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The pressure within the crystalline lattice is represented with the aid of perturbation theory 
as a sum of a kinetic pressure, determined from the value of the wave function and its deriv­
atives at the boundary of the unit cell, and a Coulomb pressure, derived from the Coulomb 
(chiefly exchange and correlation) interaction between cells in such a way that interactions 
within the cells are eliminated. 

IN the Thomas-Fermi approximation method, the 
pressure of a metal at absolute zero is expressed 
in terms of the electron density at the boundary of 
the neutral cell in such a way that inaccuracies in 
the determination of the energy of the electrons 
within are eliminated. The goal of the present 
paper is to derive for the pressure an exact quan­
tum mechanical expression having this same ad­
vantage. The Coulomb interaction is not com­
pletely omitted, but use is made of only the Cou­
lomb interaction between the cells, the greater 
part of which, except in the case of ionic crystals, 
consists of exchange and correlation effects. 

This formula can be derived with the aid of an 
expression for the quantum mechanical stress 
tensor (see [t,2] ). It would seem profitable also 
to derive it directly, using ordinary perturbation 
theory to transform the equation 

p = -0 (E e + En) I av' 

where Ee is the eigenvalue for the ground state 
of the electrons and En is the Coulomb energy 
of the nuclei (the nuclei are regarded as station­
ary). 

Before carrying out the calculations, let us 
formulate the result. We shall introduce the nota­
tion (see [a] ) : 

1 (i'l x) = N ~ 1J!*(x', x 2 , •• • , XN) 1J! (x, x 2 , • •• , XN) dx2 . . . dxN 
(2) 

-the first-order density matrix; y (x) =y (xI x) 
- the mean electron density; and 

r (xl, x2) =i-N (N- I)~ IW (xl, X2, Xa,• • . , XN) l2dxa .. . dxN 

-the second-order electron density. 
(2') 

Here, '1< is the normalized wave function. The 
quantities y (x), y (x' I x), and r (x1, x 2) possess, 
in contradistinction to 'If, a direct physical signi­
ficance; they contain no arbitrary phase factors 
and are independent of the crystal volume chosen 

as a basis, so that they can equally well be applied 
to an infinite crystal (and to infinite N ). 

For simplicity, we shall consider the average 
pressure under isotropic compression. Let us 
choose a substance having cells of the Brillouin 
zone type; i.e., such that all points on the boundary 
between adjacent cells are equidistant from the 
centers of the neighboring cells. The cell may 
contain several nuclei. We assume that the cells 
are identical and can be formed from one another 
by displacements and rotations which preserve the 
lattice structure. Under these conditions, the 
pressure is 

P = Plein + Pcoui• 

where Pkin is the average value of the quantity 

. - ~ la•r (x'lx) - _.!_ a•r (x'lx) - _!_ a•r (x'lx) J 
Plein (x) - 2m an' an 2 an·• 2 an• x'=x {4) 

over the surface of the cell (with weight equal to 
the distance between centers of neighboring cells). 
In this expression a/an is the derivative with re­
spect to the variable x along the normal to the 
boundary, and a/an' is the corresponding deriva­
tive with respect to x'. 

The Coulomb portion of the pressure is equal to 
the work done by the Coulomb forces between the 
cells as the latter are displaced by uniform expan­
sion, divided by the change in volume. We assume 
that for uniform expansion in all directions by a 
factor 1 + E the change in cell volume is ow = 3Ew, 
and that the displacement vector for the g-th cell 
oRg = ERg, where Rg is the radius vector of its 
center. Making use of the identical nature of the 
cells, we find it natural to write the Coulomb con­
tribution to the pressure in the form 

(5) 
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where Fog is the total (taking the nuclei into ac­
count) repulsive Coulomb force between the cells: 

Fog=~ dr1 ~ dr2p(r1,r2)e2(r2--rl)/Jr2-r1J3, (6) 
W 0 Wf!. 

w, 

- ~ r (r1) zh,l) (r2- R"') 
"'g 

(7) 

Here, the radius vector Rh runs over the nuclei of 
the cell wo, Zh is the charge, while the quantities 
Rh' and Zh' refer to the nuclei of the cell wg. The 
function p (r1, r 2) can be written in the form 

p (rr, r2) = [2f (rr. r2)- r (rl)'r (r2)] + p (rr) p (r2), (8) 

P (r) = r (r)-~ Zh6 (r- Rh)· (9) 

The first term in (8) gives the exchange, or, more 
exactly, the exchange-correlation portion of the 
Coulomb interaction, and the second gives the 
classical portion. 

Since the cells are neutral in the mean and 
nearly spherical, the classical part of the interac­
tion usually, except in the case of ionic crystals, 
makes an extremely small ( numerically) contri­
bution to the force and the pressure; the exchange 
part can, however, contribute significantly. 

In the single-electron approximation, in which 
the wave function is represented by a single deter­
minant, Eqs. (2), (2'), and (4) assume the following 
forms 

r (r) = ~I '\J, (r) \2 , (10) 

Here the l/Ji are the normalized single-electron 
wave functions; 

y+ (r1! r2) = ~+ 'IJ; (r1) 'IJ, (r2), r- (r1! r2) = ~- 'IJ; (r1) 'IJ, (r2) 

(13) 
are the sums over l/Ji, referred to positive and 
negative spin orientation, respectively. 

We turn now to the derivation of Eqs. (3) - (7). 
We must, in accordance with Eq. (1), find the 
change in the energy of the system for a uniform 
expansion by a factor 1 + E. We note first that the 
nuclei can be regarded as strongly bound to the 
centers of the cells, and that only the cells as a 
whole take part in the expansion. Of course, such 
an expanded state will not, generally speaking, be 
an equilibrium one for the given volume (nor will 

the state produced by a uniform increase in the 
separation of the nuclei); it will, however, differ 
only infinitesimally from the equilibrium state, so 
that there will be only a second-order difference in 
energy. 

In order that the boundaries may be neglected, 
we shall choose as usual a certain large volume Q 

of the crystal, containing N electrons. At the 
boundaries of Q the wave function ljJ is assumed 
to be periodic in the coordinates of each electron; 
we accordingly refer the Coulomb energy of the 
nuclei and its variation under deformation to the 
volume Q. The volume after expansion by the 
factor 1 + E is designated by Q' and the eigen­
function in Q' is denoted >J!'. If the separation of 
all of the nuclei is increased uniformly, we can 
establish a correspondence between the points of 
Q and those of Q'; then, multiplying the equation 
for 'J!' by >J!* and the equation for 'lf* by lJI', sub­
tracting, and integrating over all of the variables, 
we obtain the virial theorem. 

We shall now do the same thing, establishing 
the correspondence between Q and Q' in another 
fashion. Let us construct about the displaced cen­
ters of the cells new cells of the same size. Let 
the sum of these cells be Q". The volume Q' con­
sists of Q" plus the sum of the gaps between the 
cells. We now establish a correspondence not be­
tween Q' and n, but between Q" and n: we refer 
the centers of the new cells to those of the original 
cells, and then correlate each point in Q" with the 
point in Q which is similarly situated relative to 
the center of the corresponding cell. Thus, to a 
single point located on the boundary of a cell in Q 

there correspond two points in Q", lying on either 
side of the intercell gap, so that the function -.Jf', 
continuous in Q', can now be regarded as discon­
tinuous in Q". The values of -.Jf' in the spaces be­
tween the cells need not be considered at all, since 
no integration is performed over these regions. 

The equation for w has the form 
N N 

Ee '¥ =- ~ 2~ L\;'¥- ~ ~ e•zh '¥ 
i=l t=l h I r i- Rh I 

1 ~ e2 
_J__- '¥. 

1 2 I r.- r ·I i+i t I 

(14) 

In order that the boundary of Q have no effect, 
we must in the last summation include not only the 
distances separating all of the points ri and rj 
within n, but also all of the distances between 
these points and their images as produced by a 
parallel displacement through Q; correspondingly, 
in the sum over the nuclei we must take account, 
not only of the Rh within n, but of a whole infinite 
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lattice as well. (If desired, a factor 
exp (- K I ri - rj I ) can be introduced to give con­
vergence, and K allowed to go to zero in the final 
result.) 

The equation for '11' within Q", if the same co­
ordinates are introduced in Q" as in a, is written 
in the form 

N N 

' h llZ hh E '¥' =- --- 11·'¥'-
e 2m ' 

i=l i=l h 

1 e2 ' +2 h lr.-r.l' '¥ · (15) 
i;'f t I 

Here I ri- Rh I' = I ri- Rh I if the coordinates ri 
and the nucleus Rh are situated in the same cell, 
and ln-Rhl'=lri-Rh+E(Rg-Rg)l, if ri and 
Rh lie in different cells having centers Rg and 
Rg'; the quantities I ri- rj I' behave analogously. 
In contradistinction to the virial theorem, no coef­
ficient need be used here in the Laplacian, since 
the correspondence between 0" and Q at each 
point preserves the scale. 

As noted above, we multiply the equation for '11' 
by '11* and that for '11* by '11', subtract, sum over 
all spins, and integrate over all coordinates. In 
the left-hand part, as a result of the normalization 
of '11, we obtain the desired difference Ee- Ee to 
a high order of accuracy. 

On the right, we first consider some Coulomb 
term, say the term due to the interaction between 
the first and second electron: 

''(' (' [ ez ez J • , 
~J · · · ~ 21rt-rzl'- 2!rt-r~ I '¥ '¥ dx1 • • • dxN, 

summation over all of the spins being understood. 
To a high order of accuracy, '11' can be replaced by 
'11. Further, the same contribution is provided by 
all of the terms involving I ri - rj I, N (N - 1) in 
all. Integrating first over the variables x3, 

XN, and then over x1 and x2, we obtain 

~~[lr,~rzl'- lrt~rzl Jr(rl,.r2)drldr2. 

We break up the range of integration over r 1 and 
r 2 into cells, and represent this integral in the 
form of a double summation: 

Terms with g = g' go to zero, in accordance with 
what has been said above; terms with g ¢ g', in 
view of the symmetry of r, are symmetrical in 
g and g'. As a result, the integral takes on the 
form of a sum over all possible combinations of g · 
and g': 

h ~ ~ dr1 dr22f (rJ, r2) [ I r, ~ rzl' 
e• J 

I r,- rzl .. · 
g<t- g' Wg Wg' 

The difference within the square brackets is evi­
dently, to a high order of accuracy 

lr,-rz+e(Rg-Rg,)l -lrt-rzl 

e2 (r1 - r2) e (Rg- Rg,) 
~ - -- I r, - rz I" 

and the double-summation term under considera­
tion equals 

ef~g· (Rg- Rg·), 

where Fgg' is that part of the force Fgg' which 
corresponds to the first term in Eq. (7). In 
exactly the same way, the second Coulomb term 
in Eq. (15) yields the second and third terms of 
(7). The change in En yields the fourth term in 
Eq. (7). Referring everything to a single cell and 
dividing by the change in volume, we obtain Eq. (5), 
exactly. 

Let us now consider a term with a given 
Laplacian .6-i. Integrating first over dri> we 
obtain 

- ;~ ~ ('¥• ~ 1'¥'- '¥' 11;'¥') dr1 

= -~ 2~ ~ ('¥'~.;'¥'- '¥'!11'¥')dr; 
g "'f!. 

= - ~ .!!:___ ,f., dS (w' a'¥' - '¥'a'¥') 
Li 2m ':l' an an ' 

g Sg 

with o/on the derivative with respect to the exte­
rior normal to the surface of the cell Sg. If the 
function '11', together with its derivatives, were 
continuous, then, owing to periodicity, the sum 
would go to zero: the integral over each boundary 
between neighboring cells would appear twice, 
first for one cell and then for the other, with oppo­
site signs. Because of the discontinuous nature of 
'11' in Q", there remains for each boundary a dif­
ference between two nearly, but not preCisely, 
equal integrals. The width of the inter-cell gap 
o = E I Rg - Rg I; the discontinuities in '1'' and 
Wt' /on are therefore equal, respectively, to 
oW!' /on and oo2 ~' /on2, and the sum with which we 
are concerned becomes 

tt:__ \' . a'¥' a 'I'' _ • a•'¥') - h :Em /) .l ds ( an an '¥ an• . 
sg,g' s~g' 

We can now replace '1'' by '1' with high-order 
accuracy. Integrating over all of the remaining 
variables, with the exception of dxi, and taking 
account of the fact that all of the terms with i = 1, 
2, .•• yield the same contribution, we obtain the 
contribution to Ee - Ee: 

_ )1 ~ 6 \ d [a'r (x'lx) _ a•nx'lx) ] 
..:..J 2m J s. an• an an• x'=x. 

Sg,g' Sg,g' 
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Here odS is the element of volume of the gap, so 
that the remaining factor can be regarded as the 
pressure; this is, however, ineonvenient, because 
of the complexity of the expression thus derived. 

Repeating the same argument for the functions 
l!F' * and llF, instead of for l!F' and l!F*, we obtain 
the complex-conjugate expression, in which the 
Coulomb terms, being real, are unchanged. Taking 
the half-sum, we obtain, exactly, Eq. (4). 

The present work is the result of discussions 
with Ya. B. Zel'dovich, G. M. Gandel'man, E. S. 
Pavlovski1, and M. A. Podurts., and is related to 
the previous paper by Gandel'man and Pavlovskf1.[4J 
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