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A one-dimensional steady-state pulse propagating along a magnetic field in a cold plasma is 
considered. The calculations are carried out in the nonrelativistic single-particle approxi
mation, neglecting collisions, and the plasma is assumed to be quasi-neutral. The equations 
are solved exactly. The pulse shape and velocity distribution are investigated. It is shown 
that the lines of force of the magnetic field and the trajectories of the particles in the pulse 
are helices. The dependence of Mach number on wave energy is determined. It is found that 
there is an appreciable acceleration of the electron component at the pulse maximum even 
for small oscillations of the magnetic field. Most of the wave energy is concentrated in the 
kinetic energy of the electrons. 

THE stationary one-dimensional motion of a rare
field plasma perpendicular to a magnetic field has 
been investigated in detail by a number of 
authors.Ct-2] In the present work we consider a 
stationary wave moving along the field. 

We assume that a plane pulse is produced as a 
consequence of an initial perturbation of the plasma 
and then propagates along the field. The effect of 
the initial conditions disappears in the course of 
time and the pulse shape is then determined by 
nonlinear effects, dispersion, and dissipation. The 
last effect may be due to Coulomb scattering, the 
average electromagnetic acceleration of the parti
cles in the wave by the unperturbed thermal veloc
ity, or pulse instability. 

Because of the complexity of a complete analy
sis of this problem the investigation is usually 
divided into two steps: the stationary shape of the 
pulse is first determined neglecting dissipation; 
then the effect of dissipative processes on this 
wave shape is considered. 

It can be shown that with no dissipation the 
pulse shape remains unchanged at large distances 
from the source and depends (for a given unper
turbed plasma state) on the velocity of the pulse; 
in turn, the pulse velocity is related uniquely to 
the wave energy fg, 

We shall find the pulse shape as a function of fg 

under the following assumptions: a) the plasma 
density is low so that Coulomb scattering can be 
neglected; b) the thermal velocities of the unper
turbed particles are small compared with the 
wave velocity so that the single-particle approxi-

mation can be used; c) the velocities of particles 
in the wave are small compared with the velocity 
of light. 

1. BASIC EQUATIONS 

In this formulation the problem is desc,ribed by 
a system consisting of the equations of motion for 
the electrons and ions, the equation of continuity, 
and Maxwell's equations with self-consistent fields. 
We introduce the following notation: V and v, N 
and n are respectively the velocities and densities 
of the ions and electrons; E and H are the elec
tric and magnetic fields, m is the ion mass, /.1 is 
the ratio of the electron mass to the ion mass, e 
is the absolute value of the electron charge and c 
is the velocity of light. To simplify the analysis 
we assume that the ions are singly charged. 

The basic equations for the problems are 

aa~ +(VV')V =; {E+! [VHJ}, 

-~g; +(vV')v}=: {E ++[vHJ}, 
aN;at + div NV= 0, anjat + div nv = 0, 

rotH= 4nec-1 (NV- nv), 
rotE = - c-1 aHj8t, 

divH = 0, 
divE= 4ne(N -n). 

(1)* 

(2) 

(3)t 
(4) 

(5) 

(6) 

The x axis is taken along the unperturbed field 
H0, which is assumed to be uniform. We write the 

*[vH] = v x H. 
trot = curl. 
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solution in the form of a stationary plane wave 
traveling in the direction of positive x with veloc
ity U. In this case all quantities depend on the 
single variable ~ = x- Ut so that a/ay = a/az 
= o, a/ax= d/d~ and a/at=- Ud/d~. When 
~- oo (unperturbed plasma) E, Hy, Hz, V and v 
vanish and Hx = H0, n = N = N0• 

Equations (2), (4) and (5) can be integrated di-
rectly: 

N=N0Uj(U-Vx), n=N0Uj(U-vx), 

Eu = VHzfc, Ez =- UHufc, 

Hx = H0 = const. 

( 7) 

( 8) 
(9) 

Substituting (7)-(9) in (1) we see that the y and 
z components of the current c ( NV - nv) are total 
differentials. It then follows from (3) that 

Hz=- HJ M 2 (Vz + J.lVz), Hy =- HJ M 2 (Vy + J.lVy), 
(10) 

where 

M = V4nN 0mUjH0 (11) 

is the magnetic Mach number. 
We introduce the dimensionless variables 

eHo t h H c Ex V v 
5 = mcU "' = H 0 ' 8 = U H0 ' W = U' w = U 

and set 1 - Wx = e, 1 - Wx = J, 
After substitution of the integrals that have been 

obtained the equations are reduced to the system 

8 ~~ = e- M2J.1 (Wuwz- Wzwy), 

(12) 

( 13) 

(14) 

( 15) 

We seek a solution for which e and J are 
everywhere positive (in which case particles are 
not reflected from the wave). We conclude from 
( 15) that the neutrality condition e - J « e is 
satisfied in the nonrelativistic case ( (3 2 « 1 ). * 
We write e - J = {3 21j! and expand (12)-(15) in 
powers of (3 2• We must write e = J in the zeroth 
approximation. The quantity E is eliminated by 
subtracting one equation in ( 12) from the other. 
The problem is then reduced to a system of five 
equations: 

*Since the small parameter {32 appears in the higher deriv
ative in (14) this conclusion is subject to further verification; 
this will be given at the end of Sec. 2. 

E>dd~ = -M2 (Wywz- Wzwy), 

dWu ( 1 M2) W 2 dS = - e - z +[1M Wz, 

J.1 d:: = (f-J.1M2) -M2 Wz, 

dW z ( 1 M2) W M2 ds = a-· y-J.1 Wy, 

dwz ( 1 ) !l£tS =- e--J.1M2 Wy+M 2Wy· 

The electric field E is defined by 

e = (1- J.l) E>WE>2jds2, 

while the correction is 

'lJ =-+e2 d2€;)2fds2. 

Introducing the complex variables 

P = Wu+iWz, Q = Wy + iwz, 

we can write (16) in more compact form: 

E>dE>jds = ImPQ*, 

dP jds = (E>-1 - M 2) iP - J.1M2iQ, 

J.ldQjds =- (W1 - J.1M2) iQ + M 2iP. 

(16) 

(17) 

(18) 

(19) 

When s - + oo, we have e = 1 and P = Q = 0. 
The system in (19) can be integrated by quadra

tures if the following substitutions are made: 

P = p exp {i ~ K (s) ds}, Q = (q + iq1) exp {i ~ K (s) ds}, 

(20) 
where p, q, q 1, and K are real functions. 

Substituting ( 20) in ( 19) and separating real and 
imaginary parts we have 

E>dE>jds =- q1p, 

dpfds = J.1M 2ql> 

K = e-1 - M 2- J.1M 2qjp, 

J.ldqfds = (E>-1 - J.1M 2) q1 
fldqtfds + ).lKq =- (E>-1- J.1M2) q + M2p. 

Writing .flj, M = a and p = acp we have from 
(21) and (22) 

e = V1- qJ2 , 

while (22)-(24) and (26) yield 

q = (arc sin qJ- cx2qJ)/f.le£, 

K 1 _ _1:_ arc sin <p 

=V1-<p2 11 <p 

(21) 
(22) 
(23) 
(24) 
(25) 

(26) 

(27) 

(28) 

Substituting these results in (25) we determine 
q1(cp): 

"' 1 [ \ arc sin2 <p qt(qJ)=± 11ct 2~ <p dqJ-(l+J.1)arcsin2 qJ 
0 

-]''' + 2e~.2 (1 + !!) (1- V1- qJ2) . (29) 

The spatial dependence of cp ( s ) is determined by 
quadratures from (29) and (22). 
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2. WAVES OF MEDIUM AND LOW INTENSITY 

We consider the waves for which a 2 « 1 (i.e., 
M2 « 1/ f.l ) • In this case 0 s cp2 s cpt « 1 so that 
arc sin cp and .J 1 - cp2 can be expanded to second 
order. Limiting ourselves to zero order terms in 
a and J.l in the coefficient for cp4 we have 

q1 (<p) = ± 1Jll1-1 A (M) YI -<p2j6a2 A2 (M), (30) 

where 

A(M) = }f(M2 -l)/M2 + 11· (31) 

To determine the spatial dependence of cp we 
choose the origin of coordinates in such a way that 
dcp/ds = 0 when s = 0. We then have from (22) and 
(30) 

-,,r6- Af MAs 
IJl = r a ch Vii"- · (32)* 

Keeping lowest order terms in a and J.l we have 

p = V6M2A(M)I1 j ch ~ s, 

V6A I MA q = -p,- ch Vii" s, 

- -. if; MA2 h MA I h2 MA ql - V 11 s Vii s c Vii s, 

K = -1/f.l, 

W x = 3f.t2 M4A4jch2 ;~ s. (33) 

A numerical estimate shows that the error is 
no greater than 3% when M s 10. 

It is evident from (33) and (17) that quasi-neu
trality holds if the following inequality is satisfied: 

6f.t~2M6~ 1. (34) 

The nonrelativistic condition for electrons re
quires that 

(35) 

Comparison of (34) and (35) shows that the re
qurement pM2 « 1 is satisfied automatically as a 
consequence of our assumptions of nonrelativistic 
velocities and quasi-neutrality. 

Returning to the original variables V, v and H 
we write the dependence of these quantities on ~: 

V - -3 2M5A4U I A ~ 
x-Vx- f.l o ch2 v~ ""[o""' 

Vy+iVz=Y6M3Af.tU0 exp{-iM~£J/ch~ :o. 

Vy + ivz = V6 AM U 0 exp {- i M~£o 
. .,,r-MAth A £}I h A £ + t I' 11 Vii To" f-tC Vii To" , 

Hy + iHz =- M 2H0 }16 A exp {- i M £ t 
flso 

+ i~MAth~ ~~}, 
*ch = cosh; sh = sinh. 
tth =tanh. 

(36) 

(37) 

(38) 

(39) t 

where ~ 0 = mcU0/eH0 and U0 = H0/ .J 47TN 0m are 
independent of M. 

The pulse width 

/\ = ViimcUo M (40) 
eHo [M 2 (1 +fll - 1]'/• 

approaches a constant limit at large values of M; 
this is the geometric mean of the Larmor radii for 
electrons and ions with velocity U0 in a field H0• 

The pulse spreads for weak waves: when M = 1 
the width is equal to the ion Larmor radius and 
when M2 - 1/( 1 + J.l) the width o- oo, 

It is evident from (36)-(39) that the magnetic 
field and the particle trajectories inside the pulse 
traverse a helix of pitch Mp~ 0• The helix pitch in
creases with increasing wave intensity and is a 
minimum at low wave intensities. We note, as is 
evident from these results, that the linear solu
tions for which V and H lie in the same plane 
everywhere (Alfven waves), can only exist for a 
bounded time interval. Nonlinear effects then lead 
to curvature of the lines of force and the particle 
trajectories. 

It follows from (36) that there is a concentra
tion of particle density at the pulse maximum. 
Equation (38) shows that the electrons lead the 
ions in phase at the leading edge of the pulse and 
lag at the trailing edge. 

The particle is accelerated in the plane perpen
dicular to H0 as th~ pulse maximum is approached. 
The maximum transverse ion velocity is 

Vo = Ji6M3Af.lUo 

and does not reach the value U0 if pM2 « 1. At 
the same time the maximum electron velocity 

vo = }16AMUo/f.l (41) 

exceeds u0 by a factor J.l-t/2 even at relatively 
small values of M ( M = 1 ). Consequently, in con
trast with transverse waves [1] the wave considered 
here accelerates electrons predominantly. When 
M - 1 - J.l the ion and electron accelerations ap
proach zero because of the factor A. 

Acceleration occurs because individual ions 
moving with velocity U in the field being con
sidered pass through the wave freely whereas the 
electrons behave as though effectively reflected 
from it. On the other hand, to maintain the neu
trality condition the ions pull the electrons through 
the potential barrier, communicating to them the 
necessary kinetic energy. It is evident from (38) 
and (39) that under these conditions the electrons 
move along the force lines of the perturbed field. 
Since the current is basically due to the motion of 
the electrons the field is force free ( H II curl H). 
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3. MACH NUMBER AS A FUNCTION OF WAVE 
ENERGY 

The results above give the field H and the ve
locities V and v as functions of the Mach number 
M. The Mach number has a clear physical mean
ing for longitudinal waves, in which case the di
rection of propagation of the wave is the same as 
the direction of motion. The Mach number is then 
related to the ratio of the source velocity to the 
velocity of the small perturbation. This simple 
correspondence between the Mach number and the 
source velocity does not hold for transverse waves 
(including the pulse being considered above). A 
more physically meaningful characteristic of the 
wave is the wave energy. 

In stationary motion there is a unique relation 
between M and the energy ?8 per square centi
meter of wave front. It is evident from ( 37) and 
(38) that the kinetic energy is concentrated basic
ally in the electron component so that 

d&K = 3A2M2U~mN0 
11 ch2 (A~ IV fl~o) ds. (42) 

The electrical energy & E is small compared 
with the magnetic energy fS H and d&H = llM2d&K 
« d&K. 

Thus, most of the energy of a nonrelativistic 
quasi-neutral pulse is concentrated in the kinetic 
energy of the electrons. 

Integrating, we have 

(43) 

where &0 = H~mcU0/81reH0 is the magnetic energy 
of the unperturbed field in a column with a cross 
section of one square centimeter and a length ~ 0• 

Using the definition of A (31) we have 

M2 = I+ J./ I + -:ft- ( lo )";2 (I+ !l)· (44) 

Our formulas hold for ~-tM2 « 1 and, consequently, 
&- « 6f& oltJ 3/ 2 The Mach number is a weak function 
of & : thus, when & - 0, M = 1/( 1 + /1 ); the value 
M = 1 is reached when & = 12 fB 0• It may be as-

sumed over reasonably wide limits that M = 1 
while A ( M) = .[Ji. Under these conditions the 
electron energy at the maximum is of order MU~ 
where m is the ion mass and U0 is the Alfven 
velocity. At the same time the perturbed field H 
is of order .fJi H0 « H0• Thus we see that very 
weak field fluctuations are capable of accelerating 
electrons to high energies. 

If the system is large enough, initially weak 
pulses of long duration can form intense short 
pulses which provide still stronger electron ac
celeration. An instability can then arise as a con
sequence of the relative motion of the electrons 
and ions.[3J If the instability develops in a time T, 

which is much smaller than the time for the pulse 
to travel its own length, then the waves considered 
above must cause strong heating of the electron 
component of the plasma without heating of the ion 
component. 

These effects are of interest in connection with 
the theory of the origin of the outer radiation belt 
of the earth, in which only fast electrons have 
been observed at the present time. [4] 

In conclusion I wish to express my deep grati
tude to Academician M. A. Leontovich for discus
sion of this work. 
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