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We evaluate the single-particle Green's function of a nondegenerate electron gas in the Born 
approximation. We show that when we take the Coulomb interaction into account the single
particle excitations (plane waves) are distorted because of damping and because of a time 
modulation of the unperturbed wav·e. 

THE expression < ap (t') ap (t) > ; t' > t ( the aver
aging is over a canonical ensemble and the opera
tors are in the Heisenberg representation) de
scribes the time-dependence of a particle with 
momentum p which at time t is in a system of 
N such particles. When there is no interaction 

(ap (t') a; (t)) ~ exp ( -iept I ti), 

i.e., the particle is described by a '(>lane wave. 
When there are interactions the time dependence 
of < ap (t') a.p (t) > will differ from this simple 
law. One can, however, expect a simple periodic 
law in the case where the interaction is weak, at 
least for not too long times, and that the deviations 
from it will be small. The deviations indicate the 
order of magnitude of the times during which the 
particle can be described by a plane wave. In the 
present paper we consider the time behavior of 
such a single-particle correlation function (more 
exactly, a Green's function) for a nondegenerate 
electron gas in the Born approximation. 

1. THE DYSON EQUATION 

The Dyson equation for the single-particle 
thermodynamic Green's function is of the form 

@3p (-r'- 't) = @3~0) (-r' - 't) 

~ (3 

+ ~ d'tl ~ d-r2@3~0) ('tl- 't) ~p ('t2- 'tl) @3p (-r'- 't2) 
0 0 

--- -- + ---o--
(1) 

(the diagrammatic form is under the equation). 
The thin, directed full-drawn line corresponds to 
the zeroth order thermodynamic Green's function: 

@3~0> (-r'- -r) =- Sp {i<rJ+~'-N-H,JT (ap (-r') a; (-r))} 

=-<Tap (-r')a; (-r))0 ; 

where 

The thick, directed full-drawn line corresponds to 
the single-particle thermodynamic Green's func
tion 
@3P (-r'- -r) =- Sp {e 13<ll+I'-N-H,J T (ap (-r') a; (-r) S (~))} 

=-<T(ap(-r')a; (-r)S(~))0 , 

where 
(3 

S (~) = Texp (- ~ H;(-r)d-r), 
0 

Hi ( T) is the interaction operator in the interac
tion representation, and ~p ( r 2 - r 1 ) is the mass 
operator, which is the sum of all possible compact 
diagrams. In the case of the Coulomb interaction, 
which we consider henceforth, 

"" li"p' H0 = .L..J Zm a;ap, 
p 

H 1 "" "" V a+ a+ a a Vq = 4lte2/q2 , t= 2V .L..J .L..J q p, p, p,-q p,+q• 
p,p, q+O 

V is the volume of the system. 
One can write down a similar equation for the 

modified interaction potential: 

ll 

Wq(-r'- -r) = Vqll (-r'--r) + Vq ~ ITq (-r1- -r) Wq (-r'--r1)d-r1. 
0 • (2) 

-----=-----+---0---

The thick dotted line corresponds to the modified 
potential Wq (T' - T); the thin dotted line corre
sponds to the Coulomb potential; llq is the sum of 
all compact diagrams. 

In the following we shall solve Eqs. (1) and (2) 
in the Born approximation, using for ~p an ex
pression which is of second order in the interac
tion constant; this corresponds to taking the dia-
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FIG. 1 

grams a, b, and c of Fig. 1 into account; for IIq 
we retain the lowest order term depicted in 
Fig. 1d. We must note that the contribution from 
diagram 1b diverges for small momenta and we 
need the subsequent diagrams in terms of the 
Born parameter, such as 1e and lf, to get rid of 
this divergence. The diagram 1c takes the second
order exchange effects into account and can be 
dropped in our case of a nondegenerate gas. In 
practice one can reduce the evaluation of the con
tribution of the diagrams 1a and 1b with the cor
rections 1e, lf, and so on to evaluating the con
tribution from diagram 1a where the interaction 
is replaced by the modified interaction. 

One can use the Feynman rules[t J to write 
down explicitly the expressions corresponding to 
the different diagrams: each full-drawn line di
rected from T to T' corresponds to ®0 ( T' - T), 

and each dotted line to V q o ( T' - T); i/? each 
vertex the momentum conservation law is satis
fied; each n-th order diagram has a factor 

(- I )n+Lgj2nn!Vn' 

where L is the number of closed electron loops, 
g a factor which is equal to the number of non
equivalent diagrams which can be obtained from 
the given one by a permutation of the endpoints of 
the dotted lines and of pairs of dotted lines. The 
summation is over all internal momenta and the 
integration from 0 to {3 over all internal times. 
The unperturbed Green's functions are of the form 

@l<o> (T'- -r) = { (np- I) e<~'-~> <1'--•p> -r' > T 
P npe<~'-~> <1'--•p> T' < T, 

@l~o> (0) =- np. 

In the following we use Boltzmann statistics every
where: we assume the Born parameter e2/tivT to 
be small ( vT = ~). 

To solve the Dyson equation we use an expansion 
of the thermodynamic Green's functions in a 
Fourier series in the variable T:[4,GJ 

+jj 
@lp (iwn) = + ~ @lp (T) ei"'n~ dT, 

-jj 

The Dyson equation becomes then 

@lp (iwn) = @l~l(iwn) + @l~O) (iwn) ~P (iwn) @lp (iwn), 

@l~l (iwn) = (iwn + f,l,- ept1, Wn = (2k + I) n/~. 

(k = 0; ±I, ... ), 

@;1 (iwn) = @l~l-l (iwn)- ~P (iwn)· 

2. THE MODIFiED POTENTIAL Wq ( T) 

(4) 

(5) 

It is not possible to go in Eq. (2) directly over 
to the Fourier representation, since the function 
W q ( T) does not satisfy the condition W q ( 7 + {3) = 
Wq ( T).[4] One can, however, write Wq ( T) in the 
form 

----=----+----o----+----0----o--- +··· 

or 

----=----- + ---0---
where the function Kq is the solution of the equa
tion[3] 

I> 

Kq(T2-Tl) = Ilq('t2-Tl) + Vq~IIq('t-Tl) Kq(T2-T)dT. 
0 (7) 

D= 0+0-0 
We can now go over to the Fourier representa

tion in Eq. (7). 
We have 

Kq(iwn) = IIq(iwn)/[1- VqiTq{iw11)], Wn= 2nnj~. (8) 

We have then 

Wq (T) = Vq ~ (T) + T .2; e-ioon~ 
n 

=Vqt'>(-r) +Wq(T). 

V~IIq (iron) 

1-Vqiiq (iron) 

( 9) 

We evaluate Ilq ( T) in the above-mentioned ap
proximation. Using the Feynman rules we get 

Ilq (T) = + .2; @l~~q/2 (T) @l~0]q/2 (- T), ( 10) 
p 

from which it is clear that ITq (- T) = IIq ( T) while 
IIq ( i wn) is of the form 

+I> 
Ilq (iwn) = + ~ ei"'n~ II q{T) dT 

-B 

Calculations give for IIq ( T) 

Ilq (T) =- n0 exp {~eq12 (2T/~- I )2 - ~eq;2 }, 

(11) 

(12) 

@lo (T) = i- .2; e-ioon~ @lp (iWn), Wn = mtj~. (3) where n0 is the particle density, n0 = N/V. 
n 



SING L E - PAR T I C L E E XC IT AT I 0 N S IN A N 0 N- DE G E N E RATE G AS 587 

For IIq ( i wn) = IIq (n) we get 

Ilq (2k) =- ~noiPk (JI ~Bqt2 ), Ilq (2k + I) = 0, 
1 

lj)k (x) = (- I )k e-x' ~cos k l't zex'z' dz. 
0 (13) 

The function <Pk (x) has the following properties 

IPo (0) = I, lj)k (0) = 0, k =I= 0, lj)k (x) > 0; 

for small x 

<p0 (x) = I - 2x2/3, IJlk (x) = 2x 2jn2k2 , k =1= 0. 

The function W q ( i wn ) is of the form 

W (i2knjr:!) =-- 4nezxzq>k (.~ 
q .., qz(qz+xzq>k (Jifleq/2)) 

= 4 ne2 ( 1 - ___!___) · q2 + x2q>k q2 • 

Wq (i (2k +I) nj~) = 0; 
(14) 

where K2 = rrf ;;,; 4 7Te2 j3n0 is the inverse square of 
the Debye radius. 

3. THE MASS OPERATOR 

The mass operator is of the form 

~P (T) = - (Z1:rt)" ~ d3qW q(T) @~2q (-r) 

=- (2~)3 ~ d3qVq@b02q (T) 6 (T) 

As a result we get the following expression for 
I: (2) 

~(2)(" )-__ 1_\ds V~ITo(O) 
p lWn - (2:rt)" .) q 1-vq ITo (0) iwn+ 1-t- Ep-q 

1 (' ITq(O) - IT0 (0) 

- (2:rt)3 .)d3qV~ iwn+!-t-Ep-q 

- _1_ (' d3 V2 ~ ITq (iwn) - (18) 
(2:rt)3 .) q qn,"' 0iwn+ 1-t - Ep-q- iwn, · 

After summing over n/SJ we get an expression for 
the mass operator which has the following nec
essary analytical properties* 

~(2l(w-+-i6)=- 4 (' daqy2C rr;(w')cthflw'/2 dw' 
P ' f1(2:rt)4 .l q .\w+~.t-ep-q-w'+i6 

-oo 

+ _1_ (' d3 V~IT0 (0) 
(2:rt)3 J q W + /.l.- Ep-q + i6 

_ 1 (' d3 V~IIo (0) 1 ) 
(2:rt)3 .) q 1- Vq II0 (0) w + 1-t -ep-qT i6 . (19 

Here IIq( w) = rrq_ ( w) + i rrq_ ( w) is the analytical 
continuation of IIq ( i wn) in the upper half-plane.C3J 

We first evaluate the first term in (19), I:~f< w). 

After some calculations we get for real w:t 

Re~~) (w) =-~{arc tg (( Zmi~;J- /.l.) + p(x )-1 

-arc tg ( Y 2mli~:2+ 1-tl- pjx) -1
}, 

(w + fl > 0); 

- (21:rt)" ~ d3qW q (-r) @b~q (-r). (15) Im~h2)(w) = 2';z~P {In [I+ CV2mh a(:a+~-tl+P)a] 
The first term of (15) gives 

~~) (iwn) =- (n2x 2j2m) <p0 (V ~ep)· (16) 

This result was obtained by Bonch-Bruevich.r5J 
We note that this is a quantum term. The second 
.term is of the form (after we have changed to the 
Fourier representation) 

~<2>(iw ) =- _1 _ (' d3 '\l V~IIq(iwn,l 
P n (2:rt)3 .) q f,1-VqiTq(iwn,) 

1 

(17) 

We note that only the term with n1 = 0 gives a di
vergence for small q. We can thus drop V qiiq (iwn1) 

in the denominator when n1 ¢ 0. Moreover, we can 
replace IIq(O) in the term with n1 = 0 by 110 (0) = 
-j3n0 since we can neglect this term for not too 
small values of q. Finally, it is convenient to 
write the term with n1 = 0 as follows: 

~~ ~M ~~-~~ 
1-Vilo(O) = 1-VqiT0 (0) + 1-Vqflo(O) 

and to drop the denominator in the second term, 
since the corresponding integral does not diverge. 

-In [ 1 + xz ]} , 
(f2mfi,-2(w+ !l)- p)Z 

(w + fl > 0); 

Im ~~} (w) = 0, (w + fl < 0). (20) 

We have then 

~<2] (w) _ me2 i In 1 + i [V 2m (w + J.t)/lix+ p/x]-1 • ( 21) 
P - f11i2P 1 + i [V 2m (w+ !l)lhx- p/x] 1 

This expression is valid for all w. It is clear that 
all its poles lie in the lower half-plane, as should 
be the case; we must bear in mind here that we 
choose the branch of the square root which lies in 
the upper half-plane. An estimate of the remain
ing terms of the mass operator shows that they 
are of the order 

e2x~fiwL · 0 ([P (w + fl)- ~epr2). 

They give a small contribution when the condition 

e2x/~ (fiwL)2 ~ 1, wt = 4ne2n0jm, 

*cth = coth. 
tarctg =tan-'. 
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FIG. 2 

is satisfied; this is equivalent to rn » rB, where 
rB =li 2/me2 is the Bohr radius. For a sufficiently 
rarefied plasma this condition is usually satisfied 
at the same time as the condition for the applicabil
ity of perturbation theory. 

4. THE GREEN'S FUNCTION 

Using the mass operator (21) we find the time 
dependence of the Green's function. We have 

00 

Gp (t) = (2n:nr1 ~ e-i"'t11i dwf[w + fl- ep- 'i.}2J (w)]. (22) 
-00 

For t > 0 [ Gp (t) = 0 when t < 0]. We close the 
contour of integration in the lower half-plane (see 
Fig. 2) encircling the branch point of the logarithm, 

(i) = - fl + (VB;- + i Yii nWL r . 
The integral along C is equal to the product of 
- 2 1ri by the sum of the residues at the poles of 
Gp (w), which lie all in the lower half-plane. With 
the above-mentioned accuracy these poles are of 
the form 

wp = - fl + ep ± Y e2xf~- in2pxf8m 

(we consider p R>pT = ..fmT/f). The integral over 
L gives a small contribution and we get finally 

Gp (t) ~ e-i<•p-1'->t!J; e-rPt cos (Jfe2xf~ tfn)• (23) 

where rp =lipK/8m. 
The plane wave is thus damped when the inter

action is taken into account, and its amplitude is 
modulated in time with a frequency 

V e2xf~fn. 

Since r p «..; e2K/,B/ti the difference from a plane 
wave will become appreciable after periods of the 
order 

t ~ 1i V ~/e2x. 

5. THE DISTRIBUTION FUNCTION AND THE 
CHEMICAL POTENTIAL 

Using the well-known relation between the spec-

advanced Green's functions[7] we have the following 
equation for the chemical potential 

00 

n = (- 2n: ra I d3 p _!___ \' ~:::-.....--::-:----;lm~l:--;P~;-:--,;--:;:-'"" J n Jo (w + J.t ep-Re l:p)2 + (Im 1:p)2 

(24) 

If we approximate the spectral density of the cor
relation function by a a-function, we get 

00 

n = (2n:f3 I d3p I{) (w + fl- ep- Re'i.p) dw (25) J j, 1 +ei>"' 

Substituting here the values of the roots 

w =- fl + Bp ± Jfe2x/~. 

we get* 

-00 

(26) 

which is the momentum distribution function when 
the interaction is taken into account. We also ob
tain easily the corrected value of the chemical 
potential 

fl =flo+ {)fl, flo= flle•=o; 6fl =- e2x/2, 

from which follows the well-known Debye correc
tion to the free energy, - e2NK/3. 

In conclusion the authors express their sincere 
gratitude to V. L. Gurevich and Yu. A. Firsov for 
valuable advice and to A. G. Samonovich for dis
cussing their results. 
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