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The differential probabilities for radiation and absorption of longitudinal and transverse 
quanta by a charged particle in media with spatial dispersion are determined in the presence 
of radiation. It is shown that in a quantum analysis that allows for the recoil effect[tt] the 
energy losses depend on the radiation density. Energy losses of relativistic particles in a 
high-temperature media and particularly in an ultrarelativistic plasma are considered. 

PARTICLE energy losses in a plasma were first tion probability is 'Yp, p _ k ( 1 + Nw, k) where 
analyzed by Akhiezer and Sitenko,[ 1] who used the Nw, k is the number of quanta of frequency w 
kinetic equation. Their Green's-function calcula- (equal to the transition frequency) and momentum 
tions were refined by Larkin[ 2J who determined, in k. Let the probability of absorption with transition 
particular, the coefficients under the logarithm from p- k to p be 'Yp-k, p Nw, k• with 'Yp-k, p = 

signs in the expressions.[!] Larkin's results con- 'Yp, p-k (see [ 1o] ). The absorption from the state 
tain an approximate polarization operator. At the with momentum p is thus specified by the quantity 
same time Lienhard[3J, Silin,[4] and others (see, 'Yp+k, p Nw, k· The spectral density of the energy 
for example, [ 5]) obtained the particle energy loss 
losses in media with spatial dispersion, involving 
only the dielectric-constant tensor Eij ( w, k). The 
latter can be readily related with the polarization 
operator (see [s] ). A comparison of Silin's and 
Larkin's results shows, however, that the expres
sions obtained by Larkins contain additional tem
perature-dependent factors. 

The appearance of temperature factors is 
closely connected with the dispersion relations be
tween the real and imaginary parts of the photon 
Green's functions (see [ 7- 9]). The problem solved 
by Larkin actually differs from the problem con
sidered in [ 1] and [ 4], although this fact is not 
stipulated. The point is that the temperature 
Green's function technique used by Larkin pre
supposes that the system is in complete equilibrium 
particularly in equilibrium with the radiation, 
whereas Akhiezer and Sitenko did not consider the 
equilibrium radiation. 

The presence of equilibrium radiation gives 
rise to induced emission and absorption propor
tional to the radiation density. The energy lost by 
a charged particle is the difference between the 
emitted and absorbed energy. If 'Yp, p-k is the 
probability of spontaneous emission of a quantum 
with transition from a state with momentum p to 
a state with momentum p- k,* then the total radia-

*The spin states, say, of the electron are disregarded for 
simplicity. 

W"' = w {(N "'· k + I) r;. P-k- N "'· k r:+k, p} 

is independent of the radiation density Nw, k only 
if the quantum corrections (recoil) can be ne
glected, I k I « I pI. and if one can assume approx
imately 'Yp, p-k ~ 'Yp+k, p ~ 'Yp, p· Attention 
should be called to the fact that although the quan
tum corrections are small,* the fraction of the 
particle-energy change proportional to the radia
tion density may in the case of large radiation den
sity turn out to exceed the losses without radiation. 

In an account of the spatial dispersion of the di
electric constant there is no need to distinguish 
between losses connected due to long-range and 
short-range collisions (see, for example, [ 4] ). 

In short-range collisions with large momentum 
transfer k is large, indicating merely that spatial 
dispersion cannot be neglected in this region. The 
problem thus reduces to a successive account of 
the quantum effects both in the probability for the 
emission of the quantum and in the dielectric con
stant of the medium. For an analysis of the motion 
of relativistic particles it is necessary, in addition, 
to carry out the relativistic calculations. 

*For Cerenkov radiation (emission of a transverse quantum) 
the relative correction in the visible region, as shown by 
Ginzburg[11] is ,lo-•-10-•. For the emission of a longitudinal 
quantum (plasmon) the quantum corrections may be more 
appreciable, [12] 
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A relativistic quantum expression for the di
electric constant in an isotropic medium, with 
account of the spatial dispersion, was obtained 
earlier[s] in the e 2 approximation. In the present 
paper we obtain quantum differential radiation 
probabilities in the e 2 approximation. Unlike 
Larkin [ 2], we do not confine ourselves to the rela
tivistic region. This enables us, in particular, to 
obtain the energy losses of relativistic particles in 
a highly heated equilibrium plasma. 

1. DIFFERENTIAL PROBABILITY OF EMISSION 
AND ABSORPTION OF LONGITUDINAL AND 
TRANSVERSE QUANTA BY A CHARGED 
PARTICLE IN AN ISOTROPIC MEDIUM 

1. To determine the emission probability y it 
is sufficient, as shown in [t2J,* to know the effec
tive energy spectrum E (p) of the particle in the 
medium. Then 

r = - 2 Im E (p). (1) 

In the e2 approximation we can disregard in the 
losses the macroscopic mass-renormalization 
effects considered in [ 12]; we then obtain for y / Ep 
« 1, where Ep is the particle energy, 

r = 2 (6£"- p6p"jep- m6m"jep). (2) 

Here oE", op", and om" are the components of the 
anti-Hermitian part of the mass operator:t 

6MR = ir (6p' + i6p")- r4 (6£' + i6£") + 6m' + i6m". 

In the e 2 ppproximation we have 

6Mc 

The causal photon Green's function D~ v can be 
expressed in terms of the imaginary part of the 

R" retarded function DJ.L11 with the aid of the relations 
derived, for example, by Dzyaloshinski1 and 
Pitaevski1 [s]: 

00 

DC k 1 ~DR" I k) {P 1 p 1 p.v (ro, ) =- p.v (ro, -,-- -,----+ 
Jt w -w w w 

0 

--T-incthw~~ [6(ro-ro')-6(ro+ro')l}dro', (4)t 

where P is the principal-value symbol and 1/{3 is 
the temperature. 

The electron Green's function is best written in 
the form (see [s] ) 

*We shall retain the notation of our earlier paper.[12] 

tWe are considering a spin-'!, particle. 
kth = coth. 

A+ ( . h ±)/2 + { ± . } il = m- tp ep, pp: = p , tep , 

where Ep is the modulus of the energy. 
Upon substituting (4) and (5) in (3) we can inte

grate in the Hermitian part of oM' by using o 
functions. The anti-Hermitian part of the mass 
operator is then determined (see [ 12] ) by re
placing the resultant energy denominators with o 
functions. 

X ( 1 + cth :~ ) + 6 ( ro + Bp - Bp-k) ( 1 - cth ro!) J 

+rp.Ap-krv [6(ro+ep-k+ep)(1 +cthwJ) 

+ 6 (ro- Bp- Bp-k) ( 1- cth wJ) ]} . (6) 

The radiation described by the first term of (6), 
proportional to o ( w + Ep-k- Ep ), contains a 
factor 1 + coth ( w/3/2) = 2 ( Nw + 1 ), where Nw 
= [ eW/3 - 1 r 1 is the humber of equilibrium quanta 
of frequency w. The absorption is proportional to 
2Nw = coth (w/3/2) - 1. In addition, losses are 
caused by the single-photon annihilation, described 
by the last term of (6).* Within the framework of 
the e2 approximation, the losses contain only the 
number of quanta averaged over the initial statis
tical ensemble. Therefore in the case of non
equilibrium non-isotropic radiation it is sufficient 
to replace Nw by the quantity Nw, k which is de
termined from the radiation density. We shall as
sume here that Nw, k vanishes at large frequencies 
w "' Ep + m, where the conservation laws allow 
annihilation. Further, the integration with respect 
to the longitudinal-quantum momenta in (6) can be 
readily carried out with the aid of o functions, and 
iteration with respect to the transverse momenta 
reduces to integration over the scattering angles. 

In the case of isotropic media the Green's 
function n!},;' can be expressed in terms of the 
longitudinal and transverse dielectric constants 
El (w, k) and Et( w, k).C12] We then obtain from 
(6) and (2) the following probabilities for the emis-

*It is assumed in (6) that the energy-losing particle in the 
medium is not one of the original particles of the medium. The 
annihilation is therefoce due to the fact that particle pairs iden
tical with the energy-losing particle are in equilibrium with the 
radiation. Upon annihilation the particle is replaced by a thermal 
particle. 
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sion (y+) and absorption (y-) of a longitudinal or 
transverse quantum 

rt l = r dw ~ dQrtz (w, 0), (7) 
0 

where dO is the scattering solid angle, 
8 = (p·p')/pp'; p' is the momentum after scattering. 
Here 'Yf.z ( w, 8 ) are the differential probabilities: 

+ P~~i~:a (p2 + ro2 =F 2epw) J 

m 2 t ' 
X I 1 {N w, k + 1 for r+ 

k±- w2e (w, k±) N w, k for r-
(8) 

e2 m2 rt- (w, 8) = - 2~2 v p2 + (J)2 =j= 2BPW (8p =j= (J) + e;;-

(9) 

k~ == (p2 +w2 =F 2ep w)- 2p -v p2 + w2 =F 2ep (J) cos e + p2. 

(10) 

1/J is the angle the quantum makes with the initial 
momentum 

cos 'IJ± = ± (p- Y p2 + w2 =F 2ep w cos 8J!k±. (11) 

The probabilities given by formulas (8) and (9) 
differ from zero only if the radicands in (8) and (9) 
are positive. 

2. Let us consider the induced Cerenkov radia
tion.C13] As is well known, the spatial dispersion 
in the transverse component Et plays a small role 
at ordinary nonrelativistic temperatures. Assum
ing that Et (w, ~) ~ E (w) = n2 (w) and that the 
imaginary part of Et is equal to zero (see [s]) 
we have 

Im (k~- w2n2 (w)r1 =:nil (k~- w2n2 (w)). (12) 

From this and from (8) 

+ (' 2 [ 1 - - 1 - ~ ( 1 - .!.) Yt = J e1 v n•v2 vp n2· 
cos '"+<1 

(13) 

rl 

w2n• ( 1 \] - . +v 1- n•) Nwdw; 

cos 'IJ± = 1jnv ± w (n2 - 1)j2pn, (14) 

where v = p/Ep is the particle velocity, N~ 
= N ( w, 1/J±). Finally, 

21t 

N (w, \j)) = 2~ ~ N (w, k, \j), cp) dcp 
0 

with k = wn, where N ( w, k, 1/J, cp) - number of 
quanta N w, k in the spherical system in the space 
k ( k, 1/J, cp ) with z axis parallel .to p. 

We consider the simplest example with constant 
n, isotropic and constant N, and nv > 1. We then 
obtain for the induced part of the "losses" 

~ w n = ~ (ri- rl) wdw 

8e~ ve~ N [ 2 2 ( 5 n• + 1 ) 2n2 J 
=- nv(n2-1) nv 3+ n2 -1 + n2 -1 · (15) 

The condition nv > 1 is usually not satisfied for all 
frequencies. If Nw ;z! 0 in the region where both 
conditions cos 1/J+ < 1 and cos 1/J- < 1 are satisfied 
and Nw is isotropic, then 

2e2 \ 1 ~ W = - ---f J N"' w3 dro ( 1 - fi2) . (16) 

This part of the forces accelerates the particles, 
rather than slowing them down. In order for this 
quantity to be comparable with or larger than the 
ordinary Cerenkov radiation, it is necessary to 
have Nw "'Epv2/w "'106• The order of magnitude 
of Nw is (27r)3p (w)/n2w3, where p ( w) is the ra
diation density, i.e., p ( w) "'n2w2Ep/ (211" )3; for 
Aw ~ w we have 

p - w3epj(2:rt)3 - Bpj'),}. 

For an electron, for example, an energy of the 
order of 1 MeV should be concentrated in a cube 
with dimension on the order of the radiation wave-

. 3 0 

length. We consequently have for 71. ~ 5 x 10 A 
a value p "' 107 erg/cm3, corresponding to a radia
tion pressure on the order of 10 atm. 

It is easy to understand why the particle is ac
celerated by the induced processes. The smaller 
the angle the emitted quantum makes with the 
particle velocity, the lower the intensity of the 
Cerenkov radiation. Since the emission angle at 
a given frequency is somewhat smaller than the 
absorption angle, (by virtue of the conservation 
laws) induced absorption predominates over in
duced emission. In the equilibrium state the in
duced processes cannot predominate for equili
brium radiation, since Nw, eq » 1 when wf3 « 1; 
in this case the relative magnitude of the induced 
radiation is 1/Ep/3 « 1.* 

*If fpf3 <<1, then the temperatures are ultrarelafivistic, the 
substance is ionized at equili bri urn, n2 < 1, and Cerenkov 
radiation is impossible. 
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For anisotropic highly directional radiation, at 
frequencies not close to the threshold of Cerenkov 
absorption and emission, we have 

N± ~ N aNo w (n2 -1) cos •h 1 
"' ~ o =F a1Jlo 2pn (1 - n-2 v-2)'1• ; 'YO = nv ' 

If the radiation density changes abruptly with the 
angle (as is the case when the radiation directivity 
is high), namely, 

(sin 'Jl0/N0) (oN 0 jo\jl0 ) > 1 

then the sign of the "loss" is determined by 
8N0 /8lfi 0• If the radiation density in the region of 
the Cerenkov angles decreases with increasing 
angle, then the induced radiation and emission in
crease the losses. 

3. Let us consider the question of induced 
emission of plasmons. The presence of plasma 
waves in the system can ei.ther be due to non
equilibrium fluctuations or produced artificially, 
say by a beam in the plasma. We shall therefore 
assume that Nw, k• which is connected with the 
plasma density, has a nonvanishing value only in 
the region where the plasmon damping is small. 
In this region we can approximately neglect the 
spatial dispersion and put 

Im 1 
1 ~-:rrb(e(w)) 

8 (w, k±) 

"'V I a81-1 =- J't~b(ffi -ffis) aw W=Ws' 
s 

(19) 

where ws are the zeros of E (w ). Let Nw, k be 
isotropic, independent of k when 0 < k < kmax• 
and equal to zero when k > kmax· The induced 
emission and absorption contributes to the particle 
energy change per second if the order of ws /vp is 
taken into account. For ws jvp « 1 we have from 
{9) 

[ v2k2 1 J 
ln :;x -2 + V2 . 

{20) 

2. CHARGED-PARTICLE ENERGY LOSSES IN AN 
EQUILIBRIUM PLASMA 

1. For an equilibrium isotropic plasma we can 
obtain for the energy losses a simpler expression 
which allows for the induced emission and absorp
tion. We introduce x =cos lfi = (k · p )/kp and inte
grate in (6) with respect to the frequency, using o 

functions. Radiation will then involve angles x, 
for which 

ep > Ep-k = Y e~ - 2pkx + k 2 , 

i.e., x > k/2p, while for absorption x < k/2p 
(-1<x<1). 

To find the energy loss we must multiply the 
differential radiation probability by w = Ep 
- Ep-k• subtract the differential absorption 
probability multiplied by w, and integrate the re
sults over all k. Recognizing that Im E ( w) is an 
odd function of w, we find that the emission and 
absorption are described by identical expressions, 
except that for emission we integrate with respect 
to x in the region x > k/2p, while for absorption 
we integrate in the region x < k/2p. The final ex
pression for the losses, w = wt + wl' will include 
integration over all angles (- 1 < x < 1). Let us 
calculate wl in detail: 

()() 1 

W 1 = ~ dk ~ dxW 1 (k, x); (21) 
0 -1 

W I (k ) e~ [ [3 (sp- 8P- K) J 
, X = - Z1t 1 + cth z ( Ep - Ep-k) 

( 
sP- kvx) 1 

X 1 + Im 1 · 
8p-k 8 (8p- 8p-k , k) 

{22) 

It is easy to verify that the term with coth (u.,{3/2) 
is insignificant if quantum effects (radiation recoil) 
are neglected. Indeed, we then have w Rl kvx and 

W 1 (kx) =- 2e
2 (1 + cth kv2x[3) kvx Im 1 

1 . 
1t 8 (kvx, k) 

Since lm E is odd, the term with coth kvx{3 being 
odd in x, drops out from {21). 

To find the energy losses of a relativistic par
ticle in a plasma we must know the relativistic 
quantum expression for El (w, k). It was derived 
previously [s] and has the following form for a 
Boltzmann electron gas 

( w[3) 1 4e2 [ m~ 
I + cth 2 Im Be (w, k) = k"[3 1 _ 002;k2 

+ f x, + [3~ J exp {(fl + wj2- Xe) ~}; 

Xe = V m~ (1- w2fk2rl+ k2J4, (23) 

where p. - chemical potential and me - electron 
mass. 

2. We consider the passage of a fast particle, 
particularly a relativistic one, through a plasma 
with nonrelativistic temperature, ( Ep - m) {3 » 1. 
We assume that the Debye radius is large com
pared with the deBroglie electron wavelength cor
responding to thermal velocities 
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d2 = Ij~m.w~e>V = ~jm. 

As in [ 2], we break up the integral with respect to 
k into two, one from zero to kt and one from k1 

to oo, where 1/d2 « kf « 1/L2• In the first interval 
we can neglect the quantum corrections and assume 
w = kvx. Using the analyticity of 1/El in the upper 
half-plane of complex w (see [ 2] ), we can neglect 
the spatial dispersion in Ez. Then 

Im (Ijel) =- :rtlJ (I- w: fw2), 

and we obtain 

Wi=(e2w~./v) ln (k1vfw0,), w! = 4nN~.e2jm,. (24) 

In the integral in the second region, Ez is close 
to unity. In addition, in the case of nonrelativistic 
temperatures, we need retain in the square brackets 
of (23) only the first term. Then 

x exp {~ [f.L- m,- f (k, x)l}; 

w = ep- ep-k, f (k, x) = x,- wf2 - m,. (25) 

Since {3 is large, the main contribution is made 
by the stationary point f. We have f = 0 and 
af/ak = 0 when 

2vxm, ep (m, + 81>) 28: v•x•m, 
k = k0 = , w = 2 2 , (26) 

(ep + m,)•- v•x•8: (8p + m,)•- v x e~ 

iJ2f ]'/, [(ep + m,)2 - e:v2x2]2 
[m- (k x) = . • ak• 0 ' 2ep (ep + m,) [(ep + m,)2 (1- v2x2)+ m; v2x1] 

(27) 

From this we get 

(28) 

Calculating this integral under the condition Xt 
« 1, which follows from kf « m/{3, and adding to 
(24), we obtain the final formula for the longitudinal 
part of the energy loss of a charged particle in a 
plasma 

Ep = (p 2 + mf)112, mt is the mass and e1 the charge 
of the particle under consideration. 

For nonrelativistic velocities v « 1 we can ne
glect the last term in (29) and set Ep equal to mt. 
Then (29) coincides with Larkin's result[ 2J. 

In the classical region 0 < k < kt there are no 
transverse losses wt, and in the quantum region 
we obtain by similar calculations 

Wt 1 2 2 { (8P + m.)2 l (ep + m.)• = 2 elwoeV 2 n 2 2 
v'ep (ep + m.)•- v 8 ~ 

-I+ ep • • 
m2e2v2 } 

[(ep + me) 2 - e~v2]2 

For ultrarelativistic velocities we get 

3. Let us consider the passage of particles 
through an ultrarelativistic plasma, f3me « 1, sub
ject to the condition that the particle energy is 
much greater than the mean energy of the plasma 
electrons, m 1/me » {3Ep » 1. The condition d » L 
is retained. If the particle velocity is small com
pared with the mean electron velocity, v « 1, then 
we can neglect wt with accuracy to v 2, and assume 
the real part of El equal to ( 1 + k2d2 )-1; then 

1 Im e1 k• 
Im 7 = - (k2 + d •)• • 

Since f3me « 1, the quantity in the exponent of (23) 
will not be small compared with unity, provided 
k » me, and the most significant values of k do 
not exceed 1/{3. Therefore, expanding w in powers 
of k ( w ~ kvx + k2/2Ep) and using the condition 
{3Ep » 1, we can write with sufficient accuracy w 
= kvx, and by virtue of v « 1 this means that w/k 
« 1 in the entire region. We can therefore replace 
the exponential function in (23) by 

(I + ~kvxj2) e-~f2k, 
and retain in the square bracket of (23) only the 
last term. We substitute in the result of the inte
gration the value of the chemical potential of the 
ultrarelativistic gas. 

The final formula for the energy lost in the 
collision of a charged particle with the plasma 
electrons has the form 

W 1 = e~ w~ev2 [In (2de/~)- C - 1/ 2 ], (32) 

where C = 0.58 - Euler's number, w5e 
= 41TNee2{3/3 - natural frequency, and 
de= (47TNee 2{3 )-112 - Debye radius of the ultra
relativistic plasma. 

If the particle velocity is close to the velocity 
of light in the classical region 0 < k < k1, we can 
use the values of El,t for the ultrarelativistic 
plasma; for example, for El we have 

el(kx,k)=I+ k;d.[1 +4-(In ~~;+ i:rt)J; (33) 
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The imaginary part of El differs from zero for 
all k and x, by virtue of the time-like character 
of the vector ~ ( w < k). Substituting (33) in (22) 
and (21) and neglecting terms of order k/Ep 
::s 1/f3Ep « 1, we obtain 

Wi =feiw6,(Inkid,2-A); (34) 

2 2 

W~ = e1: 0' (In 2kid! + ++~In (1- V2)- 2.64); 

1 

A= 3 ~ x2dx {4-ln (f 2 + n?•) + .¥fx ( ~- arctg ~~)} 
0 

= 0.38, 
x 1-x 

f = I + 2 In 1 + x . (35)* 

In the quantum region k1 < k < oo and we can as
sume that Re Et,l R: 1. Using (23), we obtain 

'2 W~ = W~ = w6, ei (In (2/~k1)- C). (36) 

Finally, 

W = W' + W 1 = }ei w6, (In (2d!mJ/~2ep)- 0.82). (37) 

The fraction of the loss due to collisions with 
ions is calculated in similar fashion. If the 
thermal ion velocities are nonrelativistic, f3mi 
» 1, we can write Im (1/El) for the relativistic 
particles in the form 

-I et r2 (Ime~ + Im e~), 

and use Eq. (33) for I Eli ; the relative error in
curred is of order vf ~ 1/f3mi « 1. We obtain 

e2 e•m~N (2n~)'h co ( w: (kx) = 1 ni 1 tn; 1- co2fk 2 I + 
k e <»/2+mt-">t 

X (k2 + ffd2 ) 2 + n2x2/4d• 

ep- kvx) 
e,_k 

(38) 

The main contribution to the integral with re
spect to k is made by the stationary point of the 
exponential, so that 

In addition, we put f = 1 in (39) and neglected the 
term 7T~2/4d 2 in the denominator of (38), thereby 
discarding terms of relative order 1/mfd2' « 1, 
i.e., of the order of the ratio of the ion Compton 
length to the electron De bye radius. 

*arctg = tan -1• 

The calculation of the integral (39) leads to the 
following result: 

1 2 2 { 1 1 { 1 (ep + m;)" ) 
WI = el Wot In 2mt d, - 2 - 2 \ + ~~~ 

x In y~ ~-m1 +i-(1- (ep+ 2m,)• )1n 2~.}· 
8p 8p l 

(40) 

Finally, wl coincides with (30), in which me is 
replaced by mi. 

I am grateful to V. I. Veksler and V. P. Silin 
for a discussion of the problems touched upon in 
this paper. I am also indebted to V. L. Ginzburg 
for valuable remarks. 
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