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We present a covariant form of the expansion of the photon field in multipoles and a covariant 
expansion of the current in multipole moments. We show the connection between the expan­
sions and the representations of the so-called little group. We indicate a generalization of 
the Lorentz representations which leads to a covariant definition of the Stokes parameters. 

1. INTRODUCTION 

IN nonrelativistic quantum mechanics, extensive 
use is made of expansions of amplitudes for proc­
esses in spherical functions-irreducible represen­
tations of the three-dimensional rotational group. 
But the generalization of this expansion to the rela­
tivistic case, i.e., a truly covariant expansion, is 
not usually considered. To find such a form, one 
must use the well-known irreducible representa­
tions of the Lorentz group. In various papers, for 
example, those of Yu. Shirokov, [l] Chou Kuang­
chao and M. I. Shirokov, [2] and Dolginov, [3] the 
apparatus of the irreducible representations of 
the Lorentz group is applied to the covariant de­
scription of relativistic systems. The methods 
developed in these papers are used successfully 
by their authors to obtain general formulas. But 
these formulas are either not a direct generaliza­
tion of the nonrelativistic formulas, or use a de­
scription which is not fully covariant. 

It seems useful to us to give another type of 
covariant expansion, which directly generalizes 
the nonrelativistic formulas. In the present paper, 
we restrict ourselves to the covariant expansion 
of the free electromagnetic field. We consider 
two problems: a) expansion of the radiation in 
electric and magnetic multipoles; b) expansion 
of the field sources (currents ) in multi pole mo­
ments. In addition we give a brief treatment of 
the properties of the covariant polarization of 
photons (which has been treated somewhat dif­
ferently in papers of Michel and Rouhaninejadi4•5J ). 
Analogous expansions may be useful for describ­
ing f3 decay and other processes. 

In deriving the formulas, we actually make use 
of the apparatus of the irreducible representations 
of the Lorentz group, whereas in most papers the 
authors use the infinitesimal rotations. In our 
method the concept of the little group ( cf. [6-8, 4]) 

is very important. In the book of Gel'fand et al [a] 

this group is called the stationary subgroup. 
The little group Lq associated with the vector 

q (which we shall assume is always either time­
like or lies on the light cone),* is that subgroup 
of improper Lorentz transformations which leaves 
the four-vector q fixed (in magnitude and direc­
tion). For example, any spacelike four-vector 
orthogonal to q transforms according to the rep­
resentation Lq. An obvious example of such avec­
tor is the spin of the particle ( cf. [S, 7]). Vectors 
(and tensors ) orthogonal to a given timelike vec­
tor will also be used in the sequel. 

From these remarks it is clear that if q is 
timelike, the little group Lq is isomorphic to the 
spherical symmetry group. 

If the particle mass is zero (for example, a 
photon), then it is usually stated that one must in 
this case change the definition of the photon spin, 
because there is no rest frame. Actually the situ­
ation is rather the reverse: because of gauge in­
variance, the photon wave function can be made 
orthogonal to any timelike vector ( cf. [U]), and 
therefore in this case all reference systems are 
simply equivalent. The specific choice of refer­
ence system is then dictated by convenience of 
computation. For example, in the multipole ex­
pansion one should choose as the vector determin­
ing the reference frame the 4-momentum of the 
center of inertia of the photon and the radiator, 
since uniform motion of the system has no effect 
on the properties of the radiation. 

We note that if the momentum k lies on the 
light cone (zero rest mass), the little group Lk 
becomes isomorphic to the space group of the di­
atomic molecule, and consists of the two-dimen­
sional rotations in the plane perpendicular to k 

*We have no need here for the case of a spacelike vector 
which was treated in the paper of Yu. Shirokov['"] from the point 
of view of the representations of the inhomogeneous group. This 
case may be important for the treatment of more complicated di­
agrams (for example, for the Compton effect). 
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and the reflections in planes passing through k. 
The result is that the polarization of a particle 
with zero rest mass and arbitrary finite spin can 
be characterized by means of a scalar (the inten­
sity) a pseudoscalar, and a two-dimensional vec­
tor ( cf. the paper of Michel [4]). The total angular 
momentum of a particle with zero rest mass is 
analogous (in the sense of its transformation law) 
to the angular momentum of a diatomic molecule, 
while the spin of the particle corresponds to the 
quantum number A, the value of the projection of 
its angular momentum on the axis of the molecule. 

2. COVARIANT STOKES PARAMETERS 

The complex polarization four-vector for the 
photon satisfies the normalization condition 

in the new system. Thus the vector e transforms 
according to the formula 

e' = G (P') L (P') e, (6) 

where L( P') is the matrix of the Lorentz trans­
formation for a four-vector, while 

G (P')e = e- k (eP') I kP'. (7) 

We note that the gauge transformation (7) 
changes neither the four-dimensional transversal­
ity condition nor the normalization. From now on 
we shall refer to (6) as the Lorentz transforma­
tion for the four-vector of the photon potential.* 

A partially polarized beam is described by the 
two-row density matrix of the photon 

p<ik> = (ex,U>) (e*"'.<k>) • (i, k = 1, 2) (8) 

ee* = ee* - eoeo = 1 (1) or by the Stokes parameters 

and the four-dimensional transversality condition 

ek = 0. (2) 

Gauge invariance allows us to impose on the 
vector e the condition 

eP =0, (3) 

where P is a four-momentum. Then, in the coor­
dinate system in which P = 0, relations (2) and (3) 
lead to the three-dimensional transversality con­
dition 

ek = 0. 

The four-vector e, satisfying (1) and (2), can be 
given in terms of two scalars ex<0 and ex<2> by 
the formula 

(4) 

(5) 

where l 0 and x<2> are two unit four-vectors sat­
isfying relations (3) and (2). These vectors can be 
constructed from the momenta of other particles 
participating in the process. 

We require that the three-dimensional trans­
versality condition (4) be satisfied in any coordi­
nate system. By the vector P we shall denote a 
momentum which determines the coordinate sys­
tem (for example, the total momentum of the sys­
tem). Clearly such a generalization of condition 
(3) can be meaningful only as a consequence of 
gauge invariance. Gauge invariance allows us to 
change the form of the Lorentz transformation for 
the photon. We shall assume that, in transforming 
to another system of reference, the polarization 
vector of the electromagnetic field is transformed 
by a gauge transformation and the usual Lorentz 
transformation, so that condition (4) is maintained 

(0-i) 
02 = i 0 ; 

'1 0 ) 
03 = (o-1 · (9) 

In going to a new set of basis vectors xW' and x<2>' 
( x<1>' x< 2>' = 0 ), which corresponds to a Lorentz 
transformation, the density matrix is transformed 
according to the formula 

p' = UpU+; 

U =(ex f3). 
[3-cx' 

(10) 

(11) 

The matrix U establishes a homomorphic mapping 
of the proper Lorentz group on the group of two­
dimensional rotations, in which every pure Lorentz 
transformation along the momentum k is put in 
correspondence with the unit matrix. 

The representation (11) can be regarded as a 
representation of the proper little group Lk.. The 
invariants of the transformation (11) are the degree 
of circular polarization E 2 and the degree of linear 
polarization r = ..j €~ + €~ • A representation of the 
proper group Lk of the form (11) is reducible and 
decomposes into one-dimensional representations. 
In this case the basis vectors of the one-dimen­
sional representations are the states with com­
plete right and left circular polarization. 

With respect to the improper Lorentz group, 
the four-vector e transforms according to a two­
dimensional irreducible representation of the im-

*A similar generalization of the Lorentz transformation was 
already essentially contained in the old paper of Heisenberg and 
Pauli.[12] 



COVARIANT EXPANSION OF THE ELECTROMAGNETIC FIELD 591 

proper little group Lk, which is isomorphic to 
the space group of the diatomic molecule and 
where E2 behaves like a pseudoscalar. 

For completeness, we mention that the Stokes 
parameters are simply related to the spin polari­
zation and quadrupolarization of the photon. For 
a particle with zero rest mass, [ 7] the spin is de­
termined by the four-vector r = €2k, where €2 
is a pseudoscalar. In the case of the photon, E2 
is the degree of circular polarization. 

We define the three-dimensional spin vector 
in any coordinate system as follows: 

s = nrofko = 820 = i [ee*], n = kfko. (13)* 

For the quadrupolarization tensor (with x, y, z 
axes along e1, e2, and n, respectively), we have 

1 
2 

~}·· ~ ~ 1, 2, 3). (14) 

Quadrupolarization of the photon is associated only 
with linear polarization. 

3. COVARIANT EXPANSION OF THE PHOTON 
IN ELECTRIC AND MAGNETIC MULTIPOLES 

In three-dimensional notation, the electric and 
magnetic multipoles are expressed in terms of 
the spherical functions Y LM ( n) in the following 
way (n = k/Jkj):C 13] 

ELM (k) = L -•;, (L :1- 1 t'I•J k I V'ky LM (n), 

MLM(k) = L-'I•(L + 1t'l•i [kVkl YLM (n). (15) 

They satisfy the relations 

kELM (k) = 0, kMLM (k) = 0, VkMLM (k) = 0, 

ELM (k) MLM (k) = 0 (16) 

and the orthogonality conditions 

~ELM (k) E~'M' (k) dQk = i'Jwi'JMM', 

~ MLM(k) M~'M' (k) dQk = fJLL' I)MM'' 

~ELM (k) M~'M' (k) dQk = 0. (16a) 

Let us first consider the relativistic functions 
which go over into the normalized spherical func­
tions in the system in which P = 0 (where P is 
the total four-momentum of the system photon 
+ radiator). To find the explicit form of such 
relativistic spherical functions, we introduce the 
four-vector n which satisfies the conditions 

nP=O. (17) 

*[e e*] =ex e*. 

It can be constructed uniquely from the photon mo­
mentum k (k2 = 0) and P: 

n =- (V- P2jkP) (k- (Pk)PjP2). (18) 

Here nk = -(kP )/1 -P2 , and in the system of the 
center of inertia 

n = {k/k0 , 0}. 

Using the four-vector n, we construct a sym­
metric tensor of rank L, Tlt.> .. Zm• which satisfies 
the conditions (we have TiPi = TP- ToP0 ), 

Tu ... tm = 0. (19) 

Under Lorentz transformations, this tensor obvi­
ously transforms according to a representation of 
the little group Lp, and has the form 

T(L) (2L-1)11 ./2L+1 
ik ... lm f(2L)I Jl 4n 

x{ntnk ... ntnm-2L~i( I'J;k- Pt:2k )· · ·ntnm- · · · 

- 2L =-- 1 n;nk ... ( fJ1m- p :am ) + · · ·} . 

From the tensor Tir? .. zm• we go over to a rela­
tivistic spinor having L undotted and L dotted 
indices: [SJ 

(20) 

where aJ..Li; sih = ( aJ..Li) Sih are the Pauli matrices 
for J..Li = 1, 2, 3; (- a 0 ) is the unit matrix. 

With respect to transformations of the rotation 
group, spinors with lower undotted indices and 
those with upper dotted indices behave in the same 
way. It is easily seen that in the system of the 
center of inertia, where all the time components 
of. t~e t~nsor Tir? . . l are equal to zero, the spino:J;" 

r1r2 ... rL 
Zs1s 2 ... sL goes over into a completely symmetric 

spinor of rank 2L. In the following we shall denote 
this spinor by Z L-

With the spin or Z L we associate the function 

(I) L-M .. I (2L)I 
YLM(n) = (- 1) V (L+M)! (L-M)I ZL. 

Interchanging dotted and undotted indices of the 
spinor ZL, we write 

~(l) L .. I (2L)I z 
YLM(n)=(-I) V (L+M)!(L-M)I L· 

(21) 

(22) 

Here L + M is the number of indices which are 
equal to 1, L- M is the number of indices which 
are equal to 2. The index i numbers the functions 
which correspond to the same values of L and M 
and which differ from one another in the distribu-
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Values of the functions y<l_k ( n) 

MI---------------------,-----L ________________________ __ 

1 
{) Y4n 

Y <'> _ ,r2- 2i = 
tO -- Y 2 

Y <2> _ ,r2- 22 = 
10-- y 1 

= 1/3 (nz +no) 
4n 

Y <t> zi-
II= ,-

v<'>-- 2 zii = .. I 15 {nz nx + inz nu-n n 
21 - 12 v 8 :rt , 0 X 

= -. ;-3 (nx + iny) Vsn -inony- 3~2 (PzPx +iPzPy-Po Px-iPoPu)} 

(2) i2 .. /15{ +. + y 21 = - 2 zll = V ~ nz nx lnz ny no nx 

-1 Y o> _ 22 __ y<t>• 
1-1- 2- II 

2 

-2 

tion of the index values 1 and 2 between dotted and 
undotted indices. The number of such functions 
for given L and M is L - I M I + 1. 

In the system where P = 0, the functions 
Y~_k(n) are the same for all i: 

L== 0 1 
(L) -.1--

T;k...lm = 1/r 4n Y 3f8n n; 

The corresponding values of the functions Y~_k ( n) 
are given in the table. 

We now proceed to the expansion of the free 
electromagnetic field in multipoles. In k-space, 
on the hypersurface k2 = 0, we define the electric 
multipoles by the conditions 

(i) 
kmEmLM (k) = 0, 

(i) PmEmLM (k) = 0 (m = 1, 2, 3, 4), (23) 

and the magnetic multipoles by 

kmM~)LM (k) = 0, p mM~)LM (k) = 0, 
(i) aMmLM (k) I akm = 0. (23a) 

Here 

aMmfakm = V'kM + aM0jako. 

+ inony + 3~2 (P2 Px + ip2 Py +Po Px + ipo Py)} 

y(l) 
22 

Y <1> _ 2 zi2 __ y<t>• 
2-1 -- 22- 21 

Y <2> _ 2 222 __ y<2>• 
2-1-- 12- 21 

jj /r15 { 2 2 • 
= Zll = J 32n nx-ny-21nxny 

+ 3~2 (P;- P~- 2iPxPu)} 

Y <o _ 222 _ yo>• 2-2- 22- 22 

Yt1 (n) = Y LM (n), 
-(i) • 
y LM (n) = y LM (n), 

where YLM(n) are the ordinary spherical func­
tions. We give the values of the tensor Ti~? .. zm 
for the first few values of L: * 

2 
Jf15j32n {n;nk - 1/ 3(/);k- P;Pk/P2)} 

We note that the tensors T(L) considered above 
satisfy the relation km<n<L)jakm = 0, since 
8ns/8km = 6ms/kP- Pmks/(kP) 2 and 
km8ns /8km = 0. Using this and conditions (23), 
(23a), and (24), we can by means of the relativis­
tic functions (21) obtain for the covariant multi­
poles the expressions 

E~tM (k) M~)LM (k) = 0. (24) 

*The spacelike functions Z(a, e, cp) introduced by Dolginov[3] 

(where a, e, cp are the angles of the vector n in four-space), in the 
system where P = 0, do not go over into spherical functions with 
a definite L, since in general the tensor corresponding to them is 
not orthogonal to any constant vector P. It should be noted that a 
correspondence between Dolginov's functions and the functions 
(21) exists only for L = 1, when they coincide to within a factor. 
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(25) 

M<'> (k) 1 L-'lz (L I )-•r, k l a }'<'> ( ) ) P mLM . = i V _ p• + ' Bmtst l \ aks LM n t· 

(26) 

In the system for which P = 0, formulas (25) and 
(26) go over into (15), since E1230 = 1. 

The multipole expansion of the Fourier compo­
nents of the electromagnetic field 

Am (x) = ~Am (k) eikx f~kl + C.C. 

will have the form 

Am (k) == 2] d1E~)LM (k) + 2] mt1M~~M (k) 
LMi LMi 

or, changing to the spinor ZL, we get 
00 

Am (k) = 2] eL ~r ~ p• L -•;, (L + I f'1• 
L=1 f 

X [ km ( Pna~J- (kP) a:m J ZL 

00 

(27) 

+ 2] mL~r ~ 2 +L-'1'(L + l(lzemtstkt (a~ ZL) Pt. 
L=1 f p s (28) 

Here e L and m L are spinors with L dotted and 
undotted indices, by means of which the products 
eLZL and mLZL, respectively, are contracted. 

The quantities e~k and m~k in (27) transform 
like the components of the spinors eL and mL. 
In the system of the center of inertia, they are 
equal for all i, for the same values of L and M. 

4. COVARIANT EXPANSION OF THE CURRENT 
OF CHARGED PARTICLES IN MULTIPOLE 
MOMENTS 

For a classical system of charges, the current 
density jk(x, t) is given by the formulaC 14] 

h (x, t) = 2] e<t>V<t>k{!3 (x- X(i> (t)), (29) 
i 

ajk (x, t) 1 axk = o. (29a) 

Here x(i)(t) is the trajectory of the i-th charge 
and vi= { v(i), 1}. We use the symbol P for the 
energy-momentum 4-vector of the system of 
charges, and first treat the problem in the sys­
tem where P = 0. 

We go over to time and three-space variables 
(which is convenient because of the explicit asym­
metry of (29) in the coordinates and time). We 
denote the coordinates of the center of inertia by 
x. Then 

X(/) (f) = Xc + ;(/) (/). (30) 

In the system where P = 0, Xc is obviously inde­
pendent of t and we may set Xc = 0. Expanding 
(29) in powers of ~(i)• we can formally write 

jk(x, t) = 2] e<t>~U>k exp [- (~<t> V)] {! 3 (x) (31) 
i 

or, in components ( ~(i) = a~(i) /at), 

j = 2] { + e<,>~<'> - e<'>~<t> (;(l)v) + · · ·} {!3 (x), (32) 

p = ~ {e(l)- e<'> (;<l)V) + +e<t> (S(l>V)2 - • • ·} {!3 (x). (33) 
l 

In these formulas we have placed above one another 
terms which together satisfy condition (29a); in this 
sense we may call them terms of the same order. 
We use the notation 

2]e<'> = Z, 
i 

h e(l)S(i)<> = Q~1 > (t), 
i 

+ 2] e<,>S(i)<>S(i>~> = Q~J (t) 
i 

and, in general, 

'\1 1 !: !: (L) 
""-~ v "'<'>""'<'>13 •.. suh = Q"{l ... y (t). 
i . 

(34) 

In this notation, the expansion of the charge den­
sity is given simply in the form 

p = ~ (- I)L Q(L)VL{!~ (x), 
L 

(35) 

where vL denotes the tensor 'Va'\7{3 ... ; it is con­

tracted with the tensor Q( L). Lti;;s 

Formula (35) is the expansion of the charge 
density in multipole moments. 

In the expansion (32) for the current, the first 
term obviously gives the derivative of the dipole 
moment. In the second term, we separate the sym­
metric and antisymmetric parts. The symmetric 
part, Y2 ( i ( ;v) + ; ( iv )), together with the quad­
rupole term in (33) satisfies the continuity equa­
tion. The antisymmetric part is solenoidal and 
corresponds to the magnetic moment, since it can 
be written in the form -% [;xi] x '\7. (In the fol­
lowing, we shall omit the charge factors.) 

In general, we have for the L-th term in the ex­
pansion (32), 

- (-1)L-l : l:t'7 L-1 3 
BL-(L-i)l'o('ov) 6(x). (36) 

In formula (33), there corresponds to the vector 
BL the scalar 

BL = (- I )LQ(L)VL63 (x). (37) 

The symmetric part of BL is equal to 

BLs= (-I)L-1 L1! ~ ;(;V)L-I6s(x) 

= ( _ 1 )L-1 ~ Q<L>vL-1113 (x) (38) 
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and satisfies the condition 

BL+ VBLs= 0. (39) 

The antisymmetric part is 

BLa = (- l)L-1 L "Z; i {~ (SV)- S (~V)} (sV)L-2~ 3 (x) (40) 

and satisfies the condition 

(41) 

and is related to the 2L-pole magnetic moment of 
the system (after summation over the charges). 

We now rewrite (32), using (38) and (40) 
( 0'., {3, y = 1, 2, 3) 

00 

j" = {~ (-l)L-1 ~ Q~~~···~· 
L=1 L-1 

00 

"1"'L-1 1: L-2 L · 1: } + L.J ~---rte<l)(.,<t>V) (-1) [[S(l>;,<t>lVJ" b3 (x). 
L=2 ' (42) 

Relations (35) and (42) can be combined as follows: 

p =- divN, j = aN I at + rot M, (43)* 

where 
00 

N" = { ~ (- l)L-1 Q~~ ... sV13Vy . ..Vs} ~ 3 (x), 
L=1 

-(-P2 )- 112 Eklmp~l~mPp, where the dot now de­
notes differentiation with respect to the proper 
time of the system. 

We can now write for the electric part of the 
current density four-vector* 

hel = [zp, + a~k (PkNt- P;Nk) J P~1~3 [x- Xc (t)], (47) 

where Xc ( t) = Pt/ P 0, and where N i in the system 
with P = 0 is given by the first of formulas (44). 
In an arbitrary system, the definition is analogous 
to the definition of the dipole moment (condition 
PN = 0!). 

For the magnetic part of the current we find 

i7 =- 8tklmMkPta_i_P~1~8 [X-Xc(t)], (48) 
xm 

where M is defined when P = 0 by the second of 
formulas (44) and the condition PM = 0. 

Formulas (47) and (48) are the relativistic gen­
eralization of relations (43) and (44). They can be 
applied to the treatment of the electromagnetic 
properties of systems of charges. 

5. MULTIPOLE RADIATION 

As an example we consider the radiation of 
electromagnetic waves by a system of charges. 

00 

M"= {,~1 (-l)L-1M~~~ ... sV13Vy ... Vs} ~3 (x). 
To a source of the electromagnetic field with cur­

(44) rent density h (y) there corresponds the vector 
potential 

Here 

(45) 

N corresponds to the electric, and M to the mag­
netic part of the current. 

In order to write the expansion (32), (33) in 
relativistic form, we associate with the multipole 
moments symmetric four-dimensional tensors or­
thogonal to P, in the same way as was done in 
Sec. 3. These tensors must satisfy the relations t 

Q~LzPm =0, M~LzPm=O, (46) 

i.e., they must transform according to a represen­
tation of the little group Lp. 

The tensors Q and M are calculated in the 
system where P = 0 or, what is the same thing, 
on the spacelike hyper surface orthogonal to P. 
To get a covariant expression, the vector product 
[ ~ x ~]a in formula (45) must be replaced by 

*rot= curl. 
tin addition, the equations 

a ax Q~~!n ... (xP) = 0, 
n 

a 
- M(L) (xP) = 0 ax ···n··· n 

are valid. 

A1 (x) = 4n ~DR. (x- y) j; (y) d4y, (49) 

where DR ( x - y ) is the retarded Green's function. 
Expanding the current in multipole moments, we 
can write 

00 00 

At (x) = ~ A)L)e1 + ~ A~L)M, (50) 
L=1 L=1 

A~L> (x) = 4n ~DR. (x- y) j)L> (y) d4y. (51) 

In momentum space, Eq. (51) can be written as 

A)L> (k) = 4n (2n)4 j)L> (k) DR. (k); (52) 

j)L) (k) = (2!)4 ~ j)L) (y) eiky d4y, (53) 

DR. (k) =- (2!)' {P : 2 +in~ (k 2) e (ko)} (54) 

( P denotes the principal value; E ( k0 ) = k0 I I ko I>. 
In formula (54), the term containing 6 ( k2 ) ob­

viously describes the radiation of electromagnetic 
waves. We integrate this term over the energy. 

*P~1 8 3 [x - xc(t)] is an invariant. If all the multipole moments 
of the system are equal to zero, then ji = ZPiP~1 0 3 [x- Xc(t)], 
which coincides with the formula for the current density of a 
point charge. 
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We then get 

A~L>(x)-P~ j~L) (k) e;;ikx d4k = )a1L)(k)eikx ~: + c.c., 

(55) 

where k0 = lkl, i.e., k2 = 0. As usual we impose 
on a<L)(k) the condition aiL>(k) Pi= 0. 

The calculations give the following values for 
a(L)(k) {where we use the long-wave approxima­
tion in the system in which P = 0): 

a<L)el (k) = B (kP)L {<kP) _j_ r<L) (k) 
l . (- P•)L/2 + '/z ilkl lm ... n 

. ( iJ (L) k. )} Q(L) ( ) - kt Pk ilkk Ttm ... n ( ) tm ... n X , (56) 

a)L)M (k) 

- B (kP)L i1 Btstrks (a~ T)fJ ... n (k)) P,M)fJ ... n (x), 
- (-P")L/2+'1• t (57) 

where x = kP/(- P 2 ) 112; T(zL) (k) are the ten-m ... n 
sors (19) of Sec. 3; Q(L)(x) and M(L)(x) are the 
Fourier coefficients with respect to x of the ten­
sors of the electric and magnetic multipole mo­
ments, in which the traces over any pair of indices 
are made equal to zero. 

If we go over from the four-tensors T( L), M( L), 
and Q(L) to relativistic spinors, we arrive at for­
mula (28), where 

eL(x) =-TLB (kP)L (F2)-L12 QL(x), (58) 

mL (x) = 2-L B (kP)L (P 2)-L12 ML (x), (59) 

iL+l -. j" (2L)I L (L + 1) 
B = L (2L- 1)11 Jl (2L + 1)4n • 

(60) 

Formulas (56) and (57) express the connection be­
tween the expansion of the radiation in multipoles, 
(25) and (26), and the expansion of the current den­
sity of the radiator in multi pole moments. 
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