [k8 -ky] Px + 21ikx 

an ana 

where 

X 11 = ~ [kxsign(el1 {nl1- n~}) + ik8 ], (A.3) 

X~= V21 ::I B [kxsign(el1 {nl1- n~})- ik~]. (A.4) 

For a spatially uniform distribution, in which 
case the density matrix fa ( "a) is independent of 
y~, the right side of (A.3) becomes 

*Here, 1'1 is an infinitesimally small positive correction 
corresponding to the adiabatic switching on of the interaction 
in the infinitely remote past. 
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APPENDIX B 

The quantum-mechanical and classical collision 
integrals can both be simplified considerably when 
the spatial inhomogeneities have a weak effect on 
the nonlocal polarization of the medium because 
the elements of the scattering matrix for a and {3 
are given by (5) rather than (2). Using (5), (6), (7), 
and ( 10) we have 

1 [f,. (n,., p~, y~)l = ~ (2nht6 ~ dp:ct.dp?dp~ dp~ct.dp'fdp~ 
!ln~n13n~ 

X b [E,. (n~, p:ct.) + Ell (n~, P?) 

- Ea (na, p~)- Ell (n13, P~) ] 

2n I ~ 4nect. eiln2 
X ---,;- dkg , 2 • 

,. (Pxct._ p~)• + n•kg+ (Pza- p~ )• 

{ 1 "k ( a ' 'a) 1 "k ( ll + 'll) X exp 2t g Y0 1 Y0 - 2 t u Y0 Y0 

-}I Xal 2 -fl Xlll 2} 

X 8-1 [ (E~- Ea)/h, (p~a- p~ )jh, kg, 

X xin~-naixln~-niliLln>na\<IX j2)Lln~-nlll 
a ll na a nil 

2 

X (I Xlll 2) J {fa (n~, P~a, Y~a)f13(n~, P?, Y~) 

-fa (na, P~, Y~) f13 (n13, P~, yg)}. (B.1) 

When the distribution function is independent of 
y 0 we again obtain (14). The quantity £( w, k) in 
( B.1) is given by 

4n \ dp~dp~ 
e(w, k) = l-7i2 ~ e~.) (2nn)• 

f{3 (n~, p~ + nk., p~ + nkxl- til (nil, p~, p~) 
X (n~ - n13 ) nR13 + n2k;/2!lil + nkzv~- nw - iM • 

(B.2) 

If the distribution is independent of p~ (B. 2) be­
comes (A.4). In the classical limit the collision 
integral (B.1) becomes ( 17) if we write 

A01 (mQa + kzv~ , kx, k.; ky, k~) = 6 (ku- k~) 

X {Bet (maQ,. + kzv~, kx, kg, kz) [k! + kZ + k~W\ 
in the latter, where Eel ( w, k) is the classical 
limit of (B.2). 
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