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The structure of a shock wave in a monatomic gas is studied with the help of the integral 
kinetic equations derived by WallanderPJ Asymptotic laws for smoothing out of the density, 
velocity and temperature profiles can be determined in a first approximation to the gas­
dynamic solution. The form of the asymptotic formulas depends appreciably on the behavior 
of the collision cross section at large values of the relative velocity of the colliding particles. 

1. INTRODUCTION 

LYUBARSKII}1J in an investigation of the struc­
ture of a low-intensity shock wave in a monatomic 
gas, using the simplified kinetic equation for the 
distribution function f 

vxaf I ax= Uo- f) I -r, 't' = const, {1.1) 

found that at large distances from the shock-wave 
front the hydrodynamic quantities tend to their 
limiting values as 

c1 exp {- c2 [ x ['!, }; {1.2) 

Comparing this result with the exponential 
smoothing-out law obtained by Becker, Zoller, and 
Grad, who used the equations for the moments, 
Lyubarski1 arrived at the conclusion that when the 
kinetic equation is replaced by a finite system of 
ordinary differential equations it is impossible in 
principle to obtain the correct asymptotic expres­
sion for the solutions of the kinetic equation. In the 
present paper we attempt to determine the structure 
of the shock wave at large distances from the front, 
using likewise the kinetic approach, but without 
simplifying the kinetic equation. It is found that 
the asymptotic behavior of the hydrodynamic quan­
tities depend essentially on properties of the colli­
sion integral, the general form of which is 

J=<'P-fQ, (1.3) 

where <I> - "production function" and Q- "colli­
sion function."[ 2] In (1.1) we have 

<'P=fol-r, Q = 11 -r = canst. 

The asymptotic behavior of the shock equaliza­
tion is determined by the behavior of the collision 
function at large particle velocity, which in turn is 
a direct consequence of the behavior of the colli-

sion cross section CT {v) at large values of the 
relative velocity v. If CT {v)- CTo ¢ 0 as v- oo 

(see Sec. 5 below), then the equalization is expo­
nential. If, on the other hand, CT ( v) = 0 ( v-'Y ) for 
large v, with 'Y > 0 (Sec. 4), then the discontinuity 
is smoothed out like 

c1 exp {- c2 [ x[ 21<Y+2> }. (1.4) 

In particular, when 'Y = 1 we get Q = 0 (1) and 
(1.4) coincides with (1.2). 

These results are derived below without as­
suming the discontinuity to be of low intensity and 
in a simpler manner than in [t]. 

In Sec. 6 we consider separately the case of a 
discontinuity of maximum intensity ( M1 = oo ). 

2. FORMULATION OF THE PROBLEM 

One-dimensional stationary motion of a mon­
atomic gas in the direction of the x axis is de­
scribed by the following system of integral equa­
tions [ 2]: 

00 

f (x, u) = ~ <'P (x- 't'Ux, u) II (x, u, -r) d-r, (2.1) 
0 

00 

<D (x, u) = ~~ I u1- u2[ a ([ u1- u2 D f (x, u1) f (x, u2) 
-oo 

(2.2) 

'< 

II (x, u, 't') = exp {- ~ Q (x- qux, u) dq}, (2.3) 
0 

00 

Q (x, u) = ~ [ u- u1 [ a ([ u- u1 J) f (x, u1) du1, (2.4) 
-oo 

where f - distribution function, u - velocity of 
the particle, CT - collision cross section, and T 
- transformant of the collisions [ 2]. 

To describe the structure of the shock wave we 
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must find the solution of this system of equations, 
satisfying the boundary conditions 

f (x, u)- ft (u) = nt (htfn)'1'exp {- ht (u- Ut)2}, 
X-+-00 

f (x, u)- f2 (u) = n2 (h2/n)'1• exp {- h2 (u- U2)2}, (2.5) 
x-.+oo 

and the quantities n1, U1, h1, and n2, U2, h2 should 
be connected by the conservation laws [3] 

ntVt = n2V2, nt (Vi+ RTt) = n2 (V~ + RT2), 
Vi+ 5RTt = V~ + 5RT2; 

ht = lj2RT1, U1 = {U1, 0, 0}, i = 1, 2. (2.6) 

Putting 

h - • M2 -6 t (2. 7) 

natural if we start from the physical meaning of 
the operator V.C 2J An additional justification is 
the fact that the results obtained for y = 1 agree 
with those of Lyubarsku[tJ. 

Writing 

I u,- u lz 
T;o =I+ 3RT. • 

l 

(3.5) 
( M1 is the Mach number ahead of the discontinuity), 
we obtain from (2. 6) we obtain from (3.4), (3.2) and (2.5), after making 

the substitution u- Ui = v, 
nz U1 Sh 

1h = --;:;-; = 2h + 5 ' 

st = vt Vii;_= Jlh. 

3. FIRST APPROXIMATION SOLUTION 

Substitution of (2.2)- (2.4) in (2.1) yields an in­
tegral equation for f in the form f = Vf, which is 
best solved by successive approximations: f (n) 
= Vf (n-1). If we take as the zeroth approximation 
the gas-dynamic solution 

t<o> = {{I(u), x<O (3.1) 
12 (u), x>O' 

Then we obtain in the first approximation (as 
shown by A. V. Belova) 

where 

x<O. 

x<O, 

x>O. 
x>O. 

ux>O 

ux<O 

ux>O 
ux<O 

(3.2) 

. h )'!, 00 

Qt(v) = nt ( -ft ~ I v- vtl a(iv- v11) exp {- h;vi}dvt. 

-oo (3.3) 

The corresponding density, velocity, and tem­
perature are determined by the formulas 

00 00 

n = ~ t<tl du, 1 (' u = n ~ uf(l) du, 
-oo -oo 

00 

T = 3~n ~ (u- U)2f(I) du. (3.4) 
-00 

Since it is our purpose to establish the order of 
the principal term in the asymptotic approximation 
as I xI - oo, we do not seek the next approximation, 
and confine ourselves to the first. This step is 

( h1 )'1, f { h 2 xQx (v)} n11 = n ~ exp - tV - vx + Ut dv, 
Vx<-Ua 

nz (. h2 )'I• I { h ( U )2 xQ1 (v) } d n12 = /h n .) exp - 2 v + t- U2 - vx+Ux v, 
Vx<-Ul 

n1 ( h1 )'I• (' { xQ2 (v) } n21 = n;- n .\ exp - ht (v + U2- Ut)2- vx + u 2 dv, 
vx>-U1 

( h2 )'!. (' { h 2 xQ2 (v) } n22 = n .\ exp - 2v - vx + u2 dv. 
Vx>-U2 

(3.6) 

U11, and U12 differ from n 11 and n12 respectively 
by the factor (vx + U1 )/U1 under the integral sign, 
and from T 11 and T12 respectively by the factor 
(v +U 1 - U) 2/3RT1. Analogously, U21 and U22, 
unlike n 21 and n22• contain the factor (vx + U2)/U2, 
while T21 and T 22 contain the factor 
( v + U 2- U) 2/3RT2. 

To investigate the asymptotic behavior of the 
functions nij• Uij• Tij• ( i, j = 1, 2) as I xi- 00 , 

we must know the behavior of the functions Qi (v) 
as v- oo. If we assume that at infinity 

(j (v) = 0 (v-Y), Y > 0, 

then, as follows from (3.3), 

Q;(v) = 0 (vi-Y). 

4. ASYMPTOTIC EXPRESSION FOR 'Y > 0 

(3. 7) 

(3.8) 

Let us examine n11 as x- - oo. Introducing 
the spherical coordinates (v, J, <P) defined through 
Vx = vcos,J, vy = vsin,Jcos<[J, and Vz = vsinJsin<[J, 
we obtain after integrating with respect to <P and 
putting cos J = t 

oo -UJv 

2 h'l• I I { h 2 xQl (a) } 2 dt d ( n11 = y;t 1 .l .l exp - tV - vt + u1 v v. 4.1) 
u, -1 
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The lowest value of the coefficient of x in the 
exponent is obtained when t = - 1. Expanding this 
coefficient in powers of (t + 1 ), we obtain for the 
principal term of the asymptotic expansion 

At large v the two terms in the exponent compete 
with each other, and the lowest order of magnitude 
is attained when they are equivalent, i.e., by virtue 
of (3.8), when v = 0 (I x 11/(}'+2) ). This fact dictates 
the subsequent steps in the procedure. First, it is 
convenient to divide the integration interval in two 
parts separated by the point 

0 < e < 1/(r + 2). 

We can then replace in the second integral ( which 
contains the principal term of the asymptotic ex­
pression) the function Q1 ( v)/(v- U1 ) by its 
asymptotic expression c 1v-Y. Changing over now 
to the integration variable u = vI x l-1/(y+2), we 
obtain 

n ~ 2 h''• I x II!<Y+2> 
11 ~ Ct "J.Gt 1 

00 

x ~ exp {-I x 12/(YH> (h1u2 + c1u-Y)} uY+2du. (4.3) 

1 x r-• 
The function F (u) = h1u2 + c 1u"""Y has in the inter­
val ( 0, oo ) a single minimum at the point 

(4.4) 

with F" ( u0 ) = 2h1 ( y + 2 ) . 
Following now the usual Laplace method [ 4] we 

get 

00 

X ~ exp {-1 X J2/(Y+2> F" iuo) (u- Uo)2} uY+2du 

I X ,-• 

~ i exp {-I X 12/(Y+2)h (j + 2) ( ....E!_)2/(Y+2)} • (4 .5) 
Yr+2 1 r \2ht 

The remaining integrals are estimated in similar 
fashion. 

The final result is written in dimensionless 
form. For this purpose we put ( for large v) 

Then 

And in place of I x I we can naturally introduce the 
dimensi.onless distance 

s = J X I n1a0. (4.6) 

As a result we obtain 

(4.8) 

(4.9) 

One of the interesting qualitative consequences 
of these formulas is that the velocity profile is not 
monotonic when x > 0. 

5. ASYMPTOTIC EXPRESSION FOR y = 0 

When Q1 (v)/(v± Ui)-ci >0 as v-+ 00 , the 
principal term of the asymptotic expression will 
always contain a factor of the form e-cL The co­
efficient c is determined by the position of the 
minimum of the function Qi (v)/(v ± Ui), which 
depends on the specific properties of the function 
Qi (v). We put 

(5.1) 

where R (u) is a dimensionless function such that 
lim R ( u )/u = 1. In particular, when a= const, we 
have 

1 erfu 
R (u) = y1t exp {- u2} + (1 + 2u2) 2U. (5.2) 

We consider first n22 • Going over from (3.6) to 
a form similar to (4.2) we obtain after making the 
substitution v-v'll; = u 

()() 

~ n1 2 ~ { 2 n2 6R (u)} u (u + s2) d (5 3) 
n22 ~- ,r- exp - u - --+ tR () u. · n2 r ~ n1 u s2 ;, u 

0 
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Let the function H (u, s 2) = R (u)/(u + s 2) assume 
its lowest value at a finite positive point u0 

= u0 (s 2), and let H" (u0, s 2) = R" (u0 )/(u0 + s2) > 0. 
We then obtain by the Laplace method 

( n1 2 )'/• f 2 n2 ~R (uon Uo (uo + Ss)'f• 
n22~ ri;:T exp1-Uo-n,u.+s;J R(uo)YR"(uo). 

(5.4) 

The general result for x > 0 can be written in the 
form 

n22 n21 Uss U21 T22 T21 
~ = -.- = -.- = -.- = -* =;= -. 
n22 nn U22 U21 T22 T21 

As a result we obtain 

nu~ V3(i Gr'f·exp{-s-3(i s)"'}. 

n12 ~ ~ ~ (~)''• (~ s)-'1' exp {- G- 3 (..!!!_)''• (~ s)'''} 
nx f3 hx 2 hx 2 ' 

6. THE CASE M1 = oo 

•t When the Mach number ahead of the discon-
~ (~ ~)''• ex {-~ ~R (uo)} uo (uo + s2) ' (5 5) 
·- n2 ~ P nx uo + s2 R (uo) y R" (uo) ' • tinuity is infinite, we have 

where ft (u) = n1 & (u- U1), (6.1) 

n;2 = exp {- u~}. u;2 = (1 + ~:) n;2, 
r;2 = + [uo + s2 ( 1 - ~J r n;2, 

n;l = ~: ( ~~ f' exp {- [ V ~: (uo + s2) - St T}' 
• ( uo) • u 21 = 1 + s;- ~1> • 2 [ ( u )]2 • T21 = 3 Uo + S2 1 - --u; n21· 

(5.6) 

In the case (5.2) (a= const) we have 

R"(u0)= u1~ {erfu0 - ~-itexp{-u~}}. (5.7) 

and u0 = u0 ( s 2) is determined from the expression 

2 erf u0 = s2 { :n exp {- u~} + (2u0 - ~o) erf u0 }. (5.8) 

We now examine n11 in a form analogous to 
(5.3): 

00 

2 (' { 2 sR (u) } u (u- St)2 

nu ~ Vn J exp - u - u- St sR (u) du. 
•• 

(5.9) 

Using the case a= const as a guide, we assume 
that H (u, - s 1 ) assumes the lowest value in the 
integration interval only at infinity, with H (u, - s 1) 

R: 1 + stfu + ... Then, after factoring out e-~. 
we are left with an integral of the same type as for 
y=l. 

and the exact values of the integrals containing f1 
are taken. Then n11 = U11 = T1T11 = 0, since the 
integration region ux < 0 does not contain the point 
u = U1• 

Further, 

n21 = (n1/n2) exp {- xQ2 (U1- U2)/U1}, 

The asymptotic formulas for n22• n12• U22• Ut2• 
T 22 and T1T1dT2 are directly obtained from the 
corresponding formulas for M1 ~ oo by taking the 
limit h- oo. 
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