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The "13 momentum" approximation in Grad's method is used to derive a general set of equa­
tions of diffusion in a multicomponent gas mixture. The problem of diffusion in the presence 
of viscous transfer of momentum in a gas is studied in detail. An explicit expression is ob­
tained for the barodiffusion constant ap in a viscous flow of an arbitrary binary mixture. 
The magnitude of ap depends significantly on the character of the interaction between the 
molecules and can have either sign. The nature of the difference between the derived value 
of O!p and the value of ( m2 - m 1 )/[ m tY 1 + m2 ( 1 - y 1)], obtained by methods of irreversi­
ble thermodynamics, [5, 6] is analyzed. 

1. INTRODUCTION 

THE present research is devoted to the investiga­
tion of the diffusion of an arbitrary multicomponent 
gas mixture in the presence of the viscous transfer 
of momentum in the gas. As is well known, in the 
consideration of the phenomenon of transfer in 
gases, use is made of two methods of solution of 
the kinetic equations: the method of Chapman­
Enskog [1] and the "momentum method" recently 
developed by Grad. [2] Detailed analysis shows that 
the latter method has an unquestionable advantage 
every time that one is obliged to use higher ap­
proximations to the distribution function. Thus, for 
example, there is no interaction between diffusive 
and viscous momentum transfer in a gas within the 
framework of the most developed second approxi­
mation in the method of Chapman-Enskog. Such an 
interaction appears only in the third approxima­
tion, [1•3] even when all the macroscopic parame­
ters of the mixture change relatively little within 
lengths of the order of the mean free path. It is 
not difficult to show that within the framework of 
Grad's "momentum method" the effect on diffusion 
of viscous momentum transfer appears 'directly in 
the use of the ordinary "13 momentum" approxi­
mation. Furthermore, the application of this me­
thod makes it possible to obtain the values of the 
kinetic coefficients in the equations of diffusion 
immediately in an approximation that is equivalent 
to the second approximation in the expansion in 
Sonine polynomials when the ordinary scheme of 
calculation of transfer coefficients is used. [1-4] 

In the present work, a generalization of the Grad 
method to the case of a monatomic multicomponent 
gas is used. In the "13 momentum" approxima­
tion, a closed set of equations is obtained which 

makes it possible to consider all the transport 
phenomena in the gas mixture, and to compute the 
corresponding kinetic coefficients. In particular, 
a general set of equations is found which describes 
diffusion in the multicomponent mixture. The re­
sults obtained permit one to analyze completely 
the effect of viscous momentum transfer on diffu­
sion. The value of the barodiffusion constant found 
for a two component mixture in purely viscous gas 
flow is shown to be related in significant fashion 
with the character of the mutual interaction of the 
molecules; this quantity differs essentially from 
the barodiffusion constant obtained both in the 
second approximation of the Chapman-Enskog me­
thod and in the framework of the thermodynamics 
of irreversible processes.[5,S] 

The considerations given below assume the 
satisfaction of the conditions 

f.../L~i, </T~1, (1.1) 

where L and T are the characteristic linear and 
temporal scales of change of the macroscopic par­
ameters of the mixture, and A. and T are the ef­
fective length and time of free path of the molecules. 

2. GENERAL SET OF EQUATIONS 

We expand the distribution function of the com­
ponent a of the gas mixture in a series of Hermite 
polynomials H(s_) . ( Ca) defined in [2] (sum-

O!It· • .Is 
mation in the repeated Latin indices is carried out 
from 1 to 3): 

00 

f ( f(O)" 1 ( ma. )s A(s) ) H(s) . a. r, Va., i) = a. .LJ S! 7li' :zt, ... t5 (r, t a.i, ... t5 (ca), 
S=O I 

(O) ( ma. )'!. ( ma. c~ ) 
fa. = ,21tkT exp - 2kT ' c" = Va-U, (2.1) 
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where rna, va are the mass and velocity of mole­
cules of type a, u ( r, t) is the macroscopic ve­
locity of the mixture as a whole, k is the Boltzman 
constant, T is the temperature. 

The macroscopic parameters of the component 
a and of the mixture as a whole-the number den­
sities na and n, the mass densities Pa and p, 
the mean velocities Ua and u, the diffusion cur­
rent of the a component j a and the temperature 
T are defined by the usual expressions: 

a 

U = + h PaUa., 
Gt 

ja = ma.na. (ua.- u) = m,_ ~ c:xfa.dva., 

fn,_kT = -i- ~(mac~) fa dva., f nkT = + :2,; ~ ma.c~fa. dv". 
~ (2.2) 

We also introduce the partial tensor of viscous 
stresses p aik• the tensor of viscous stresses 
Pik• the partial thermal flux qa, and the thermal 
flux of the mixture q, by the formulas 

(2.3) 

The coefficients A(S) of the series (2.i), are 
tensors of rank s, equal to the mean values of the 
corresponding polynomials H(s) ( ca ) : 

A~L. is (r, t) = ~ H;').. .. is (c"") fa dv,_. 

If we substitute (2.1) in the kinetic equation for 
the mixtures, and construct the transport equations 
for the Hermite polynomials, then we get an in­
finite set of nonlinear differential equations in A(s). 
(The corresponding set for the case of a single 
component gas is obtained in [2] -the generalization 
is trivial.) The transport equations for s = 0, 1, 
and 2 lead to equations of continuity for each com­
ponent and for the mixture as a whole ( s = 0 ), the 
equation of motion of the mixture ( s = 1, summa­
tion over a) and to the equation for conservation 
of energy of the mixture ( s = 2, tensor indices 
are contracted, summation is over a). However, 
these equations are not closed and contain the co­
efficients A(~i' &~ik and A~lkk• If we use the 

explicit expressions of the corresponding Hermite 
polynomials 

H(O) = 1; 

(2.4) 

then we can find the connection of these coefficients 
with the quantities (2.2), (2.3): 

A~%k = 2m~1 (qa,.-5kTja.;/2ma) = 2m~1hat· (2.5) 

The quantities (2.5) are determined by solution of 
the complete set of equations. 

We consider the solution of the set of equations 
in an approximation which corresponds to the "13 
momentum" approximation,C2J i.e., we set 
A(s)(r, t) = 0 for s ~ 4, and for s = 3 we keep 
only the components of the tensor or vector A(3kk 
contracted over two indices. [It can be show tgat 
upon satisfaction of the conditions ( 1.1) in ( 2.1), 
only those coefficients in the velocity tensors are 
different from zero which are no higher than 
second rank. As a consequence of this, there is, 
in particular, an equivalence of the "20 momen­
tum" approximation and the "13 momentum" ap­
proximation. ] 

In the approximation considered, the distribu­
tion function can be written in the form (see the 
similar expression in [7]) 

f Gt = f~O) { fla_ + (1 I kT) iatCa.i + (Pa. I 2kT p"") P:xik (Ca.tCa.k 

- (kT lma) 6tk) ++(Po: I kT Pa) hatCat [ (ma.c; I kT)- 5]} . 
(2.6) 

The corresponding closed system of equations has 
the form 

apa I at+ div (pa.U + ja) = 0, (2. 7) 

diat I dt- io:z (ou, I oxz) +fiat (au, I oxz) + 2iat8u 

+ Pa.du;fdt + op"" I OX;- n:J.Xxz + aP:x.il I ax, = Ra.z; 
(2.8) 

OPa.l at+ a (pJ.Ut) I ax,+-} oq""' I ax,+ f Pa.ll (ou, I OXz) 

+ -i Pa(oul/oxz)- f F ""'ia.t = Rau; 

dpaik I dt- 2 {(ou, I axk) P:J.il} + 4 {PauEzk} 

-2 {F atia.k} + -f P""tk (ouz I oxr) + : {oq""' I oxk} 

(2.9) 

+ 2pa.Btk = Ro:tk; ( 2.10) 

dhat I dt + f hat (OUt I ax,)+ ! hat (ou, I OXt) 

++hat (OUt I ax,)+ (7k I 2ma.) P:J.il (oT I ax,)- F alP all 

+ (5k I 3ma) ia/(iJu, I oxt) + (2k I ma) i:J.tEii 

+ (5k I 2ma.) ia.t (dT l.dt) + (kT I ma.) (opa.u I ox1) 

+ + (kP:x. I ma) iJT I ax, = Ra.tkk· ( 2.11) 
The following notation is used here: 

d a a Xa 1 du, 
Tt =ar + Ut axz' Fat= tn; -(it' 

{Atk} = + (Atk + Akt)-+ Au6/k, Etk = {ou, I oxk}· 

The "moments relative to the collision integral" 
appear on the right hand sides of Eqs. (2.8)-(2.11): 
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""\' (s) ' Rcxt1 ... i5 = ..:::;,; .\ [H o.i, ... /5 (ccx) 
~ 

- H~}, .. 15 (ca.) I fcxfilgcxil_docxil dc11. de~, 

where daa{3 is the differential scattering cross 
section; g a 13 = I v a - v 13 I, the prime indicating 
the velocity after collision. 

If conditions ( 1.1) are fulfilled, we can neglect 
the terms in them that are bilinear in j a• p aik 
and ha· ( We note that if the molecules interact as 
~ r-5, then the coefficients in the bilinear terms 
generally vanish in the "13 momentum" approxi­
mation. In the real case, they are practically al­
ways small.) Then the general expressions for 
these quantities can be written in the form 

Rcxt = L B~J (Uat- U~;) + 2,; B~2J (hat I maPa- h~, I m~p~); 
~ ~ (2.12) 
Ra.tk = ~ [B~J (Pa.ik I Pa.) + B~~J (P,8ik I P!l) 1' (2.13) 

~ 

R . - kT "' [ 5 B(2) ( I B(5) h I a.zkk- m LJ 2m "~ Uai- U~;) I "~ ( "'I Po.) 
a. ll 0. 

+ B~J (hM I PI')] . (2.14) 
The coefficients in (2.12)-(2.14) can be ex­

pressed as linear combinations of the known 
Chapman-Cowling integrals, n~13 . Omitting the 
laborious but uncomplicated computations, we 
write down the final results: 

B <s> 84 < a I ) [g22 ( 1s ail = - 1o nanil flail mcxmil ail + 4 m" 1 m,e 

+ ~5 mil! m .. ) Q;1 - 112 (m13 I ma)(5Q~2~- Q~t)] , 

B (6) 64 ( 3 I ) (g22 55 gn 
"~ = - 1o n._nil flail m11.mil "il- 8 "~ 

+ 5 Ql2 1 Ql3) 2 otll-2 ot/3. 

Here 
00 00 

(2.15) 

(2.19) 

(2.20) 

Q~ll = Vn~ ~ ~2f+2 e-t'ga!l(I-cos1 xa~)bdbd~, 
0 0 

where t = ga/3 (J.taf3/2kT)112, Xa{3 is the scat­
tering angle in the center-of-mass system, 11-a/3 
= mam{3/( rna + m13) is the reduced mass of the 
colliding molecules. 

The coefficients of (2.19), (2.20) can be simpli­
fied if we use the approximation of Kihara, [a] 

B~J = - :! n"n13 (fl!~ I ma.m!l) [ Q~21l + ~5 (m" 1m~) 

x(I + _!.m2 ! m2 ) Q11 j 3 Jj I a a(j ' (2.21) 

B<s> s4 ( 3 I ) (Q22 5 u ) 0.~ = -lo nan~ flex~ m .. m~ 0.~ - Qo.,~ . (2.22) 

3. DIFFUSION EQUATION IN A MULTICOMPO­
NENT GAS MIXTURE 

The set of equations ( 2. 7) -( 2.11) describes the 
phenomena of diffusion, thermal conductivity, and 
viscosity and their interrelations. The equations 
of hydrodynamics of the mixture also appear in 
this system. That is, in the summation of Eqs. 
(2. 7) over a, we get the equation of continuity for 
the mixture 

op I at+ div (pu) = o. (3.1) 

Summing (2.8) over a, we get the equation of mo­
tion for the mixture as a whole: 

pdu; I dt = - op I OX;- Op;k I.Oxk + ~ n/1.Xo.t· (3. 2) 
0. 

(The summation of Eqs. (2.9) leads to the equation 
for the conservation of energy.) 

For the determination of the quantities ja, q 
and Pik• it is necessary to make use of the re­
maining equations of the set (2.8)-(2.11). Analysis 
of these equations shows that in the maintenance 
of the condition (1.1) the derivatives dja/dt, 
dqa/dt, dPaik/dt and the nonlinear terms in the 
left hand sides can be neglected. Taking this into 
account, and substituting du/dt in Eq. (2.8) from 
the equation of motion of the mixture (3.2) and the 
expression (2.12) for Rai• we find the set of dif­
fusion equations in the multi90mponent mixture: 

~ no.nflkT (u11.; _ Uf'>;) = _ ( apa. _ Pa !J!_) 
il n [D .. 13 h ax1 p dx1 

+ [no.Xo.t-(P"IP) ~nllX~,J 
ll 

- [OPottkl OXk- (P/1.1 p) (OPtkl oxk)] 

"" ( hJ3i hot! ) +f S:x/3 ml'n/3- m11.ncx • (3.3) 

where [ Da(3 ]1 is the first approximation (in the 
Chapman-Enskog method) to the coefficient of 
mutual diffusion of the binary mixture of a and (3 

molecules: 

[Da.l'h = 3kTfl6nflcx!lQ;1, 

so:r> = (n .. n13(n !Daph)~-t"13 (-f c:/3- 1), 

c:il = Q~~/3 Q~1il. 

The values of Paik and hai [which figure in 
(3.3)] should in turn be determined from a solution 
of the system (2.10)-(2.11) which takes the follow­
ing form in the approximation under consideration: 
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f {iJqJ) iJxk}--;- 2p,_eik = R"tk, 

iJp,_1k I iJxk + f (Pa. IT) (iJT / iJx,) = (rna I kT) Ratkk· 

In all real cases, Bqa/Bxk is a quantity of 
second order of smallness (in )1/L ). However, it 
is very Significant that the derivative Clp odk/ 8 Xk 
in viscous flow is a quantity of first order of small­
ness, which follows directly from (3.2). Taking 
the foregoing into consideration and the explicit 
expressions (2.13) and (2.14) for Rai1. .is• we 
have 

N 

2 • ""' P~tk Pa.Etk = - p- Ll a,_il -- , 
0=1 p~ 

(3.4) 

·v 
Pa. ar 2 apa.ik ~ kT 
y-~ + 5 --ax- + Ll fi1 £:z;; ( Ua.i - U{l;) 

' k /l=l " 
N 

p2 ~ h~i 
=--Llba.{l-. 

T B=l P{l 
(3.5) 

where 

- 3m~B:fl + 4m<>milA:ilJ I (rna+ m;,) 2 [Da.ilh}, 

ba.il = - :5 : [ma.mll I (rna.+ mll)2 ] (Ya.Yf3 I rDa.llh) ( ~5 - 3B:il 

- 4A:il), ~ =1= a. 

Here Ya = n 0/n is the molar concentration of the 
a component, the quantities 

['YJa.a.h = 5kT I SQ;~, [A.,_a.h = 75k2T 1 32ma.Q~~ 

coincide with the values of the coefficients of 
viscosity and thermal conductivity of a simple gas 
consisting of a molecules (the first nonvanishing 
approximation in the expansion in Sonine polynom­
ials [tJ). The quantities 

A:{l = Q~2{l/2 Q~1. B:!l = (5Q;~B- Q~3{l) I 3Q~11l 

differ little from unity (for the model of molecules 
as solid elastic spheres A* = B* = C* = 1; the 
Kihara approximation corresponds to B* = % for 
all models). 

Solving (3.4) we find 
N 

_ ""' Yfllal~" 
'YJa.- y" Ll -~-a-1-. 

p=l 
(3.6) 

For this case, I a I and I a l,aa are respectively the 
determinant of the set of equations and the cofactor 
of the element ,Ba of the determinant. 

Substituting (3.6) in the left side of (3.5), and 
solving the resultant equation for hai• we get 

N 

ha.i =- "'" ~T ,~_I_~ y -~~('Y) e·z) ·'t 0 p 5 =1 a. l b i ax l a: ' 

N N 
T ""' ""' kT I b l&<t ,. -pL...; .:.;, lrz Y"- - 1-b-l <;sv(Ust- Uv;), 

0=1 v=J 0 
(3.7) 

N 
A, '\~ I b lsa. 
a= y" ~ Ys -~-b-1 • 

o=l 

Making use of (3.6) and (3. 7), we get the final 
set of equations of diffusion in the multicomponent 
mixture (we write T/ = ~T/a ): 

IbIs" ) 
- ma.l b I (Ust- u.,), (3.8) 

The resultant equations differ from the usual 
set of diffusion equations [4- 9] by the presence of 
the last three terms. Two of them are as a whole 
related to the effect of viscous momentum transfer 
by the relative motion of the components. The ap­
pearance of the last term is connected with the 
fact that, in contrast with [9J, the "13 momentum" 
approximation used corresponds in this case to 
the complete second approximation of the method 
which uses the expansion in Sonine polynomials. It 
should be noted that even for the thermodiffusion 
term [third term on the right in (3.8)] a much 
simpler expression is obtained. 

Let us consider the case of a purely viscous 
steady-state flow of gas when the pressure gradi­
ent and the external forces are counterbalanced by 
the forces of "viscous friction" (inertial terms in 
the equation of motion (3.2) are negligibly small). 
Then, in place of (3.8), we have 

N N N 
11 <t 11i3kT ( T )2 ""' ""' ""' kT ,. [ I b I ll ~ n [D"r,h (u"- ull)+ k P ~~&-=! v-=1 ~~"~~&v mil lob I 

I b I sa. J 
-ma.lbl (ua-Uv)= -[Vp"-Vp(lJa.+wa.)llll 

f X fla: + co" ""' X --1- na. a.- --LJnil fJ 
' t lJ {l 

+T"'1 (·~ -~\vlnT}, 
Ll £all man<> m(lnfl I 
{l I 

(3. 9) 

where N N 

w _ ~ k ( T )2 ~ ~ [ I b loll I b loa J 
"' - 6 P ,_; ..:..J ~afJ'YJs m-1 b I - m-1 b I ' 

il=t5=1 fJ a. 
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In conclusion of this section, we note the follow­
ing. If we sum (3.6) over all components, then we 
get the usual expression for the viscous stress 
tensor with the coefficient of viscosity of the mix­
ture 1J = 61J a• which coincides with the well-

a 
known value found in[4]. The expression for the 
total thermal flux, which is obtained as the result 
of summation of (3. 7), recalls in its form the ex­
pression given in [9]: 

q=-J.V'T+-%-kTL ~" +TLL/·; sa~(ua-u~). 
a " a {3 " " (3.10) 

( For simplicity, we omit the terms connected 
with the second derivative of the velocity.) How­
ever, in this case, the expression for "A = 6 "Aa 

a 
differs from the complicated expression in [9], and 
coincides with the coefficient of thermal conduc­
tivity of the mixture obtained in direct application 
of the second approximation in the expansion in 
Sonine polynomials.[to] Also, the last term in (3.10) 
has a simpler form than in [9]. 

4. DIFFUSION OF A TWO-COMPONENT MIXTURE 
FLOW 

We analyze in detail the results obtained in the 
previous section for the case of a two-component 
mixture. For diffusive flow of component 1 in a 
system of coordinates where there is no molar 
transfer of the gas as a whole, we get from (3. 9) 

G1 = ny1 (1- Y1l (ul- Uz) 

=- nD12 [V'yl + CJ.pYI (1 - Yl) V' In P 

+ [CJ.r h Y1 (1 - Y1l V' In T]. (4.1) 

Here D12 = [ D12 ] 1/< 1 - .6.12) is the coefficient of 
mutual diffusion, which corresponds to the second 
approximation in the expansion in Sonine polynom­
ials, I aT I, is the thermal diffusion constant, ap 
is the barodiffusion constant in viscous flow. 

If we write ap in the form 

(4.2) 

then 

3/,A~2 [ (m, + m2)2/2m1m 2] {(m,- m1)/{m2 + m1) + [v1y1 - v2 (1- y1)!} 
[o;ph= * ' . ' ' . ' (4.3) 

1 +"hA12 [ (m,;m,) YI--t-(m,jm,) ( 1-y,)--t- {(m1+ m,)2/2mlm,} yl(1-yl){v1-:- v2)] 

v1.= (QiiiQi~-1), '"~ = (Q~UQi~-1), 

and the quantity .6.p is written in terms of the 
value of the thermal diffusion constant [ aT 1t and 
the corrections of the second approximation to the 
diffusion coefficient .6.12, the expressions for which 
can be found in [ 1• 9] : 

IJ.p = t{ (m2-mi) Y1 ( 1-yi) [ ar h 

(4.5) 

(as a rule, .6p is much less than unity). 
The expression for the barodiffusion constant 

(4.2) differs significantly from the corresponding 
value of ap for the case of nonviscous flow. The 
latter is easily obtained from consideration of the 
general diffusion equation (3.8) if we set 
8qk/8xk = 0 in it; as a result, we get the follow­
ing well-known expression for the two-component 
mixture: 

:Jp = (m2- m1) 1 [m1y1 + m2 (1- Y1)]. (4.6) 

The most important difference between (4.2) and 
(4.6) is that the barodiffusion constant in viscous 
flow depends on the character of the mutual inter­
action of the molecules. Furthe·rmore, in contrast 
with (4.6), the barodiffusion constant can have an 
arbitrary sign in the general case. This is made 
especially clear if one considers the case of small 

(4.4) 

relative mass difference and effective scattering 
cross section of the molecules of the mixture. 
Introducing, by analogy with Chapman [1], the ef­
fective molecular diameters s 11, s 22 , s 12 , deter­
mined by the expressions 

s~2 = + (m2 I nkT/1' Q~~. 
si2 = + [2mrm2 / (mr _l_ m2) nkT]'1' Qi~. (4. 7) 

and expanding (4.3) in a series in small quantities, 
we get an approximate form for [ ap Jt: 
[o;ph = [6il' / (5 + 3A'")] {-%- (m~- mr) I (m2 + m1) 

+ f(si, si2- 1) Y1- (s~~/ si2- 1) (1- YI)J}. 
(4.8) 

The term in the square brackets in (4.8) depends 
only on the nature of the forces of interaction of 
the molecules, and for m 2 = m 1 the sign of [ ap h 
is uniquely determined by the ratio of the effective 
scattering diameters. For molecules considered 
as rigid elastic spheres, s 11 and s 22 coincide 
simply with the diameters of the molecule a1 and 
a2, and a 12 = ( a1 + a2 )/2. Applying this approxima­
tion to other interaction models, we find 

[o:ph = [9A* I (5 + 3A*)] (m"- mr) I (m2 + mi) 

-- I6A* I (5 + 3A')J P2- ::;1) I ::;,2. 
(4. 9) 

We also write out the corresponding complete 
expression for ap in the Kihara approximation: 
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1 - -·' - .. J - m2 - m1 9A • [ (6C* 5) (·r · .,.A* 18A'")] 
a.p = 5 + 3 A* + 24A •2 (5-;- 2A ') m2 + m1 

6A* [ 5(6C'-!i\11+3A')]cr,-cr, (4.10) 
- c __! ''A* 1 - 12A * (" . co A*) --- • J .- .:J ,) -:--.:.. C1t2 

It follows from (4.10) that the coefficients for 
(m2- mt)/( m2 + m1) and ( a1 - a2)/a12 for differ­
ent models of intermolecular interaction take on 
values from 1.31 and 0.873 (the Maxwell model; 
F ~ r-5 ) up to 7%6 and % (solid spheres), re­
spectively. In the latter case, the first coefficient 
increases by 19 per cent, in the second, it de­
creases 24 per cent in comparison with the first 
approximation for [ Cl'p ]1, (4. 9). 

As an illustration of the barodiffusion constant 
for arbitrary relations of the masses and scatter­
ing cross sections of the molecules, curves are 
given in the figure for the dependence [ Cl'p) = f (~ ), 
where ~ = ( a2 - a 1 )/ a 12 at different values of 
M = ( m2 - m 1)/( m2 + m 1 ) for the model of rigid 
elastic spheres. 

Now, proceeding to the general analysis of the 
problem, we note that, within the framework of 
thermodynamics of irreversible processes, the 
barodiffusion constant depends only on thermody­
namic quantities and is rigorously equal to the 
value (4.6).[5•6] At first glance, we come to a con­
tradiction, inasmuch as in this case, as in the 
present research, only the smallness of the gradi­
ents of macroscopic quantities is assumed (i.e., 
X./L « 1 ). On the other hand, in the framework of 
the development of the hydrodynamics of irrever­
sible processes, the transfer of momentum to 
viscous flow, which is characterized by a tensor 
of second rank, need not generally affect the dif­
fusive flow, which is a vector. However, it is pos­
sible to form a vector quantity of the form 
BEik/Oxk• from the tensor Eik· Although this 
quantity corresponds to the second derivative of 
macroscopic quantities, it has the first order of 
smallness in the case of purely viscous flow, as 
follows directly from (3.2); this fact is actually 
determined by the value of the pressure gradient. 
Thus, at this point, the canonical methods of the 
thermodynamics of irreversible processes, which 
assume an expansion in thermodynamic forces 
(which figure in the expression for the time deriv­
ative of the entropy), should be appreciably ex­
panded, so as to include also the "force" of the 
type described. 

The considerations given by us were developed 
in general form by one of the authors (Yu. Kagan). 
It was shown that in the application of the thermo­
dynamics of irreversible processes to spatially 
inhomogeneous problems including a number of 
independent thermodynamic forces (among which 

is the decomposition of the currents) it is neces­
sary to introduce the values of the corresponding 
tensor, which is obtained by differentiation of the 
thermodynamic forces with respect to the coordi­
nates. In a number of cases, especially in multi­
dimensional problems (different characteristic 
lengths for the change of macroscopic quantities 
in different directions), new terms in kinetic 
fluxes can be shown to be of the same order as the 
terms usually considered, which, in particular, 
also appears in the case of barodiffusion in viscous 
flow. 

In correspondence with what has been pointed 
out above, the general expression for diffusive flow 
of a two component mixture in an arbitrary liquid 
is seen to be equal to 

afl aT ae ik ae0 G1t =-a--b- -c--d-ax1 ax, axk ax, • 
where a, b, c, d are independent kinetic coeffi­
cients; Eo = div u; f.l is the chemical potential of 
the mixture (it is associated with the chemical 
potential of the components f.li by the relation 
f.l = f.ltlmt - /.12Im2 [ 5] ). For purely viscous flow of 
an incompressible (in the hydrodynamic sense) 
liquid, the barodiffusion constant is equal to 

a.p = p (~11 ) I (~11 ) y1 (1- y1) +kTc I 211D12Yt (1- Yt)· vp y,, T vYt p,T 

Thus Cl'p is established doubly as a kinetic quan­
tity (compare the opposite confirmation in [5J). 

In the case of a monatomic case in the approxi­
mation considered in the research 

C = (a. _ mz- mr ) 21')DrzYr (1 - y1) 

P m1y1 + m2 (1 - y1) kT ' 

where Cl'p is determined in correspondence with 
(4.2)-(4.5). 

The situation, which is analogous to that de­
scribed above, arises also in the application of the 
second approximation to the distribution function 
in the Chapman-Enskog method. As is well known, 
the neglect of terms which contain both the squares 
of the first derivatives and also the second deriva-
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tives of the macroscopic quantities correspond 
to this approximation. As a result, diffusion and 
viscous momentum transfer are shown to be inde­
pendent in this approximation, and we actually ar­
rive at expressions which describe diffusion in 
nonviscous flow. The terms which take into ac­
count the interaction between viscous momentum 
transfer and diffusion are only in the third approx­
imation of the method. 

Making use of this approximation, Chapman and 
Cowling [3] found the value of the barodiffusion con­
stant in the case of a mixture with a small relative 
difference in molecular weights of the components 
and the same law of interaction of the molecules. 
This result coincides with the expression for [ O!p h 
obtained in our work for the special case of an 
isotropic mixture if we set u 1 = u2 in (4.9). 

In conclusion, we note that the concrete values 
of the barodiffusion constant in the case of arbi­
trary mixtures can be computed from (4.2) if we 
use a definite model of interaction of the molecules 
(for example, the Lennard-Janes potential). Cor­
responding tables for the collision integrals used, 
and for the quantities A*, B*, C* which are nec­
essary for calculations of ap, can be found in [9]. 
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