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A system of equations describing cross relaxation in spin systems is derived from the quan.:.. 
tum mechanical equation for the density matrix. These equations differ from those derived 
from qualitative considerations by Bloembergen et al [l] in that they contain additional terms 
due to a consistent account of the change in the mean dipole-dipole interaction energy during 
the cross-relaxation process. 

SrNCE the publication [1] of the first thorough 
treatment of the phenomenon of cross relaxation, 
there have appeared many papers on the same sub­
ject ( [ 2- 4] etc). In all of these papers the theoret­
ical analysis was based on an equation obtained in 
[1] from qualitative considerations. 

Our goal in this paper is the derivation of a 
more accurate set of equations directly from the 
general quantum-mechanical equation for the den­
sity matrix. For the sake of simplicity we con­
sider a spin system having only two kinds of mag­
netic moments of almost the same magnitude. 
However, all conclusions are easily generalized 
to the case of a large number of different mag­
netic moments in the spin system or to the case 
where cross relaxation is associated with transi­
tions between different hyper fine structure levels. 

The equation for the density matrix of a spin 
system consisting of two kinds of magnetic mo­
ments under conditions of magnetic resonance has 
the form (the high-frequency field is assumed ad­
justed to resonance with the magnetic moments of 
the first kind) 

+ Jl.~~I (Jlf!wt + j'-le-iwl) + G, p J . (1) 

Here F is the Hamiltonian of the lattice, H 
~ -Ji1Holz /I - ~oL2HoSz /S + Hdip• Ix, Iy, lz and Sx, 
Sy, Sz are the projection operators of the total 
spin of the particles of the first and second sort, 
"'±1 A .A "'±1 A 0 A 

I = Ix ± Ily, S = Sx ± 1Sy, #-' 1• I, and 1-'2, S are 
the magnetic moments and spins of the particles 
of the first and second sort, respectively, H0 is 
the constant magnetic field, w and H1 are the 
frequency and amplitude of the high-frequency 
field, 

n=±l ct=l 

is the spin-lattice interaction operator, :fna are 
operators acting only on the spin variables of the 
particles of sort a and having non-zero matrix 
elements only for transitions in which lz or Sz 
change by n units, :Rna are operators acting 
only on the lattice variables, 

is the part of the dipole-dipole interaction oper­
ator that commutes with lz and Sz simultaneously, 
Mdip and H~dip are the usual seoular parts of 
the dipole-dipole interaction between particles all 
~f the fi~st o~ sec~nd sort, respectively, Iix• Iiy• 
liz and Skx, Sky• Skz are the projection operators 
of the individual spins located respectively on the 
i-th and k-th points of the crystalline lattice and 
belonging to particles of the first and second sort, 
respectively. 

We can write 

H~ip being the part of the dipole-dipole interaction 
operator leading to the cross relaxation effect (we 
consider here the case in which the magnetic mo­
ments of the both particle sorts have the same 
value; in this case, as is known, [1] the quantity 
lz + Sz is conserved during the cross relaxation 
process ) . The remaining terms of the type H~p 
with m .e 0 (the indices m indicate that the oper­
ator has matrix elements different from zero only 
for transitions in which the magnitude of lz + Sz 
changes by m units) will lead only to a direct ex-
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change of energy between the Zeeman energy and 
the dipole-dipole interaction energy adip· 

Transforming Eq. (1) to the interaction repre­
sentation 

p = exP[- i- (H +F) t] p' exp [ ~ (H +F) t], (2) 

we obtain 

(3) 

where 

m=-2 

l (f)= fl~f1 (1+1 (t) exp (iwt) + J-1 (t) exp (- iwt)), 

'm . (if}t \ 'm ( iff!) Hu1p (t) = exp - 1 Hdipexp - T , 
h " 

2 

a (t) = 2} 2} f'"~ (t) R""' (t), 
n=±l tx=l 

' 11"- 1 Jit ·), p' na ( ilit ) F (I) == exp \ h exp \- T , 

R, "~(t) _ ( iFt ., R' "~ ( _ {J.'t \ _ exp h ) exp h ) · (4) 

To derive the kinetic equation we shall introduce 
the projection operator P, [5] which extracts from 
the density matrix that part which is diagonal in 
the representation in which the pairwise commut­
ing operators Iz, Sz, Hdip are simultaneously di­
agonal (henceforth we shall have only this repre­
sentation in mind ) . 

Multiplying Eq. (3) on the left by the operators 
P and (1-P), we have 

iJp2 i ' i ' ' Tt =- h [V (t), Ptl- T (I - P) [V (t), p2 ]. (5) 

Here p 1 = Pp' and p2 = (1-P)p'. 
In Eq. (5) we have left out a term P[ V(t), p1 ], 

since from the definitions (4) it follows directly 
that the diagonal matrix elements of the operator 
[ V(t), p1 ] are zero. For the same reason we 
omit the operator 1 - P before the first term of 
the right-hand member of Eq. (5). 

An analogous system of equations has been con­
sidered previously. [G] A derivation completely 
analogous to that presented in [G] gives the follow­
ing kinetic equation: 

a:=l 

') +co 

- ~~ ~ ·~ dwP' [(F12 )-w 
o.=t_00 

(6) 

[ The operator P' 6 ( 0 ) = P, just as in [6] .] Here 

The operators (A)w are defined in the follow­
ing way: 

, 1 +r ( i(iid, +F)I) , ( lHdip-rF->') iw; 
(Alw =Zit .\ dt exp ~ A exp - h , e . 

-co (7) 

We note that according to this definition the op­
erators (A ) w have non -zero matrix elements only 
for tr~nsition!' involving a change of tiw in the en­
ergy Hdip + F. 

To each term on the right hand side of Eq. (6) 
there correspond transitions of a definite type be­
tween the levels of the spin system. The first 
term, for example, describes transitions under the 
influence of the high-frequency field (this term has 
been considered in detail in a previous paper [6]). 

The transitions associated with cross relaxation 
are described by the second term. During each 
such transition lz is changed by ± 1 with a simul­
taneous change in Sz of 'f 1. The accompanying 
change in Zeeman energy ti~12 is compensated by 
a correspondin~ change in the dipole-dipole inter­
action energy Hdip• as can be easily seen from 
the structure of this term. 

The third term is obviously connected with the 
direct conversion of Zeeman energy into dipole­
dipole interaction energy. In this term the oper­
ators H:afa have non-zero matrix elements only 
for transifions involving a change in the z com­
ponent of the total spin of particles of sort a by 
± 1. In this term of Eq. (6) terms of the type fiillp with 
m = ± 2 are also omitted, since these are not im­
portant in the case Wto, 2o » J.'Hloc/ti. (Hloc = J.t/d3, 
where d is the shortest distance between mag-
netic moments.) 

Finally, the last term in the right hand member 
of the equation describes the transitions in the 
spin system that occur because of the spin-lattice 
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interaction. The integration over w in this term 
reflects the possibility of an exchange of energy 
between the spin system and the lattice with direct 
transfer of small quantities of energy_ ..... J.l.Hloc to 
the dipole-dipole interaction energy Hdip· 

It is to be noted that an inaccuracy in the deri­
vation of Eq. (6) arises on account of discarding a 
term proportional to p 2 from the right hand side 
of Eq. (5). As can be seen from Eq. (5) this in­
accuracy will not be large for the condition p 2 

« Pi· We shall now determine the conditions for 
which this inequality holds. To this end, we inte­
grate Eq. (5) with respect to the time [in the case 
considered p2( 0) = 0 l: 

t t 

P2 (ll = - + ~ dt' [I (t'), Pt (t')J- T ~ dt' [lnp (t'), P1 (t')J 
0 

t -+ ~ d~' s [H;Ftp (t'), Pl (t')] 
0 m=±l, ±2 

t 

- -1d dt' [G (t'), pr(t')J. (8) 

Direct calculation yields the following evaluations 
of the terms in the right-hand member of this 
equation: 

S H! 
1 ~ Hloc Pl> 

lowing inequalities are simultaneously fulfilled 

li 
~~1 (12) 
[1 loc 1 

f!Htoc ~ 1 
hw ~' xo 

the condition p 2 « Pi introduced earlier is indeed 
valid. 

It is to be noted that this circumstance not only 
justifies the assumptions made earlier, but also 
allows the determination of the general form of 
the solution to Eq. (6). In fact, within the accu­
racy of the small quantities in (12), we can now 
consider the density matrix of the spin system to 
be diagonal. In addition, because of the homoge­
neity of our macroscopic system, this density 
matrix should obviously have the property: [G] 

p1 (t) =Pi (t) Pi (f). (13) 

Here pf(t) and Pi(t) are the density matrices of 
any two parts of the spin system resulting from its 
division into two arbitrary macroscopic parts. But 
a density matrix having the two aforementioned 
properties has the form [ 7] 

Pl (t) = c exp [a (t) I~+~ (f) Sz + r (t) Hdlp- F I kTol· (14) 

(The lattice temperature To is assumed not to 
change, because of the high heat capacity of the 
lattice.) 

Physically, a solution of this form means that, 
correct to the quantities in (12), the system con-

(9) sidered is in a state of thermodynamic equilibrium 
at every moment of time. The quantity C is de­
fined from the normalization condition Sp Pi(t) = 1: 

As an example we show how the first term is cal­
culated. Using the commutation properties of the 
operators Iz, Sz, and Hdip and the integral 

+oo 
J ±t (f)= \ dwf ! 1i":d, (10) 

-00 

we obtain, in accordance with (10), 

t +oo 
S 1 = f1;:1 ~dt' ~ dw{[f:_w, pr(t')]exp[i(wlo-w)i'] 

0 -co 

+ [.[;;;-\ P1 (t')] exp [- i (w10 - w) t']}. (11) 

Noting further, that Pi (t') changes little in time 
~ li/ J..LHloc• and the average value of the difference 
w- w10 ~ J.l.iHloc /lli, we obtain, after averaging 
over time, the estimate given above. 

The other terms in the right-hand side of Eq. 
(8) are evaluated in a similar way. The frequen­
cies ~i2 and wao appear in these evaluations be­
cause of the presence in the exponentials of defi­
nitions (4) of the Zeeman energy -liw10Iz - liwa0Sz, 
which commutes with the operator Hdip· [In the 
calculation it is also essential that under condi­
tions of eros s relaxation ~i2 » J..LHloc /li. [i] l Thus, 
it follows from Eqs. (8) and (9) that when the fol-

C = (21 + 1)-N, (2S + 1 )-N'[Sp exp (- F fkT0)r1 (15) 

(in the case considered liwa0 /kT0 « 1.) Here Ni 
and N2 are the numbers of particles of the first 
and second sort in the sample. 

Calculating with the aid of the kinetic equation 
(6) the time derivatives 

aJ z (t) ' apt asz (I) ' ap, 
fit= Spfz Tt, ---a/= SpS2 at, 

aHdipU) - apl 
-a-1- = SpHdip 7ft, 

we obtain the following simple system of equations 
(this calculation is completely analogous to that 
carried out in [G]): 

acr 1 
Tt =- f (~~) (:~.- rn~~)- r 12 (a-~- rni\12) 

-__.!:_(a- yliw10 ) + cr,- :x, 
Tst r: 

al3 =~(a-3-y.lt~l2)-__.?. (~-yliwoo)--'-- l)l3o-f3 
at T 12 ' T sz " ' T~ ' 

-~ = tt~lef (~!)(a-- yli~l) + h~lt:l'. (a-~- rll~J2) 

(16) 
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Here 
2 Sp P' (lt) (f-t) f (t1 ) _ ~ (fltHt) -t., ll., 

1 - 2 /h Sp J; ' 
" ""o+ "'o 2n Sp P' (H dip Lt.,. (H dtp) ll.,. 

T12 = fi2 Sp 1; 
1 2n S ', (H' +1"') (fl-1"') T = fi2 P P dip -w"'0 dip "'ao' 
Sat 

X Sp exp (- F I kT0 ) (R1"').,"'0 -w (R-1"')-wao+"' 

X {Sp n Sp exp (- F I kToW\ 

2 +co 
J.... = 2:rt ~ ~ dww2 Sp P' (ftl"')-w (F-1"')w Sp exp (- F I kT0 ) 

T1 a=1 _ 00 

X (R1"')wao-W (R.-1"')-wao+"' {Sp m,p Sp exp (- F I kToW1 ; 

(17) 

a 0, {30, and Yo are the equilibrium values of a, {3, 
andy. 

This system of equations differs from the sys­
tem of equations in [1] in the additional terms con­
taining y ( t). These terms describe the physically 
completely obvious change in the average dipole­
dipole interaction energy in saturation processes 
and cross relaxation and the influence of this 
change on processes occurring in the spin system. 

Equations (16) and '8) allow the easy determi­
nation of all the physical characteristics of the 
spin system (see the analogous calculation in [G]). 

Since the expressions obtained are so unwieldy, 
we shall not write out the solution to the system 
(16). We remark only that the values of Cl'st and 
f3st (the steady state values of a and {3) calcu­
lated from Eqs. (16) for strong deviations from 
the equilibrium values a 0 and f3o differ substan­
tially from the magnitudes of Cl'st and f3st calcu­
lated from the equations of the aforementioned 
work. [1] 

Essentially different results are also obtained 
for the relaxation times. As an illustration, let 
us consider the relaxation processes occurring 
in the spin system after switching off the high­
frequency field. In case T12 « T?. Tl' the short 
relaxation time, as can be easily seen from Eqs. 
(16), will equal T = T1d(1 + o + E6.i2n2 ), and not 
T 12 I ( 1 + o ) , as is obtained from the system of 
equations in [1]. In the derivation of these ex­
pressions terms proportional to 1/Tsa were 
omitted in (16), since in the case 6.12 « wao• they 
are significantly less than terms proportional to 
1/T12· [1] 

In conclusion we remark that the conditions (12) 
in fact determine the accuracy of Eq. (8) only. Ac­
tually, since only the squares of the moduli of the 
non-diagonal matrix elements enter into Eq. (6), 
the accuracy of this equation is limited by the 
inequalities 

( H1 )2 ~ 1 (' f!Htoc ) 2 ~ 1, (f1Htoc) 2 ~ 1. (18) 
\Htoc ~ ' 1idt2 ~ \liroao ~ 
Concerning the form of the solution (14) for p1 (t) 
in the derivation of (16), its validity will be deter­
mined by the conditions 

T 12 < 1i I !JBtoc. 1i I !J-Hl';;P 1i I rBtoc• (19) 

These conditions express the physically obvious 
requirement that processes associated with the 
creation of order in the spin system (coherent 
precession under the influence of a high frequency 
field and cross relaxation), should proceed suf­
ficiently slowly compared to processes that de­
stroy order (we recall that the time for destroying 
order in a spin system is of the order li/ t.tHloc [6]). 

Thus the inequalities (18) and (19) determine 
the conditions of applicability of the fundamental 
system (16). 

We have considered the simplest case of cross 
relaxation, characterized by the participation of 
but two spins in each separate elementary act of 
cross relaxation. In certain cases processes can 
be observed in which a larger number of spins 
participate simultaneously. [ 1•3] In the case when 
the cross relaxation process occurs with a simul­
taneous change in lz by m and in Sz by n units, 
the term describing the cross relaxation will have 
the form (when the condition liwa 0/kT0 « 1 is 
fulfilled) 

1 ' - ( mrx- n~- rli~l2). 
T12 

where li6.J.2 is the change in the Zeeman energy in 
the given multi-spin process. However, the deter­
mination of the coefficient 1/T 12 in this case will 
be a much more difficult task. 
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