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Parameters of strong shock waves in tungsten samples of various initial densities were in
vestigated experimentally. Shock adiabats with negative slopes in pressure-density coordi
nates were found for porous samples at pressures below 0.5 x 106 atm. Bending of the 
adiabats and a change in the sign of their derivatives were observed with increase of the 
shock-wave amplitude. This behavior of the adiabats is accounted for by changes in the de
pendence of the effective Griineisen constant on the degree of compression and heating due 
principally to the increase in the electronic specific heat. Expressions are derived relating 
the partial derivatives ( BE/ BP) v and ( BE/ av) p with the slopes of two intersecting curves. 

INTRODUCTION 

SHOCK compression is the principal experimental 
method used currently to obtain information on the 
equations of state of metals at high pressures ( P ), 
densities ( p = 1/v) and temperatures ( T). 

Knowledge of only one shock adiabat of a metal 
for a single initial value of the density gives a 
single curve in the P-v diagram, and the entropy 
varies along this curve. Shock adiabats recorded 
for a series of samples with different initial den
sities give more data, for a complete region of 
the P..:._v diagram can be constructed.CtJ In addi
tion, considerably higher temperatures can be 
studied. The simplest method of obtaining various 
initial densities is to prepare samples with differ
ent porosities m = p0/p 00 = v0o/v0 from fine powder; 
here Po is the density of solid-metal particles of 
the sample and p00 is the mean density of the whole 
porous sample. 

Shock compression of samples of the same sub
stance but of different porosity was first considered 
theoretically by Ya. B. Zel'dovich and A. S. 
Kompaneets, who used the equation of state with a 
constant coefficient y = v ( BP/BE) v· Figure 1 il
lustrates their results in coordinates of pressure 
and relative density ( a = p/ Po). Shock adiabats of 
the nonporous material ( m = 1 ) and of samples 
with various initial porosities ( m > 1) all start 
from the point P = 0, a = 1 which represents the 
initial state of the nonporous material. For a 
porous body this is the consequence of neglecting 
the strength of the particles (it is assumed that 
even a very weak wave is capable of compressing 
a porous body so that its density becomes Po) and 
neglecting the energy of dispersion (the initial in
ternal energy per unit mass is assumed to be the 

FIG. 1. Compression of porous samples for various values 
of h/m (h = 1 + 2/y). 

same for the nonporous and porous states). 
For equal pressures, the density after shock 

compression is smaller for a porous body than for 
a nonporous one, and its value decreases as the 
initial porosity increases. The physical explana
tion of this result is as follows (Fig. 2). The path 
mv0-vpor along which work is done by the shock
compression forces on the porous body is longer 
than the analogous path v0-vnp for the nonporous 
body. Since half the work is needed to increase 
the internal energy, the rise E~or in the thermal 
component of the internal energy of a porous body 

FIG. 2. The P - v dia
gram for shock compression 
of porous bodies. 
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is consider~ly greater than the corref?ponding 
quantity ( E/) for a nonporous body. Thus shock 
compression of a porous sample is accompanied 
by greater heating than that of nonporous material. 
This additional temperature rise increases the 
thermal component of the pressure, PT = P- Pc, 
which opposes the compression. Consequently the 
density of a shock-compressed porous sample is 
lower than that of a nonporous sample treated in 
the same way. 

For higher values of m the adiabat in the P-a 
diagram is shifted toward lower values of a (Fig. 
1). Let us denote the limiting compression (as 
P- oo) of a nonporous body by h = 1 + 2/y. For 
the adiabats corresponding to a porosity m1 in the 
interval h > m1 ~ 1, the density after shock com
pression rises with increase of pressure, approach
ing asymptotically a limiting value Ulim = h/m1 > 1. 
Such adiabats lie in the region a > 1 where their 
slopes ( dP/da) H are positive. 

The role of shock heating is particularly notice
able at porosities m3 > h. Then the adiabats have 
an unusual inverted form: they lie in the region 
a< 1 and can have derivatives ( dP/da) < 0. 
Whereas a wave of vanishingly small amplitude is 
capable, as indicated, of compressing a porous 
sample to the initial density of the nonporous 
material (a= 1 ), when m > h a wave of finite 
amplitude cannot produce even such compression. 
An increase in pressure causes in this case not an 
increase, but a decrease in the density reached 
after shock compression, which approaches 
asymptotically a limiting value UJim = h/ma < 1. 
When m2 = h the adiabat coincides with the ordi
nate a = 1; along this adiabat we have ( dP/da) H 
= oo. 

Initial experiments with substances with few 
pores have shown the importance of temperature 
in shock compression. The results for iron with 
m = 1.4 have been given in [2]. 

Experiments carried out by the present authors 
have shown that a very porous body (cotton wool) 
cannot be shock-compressed to the normal density 
of the nonporous material. Recently the authors 
studied shock compressibility of tungsten samples 
of various initial densities ( m = 1-4) over a wide 
range of pressures from several hundred thousand 
to several million atmospheres. The velocity of 
sound was measured behind the shock fronts. 

EXPERIMENTAL TECHNIQUE 

The shock compression parameters D and U 
(wave and mass velocities) were found using the 
reflection method described in [aJ. A shock wave 

of known intensity passed into the sample from a 
screen, made from a material of known dynamic 
compressibility. The wave velocity in the sample 
was found experimentally. Time intervals were 
recorded with cathode-ray oscillographs. 

The tungsten samples had five different initial 
densities: m = 1.03, R::l.S, R::2.15, R::3, and R::4. 
The density of the nonporous material was taken 
to be Po = 19.35 g/cm3• Samples with m = 1.03 
were drawn from a tungsten bar, and those with 
larger m were pressed from a powder consisting 
of 2-3!-L particles. The tungsten content of the 
samples was 99.8% by weight; the principal im
purities were molybdenum, iron, phosphorus, 
copper, and oxygen. 

To avoid the effects of lateral disturbances [4] 

the ratio of the sample diameter to its height was 
2 at pressures ~ 0.9 x 106 atm; at lower pressures 
and for samples with larger m, the ratio was 10 
or greater. Measurements were carried out over 
base lengths 3-5 mm in samples with m = 1.03 
and over lengths 8-9 mm in samples with larger 
m, at pressures ~ 0.9 x 106 atm; at lower pres
sures in samples with large m the wave velocity 
was successively measured over several base 
lengths, varying from 1.5 to 5-8 mm. 

The sound velocity was found in shock-com
pressed samples with m = 1.8 using the "lateral 
relaxation" method.[() Recording was carried out 
directly with a photochronograph at a scanning 
rate of 6 km/sec. 

RESULTS 

Shock-compression parameters were measured 
in several series of tests. For each series the 
same screen material was used and the shock wave 
produced in it had the same intensity. The results 
are given in Table I. This table lists the screen 
material and the pressure Psc produced in it, the 
initial porosities m and the experimental values 
of the shock-wave' velocity (D), as well as the 
other shock-compression parameters determined 
graphically in P-U diagrams: the mass velocity 
behind the shock front ( U), the pressure 
P = p0UD/m, the degree of compression rna 
= p/p00 = D/(D- U), and the density obtained by 
shock compression, expressed as the ratio of the 
final density to the bulk density, a = p/ Po· The 
final column of Table I gives the number of experi
ments from which the average value of D was ob
tained. Accurate data on the 1Jrnamic compressi
bility of the screen materials [5] were used in the 
construction of the graphs. The data of Table I 
are represented by black dots in the P-a plot in 
Fig. 3. 
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Table I I Screen rna-

I I D, Test . 
series tenal and p oc• m km/sec 

in 1<f2 dyn/cm2 

( 
1.03 8.11 

iron 
1,70 8.02 

I 3.585 2.11 7,80 
2.99 7,95 
4.3 8.11 

{ 
1,03 6.01 

II iron 1. 76 5.01 
1.39 2.15 4,96 

2,96 4.78 

aluminum { 11.76 2.56 
III 0.258 3,06 2.29 

3,99 2.28 

I 

1,2 1,3 1.~ 1,5 1.6 t;: 

FIG. 3. Shock adiabats of porous tungsten: •- experimental 
points; O-calculated data; 6-results taken from(•]. 

To smooth out the experimental results and to 
permit interpolation, Fig. 3 has lines denoted by 
I, II and III, which represent approximately the 
data from three series of tests. Each point on one 
of these lines represents its intersection with a 
shock adiabat corresponding to some fixed initial 
porosity m. * The value of the porosity is related 

*This follows from the equations of conservation of momen
tum and mass for tungsten, the equation giving the change of 
state of the screen material in P- U coordinates, and the 
equality of pressures and velocities at the boundary between 
the sample and the screen. 

U, I P, in 1012 1 
km/sec dyn/cm2 mo 

I 
0 

I No. of 
tests 

3.26 5.01 1.673 1.635 3 
4.12 3.76 2.058 1.211 5 
4.53 3.24 2.385 1.131 3 
5.09 2,62 2,775 0.928 5 
5,63 2.05 3.264 0.759 1 

1. 74 1.98 1.406 1,365 2 
2.39 1,32 1.912 1.086 5 
2.60 1.16 2.102 0.978 4 
2.93 0.91 2;577 0.871 4 

1.12 0,315 1,778 1.011 10 
1.51 0.219 2.936 0.960 13 
1,67 0,185 3.726 0,934 3 

. 

to the shock-compression parameters by 

m = a-1 + p0U 2jP. 

The values of m are given in Fig. 3 next to the 
black dots. 

Figure 4 gives the dependence of ( E - E 0 ) on 
a along lines I, II, and ill of Fig. 3. The quantity 
E- E 0 = ( P/2p0)(ma- 1)/a represents the 
change of the total internal energy per unit mass 
of a porous sample subjected to shock compression 
(it is worth noting that E - E 0 = U2/2 ). We shall 
use the smoothened results in our subsequent dis
cussion. 

Figure 3 shows also the shock adiabat of non
porous tungsten ( m = 1 ) . The points on this 
adiabat were obtained by short-range extrapola
tion and lie somewhat to the right of the points 
representing m = 1.03. Using Bridgman's data 
for the adiabat of nonporous tungsten, we put 
D = D0 + A.U, where D0 = 4 km/sec and A.= 1285. 
The triangles in Fig. 3 represent the results of [s] 

for samples with m = 1.01, these results agree 
with our data. 

Thus, for each shock adiabat of tungsten corre
sponding to some initial porosity, we know three 
experimental points lying on lines I, II and ill; the 
point P = 0, a= 1 is common to all the adiabats. 

For tungsten with m = 1.8, three series of 
sound-velocity measurements were carried out 
behond shock fronts. The results are given in 
Table II. The screen materials and the wave in
tensities in them were the same as in the corre
sponding series of tests listed in Table I. The 
lateral-relaxation angle a was found experi
mentally. The sound velocity was calculated from* 

C = D [tg2a + (mat2 )'1•. 

The sound velocity C1 = 6.1 km/sec, calculated 
from the experimental value of a for the lower 

*tg =tan 
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Table II 

Test I 
series m I d jp, in lo'21 

ex eg ~yn/cm2 

I 1,80 38.5 3.58 1.212 
II 1.80 44.5 1.31 1:os5 

III 1.80 67 0,31 1.017 

range of pressures, is very large. This value is 
greater than the 5.61 km/sec obtained for medium 
pressures, although in the latter case both the 
density and the pressure were higher. There is a 
reason for this inconsistency. Al'tshuler et al [(] 
have shown that in metals the angle a found ex
perimentally at low pressures represents the ve
locity of an elastic wave which is 
v = [ 3 ( 1 - 11 )/( 1 + 11)] t/2 times greater than the 
velocity of waves of volume plastic deformation, 
which is the velocity we need. Assuming that in 
the lower range of pressures Poisson's ratio 
of tungsten is the same ( 11 = 0.3) as at normal 
temperature and pressure*, we find that the sound 
velocity is C2 = 4. 79 km/sec; we shall use this 
value henceforth. 

The experimental slopes of the isentropic 
curves, ( 8P/8u) s = p0C2, are given in Fig. 3 by 
straight-line segments denoted by S. 

DISCUSSION 

1. The experimental results (Fig. 3) show that 
the Hugoniot adiabat of nonporous tungsten has its 
usual form: with increase of pressure the density 
of the shock-compressed metal rises and, there
fore, the derivative ( dP/du) H• is positive every
where along the adiabat. As the initial porosity of 
the material increases the shock compressibility 
falls rapidly and the corresponding adiabats are 
shifted toward smaller values of u. For moderate 
porosities, e.g., m < 2, the adiabats still have the 
usual form: u > 0, ( dP/du) H > 0. At higher poros
ities the density of shock-compressed tungsten 
( u < 1) does not reach the density of nonporous 
metal at normal temperature and pressure. The 
initial portions of the adiabats for large values of 
m are unusual: for a given value of m the density 
decreases with increase of pressure and conse
quently ( dP/du) H < 0. These results are in quali
tative agreement with the theory of the behavior of 
porous metals, given in the introduction. 

There is, however, an important disagreement 
between the theory and experiment. The experi
mental results (Fig. 3) show that the shock adiabat 

*The lower experimental point corresponds to a relatively 
low temperature, lower than the melting point at atmospheric 
pressure. 

7,84 
5,04 
2.52 

c. 
km/sec 

7.19 
5.61 

C1=6.1; C2=4.79 

I dP/da I 1012 No. of 

I 2 tests 
dyn em 

10,00 4 
6:09 4 
4.44 17 

for a large value of m, e.g., m = 3, has the follow
ing form. It begins at P = 0, u = 1 and first it 
deviates to the left into the region where u < 1 and 
where the density decreases with increase of 
pressure, i.e., ( dP/du) H < 0. On further increase 
of pressure the density passes through a minimum 
value, O"min < 1, at some finite point where 
( dP/du) H = oo, and then the density begins to rise. 
Thus there is a region where the derivative 
( dP/du) H is positive as for the usual adiabats. 
For this type of Hugoniot adiabats there are two 
points at different pressures where the density is 
the same (within the range O"min:::::; u:::::; 1 ). At a 
given density the point at higher pressure repre
sents greater heating due to shock compression. 

This behavior indicates that 'Y decreases 
strongly with increase of temperature. This de
crease is due to increase of the specific heat of 
the metal with increase of temperature, mainly 
due to the greater contribution of the electrons to 
the specific heat at high temperatures. At T = 0 
the coefficient 'Y is equal to the Griineisen con
stant of the crystal lattice ( 'Ylat ). 

2. From the experimental results we can find 
the relationship between the thermal components 
of pressure, PT = P - Pc, and of the internal en
ergy, ET = E - Ec, where 

a p 

Ec =Eo+~ --;do; 
1 Poe; 

where we confine ourselves to the results for very 
porous samples, i.e., we shall consider the region 
of high temperatures and a relatively narrow 
range of density changes ( 0. 75 < u < 1.30 ). The 
function Pc ( u), i.e., the dependence of pressure 
on density at zero temperature (the difference be
tween ooK and ~ 300°K can be neglected), is given 
by the following formula [7] 

(1) 

where k1 = 99.46 x 1013 dyn/ cm2, k2 = 227.6 
x 1010 dyn/cm2, and b = 6.08 were found from the 
experimental values of the density p 0, the bulk 
modulus, -v0dP/dv = p0C5, and the lattice 
Griineisen constant for normal conditions, 'Y~at 
= 1.6. The values of k1, k2, and b were calculated 
using the expression found by Dugdale and Mac
Donald (see, for example, [5J). 
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£-[,.(0'0 erg/g 

FIG. 4. Dependences of (E- E0 ) on a along lines I, II, III of 
Fig. 3. 

26 10 vP,. tO erg/g 

£1 • 1010erg/g 
0~------~sL-------~m~------~~ 

FIG. 5. The vPT-,.ET diagram: •- experimental points; o
calculated data. 

Figure 5 gives the experimental results (black 
dots) and the lines I, II taken from Figs. 3 and 4, 
in coordinates of vPT and ET; the numbers 
represent the values of a. 

The ratio of the thermal pressure to the volume 
density of the thermal energy vPT/ET at any point 
is given directly by the slope of the straight line 
joining the origin of coordinates with that point. 
With increase of the thermal energy the ratio de
creases. The positions of the points, denoted by 
open circles, for three ranges of pressures and 
at the same density a lead to the following con
clusions. 

The relationship between the thermal compo
nents of the pressure and the internal energy is 

nonlinear. The quantity ')', determined by the first 
derivative of vPT with respect to ET, decreases 
with increase of the thermal energy and, conse
quently, with increase of temperature. The second 
derivative of vPT with respect to ET is negative, 
i.e., v ( a2P I aE2 ) v < o. This and the thermody
namic equilibrium 

(ac., ) = _ c; ( a2p) 
ar s r iJ£2 " 

show that along an isentropic curve the specific 
heat of the metal, Cy = ( BE/ BT) v• rises with 
temperature. 

To obtain a clearer picture of the shock adiabats 
we shall use the fact that in the first (rough) ap
proximation the experimental data for various 
values of a can be described by a unique depend
ence of ET on vPT. The simplest form of this 
dependence is 

Er =a (vPr) + b (vPr) 2 (2) 

where a = 0.5 and b = 1.99 x 10- 12 g/dyn-cm. The 
plot of this dependence is the dashed curve in Fig. 
5. Selection of this particular dependence is 
equivalent to the assumption that the quantity 'Ylat 
= 1/a is constant in the range of densities con
sidered. 

Equation (2), together with Eq. (1), can be re
garded as the empirical equation of state, relating 
P, E and v [the equation of state in the form 
PT = BT/v, ET = CvT + 13~/2 can be reduced to 
Eq. ( 2)]. Using the empirical equation of state we 
can now determine the behavior of both the shock 
and isentropic adiabats, but we cannot use this 
equation for long-range extrapolation. The shock 
adiabats PH calculated using Eq. (2) with m = 1.8, 
2.2, 3, and 4 and the isentropic curves Ps are 
given in Fig. 3. The calculated shock adiabats lie 
near the points defined by the experimental lines I, 
II, and III. 

3. The experimental results give a system of 
intersecting curves in P-a coordinates: these 
are segments of isentropic curves cut by the lines 
I, II, and III. Hence the value of 'Y and the slopes 
of the shock adiabats can be found independently, 
using the expression 

dE (aE ) dP (aE ) Tv = aP ., -{lr; + Tv p (3) 

for the total derivative of the internal energy with 
respect to volume. If the values of dE/dv and 
dP/dv are known for two lines at their intersec
tion point, we can find the partial derivatives 
( BE/BP)v and ( BE/Bv) p. The first of these par
tial derivatives gives the important thermodynamic 
parameter 'Y· 
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Table III 
Hugoniot adiabat points 

(iJE;av)p, J<«1EI~> w (m = 1.8) 
y = v (oPfoE>v 

(dP/du)H, 

P, 1012 dyn/cm2 1 1o"' erg/cm3 / . cm3;rr. 11f0 dyn/cm2 
cr 

3.58 1.212 677 
1.31 1.065 264 
0.31 1.017 210 

Let us illustrate this by considering a partic
ular case. From our experiments we kllow for 
each of three points on the shock adiabat with 
m = 1.8 the total derivatives along two lines: along 
the isentropic curve, where ( dE/dv )s = - P and 
( dP/dv) s = - ( p0a C )2 is given by the measured 
velocity of sound (Table II), and along line I ( or II, 
or III), where the derivatives dP/dv and dE/dv 
are found from graphs in Figs. 3 and 4. The values 
of 'Y and ( 8E/8v) p found for the three points on 
the shock adiabat with m = 1.8 are listed in Table 
III. 

For the Hugoniot adiabat with m = 1.8 the 
quantity 'Y varies from the range 1.54-1. 70* (at 
the point P = 0, a = 1 ) to 1.17 at the highest 
pressures reached in the tests. This drop in 'Y is 
primarily due to the increase in temperature. It 
is difficult to see why 'Y is greater than 'Yfat at 
lower pressures; this may possibly be due to ex
perimental errors. 

We shall now substitute the partial derivatives 
and the relationship 

(dE I dv)H= f [(mv0 - v) (dP I dv)H- P] 

for the Hugoniot adiabat into an equation such as 
Eq. (3). Solving this equation for ( dP/dv) H• we 
find the slopes of the shock adiabats listed in 
Table III. In Fig. 3 these slopes are marked by the 
letter H. 

4. The behavior of the shock adiabat depends 
strongly on the quantity '}'. By examining the gen
eral relationship between ( dP/da) H and 'Y we can 
find by still another method the limits of variation 
of '}', and sometimes also its magnitude. Let us 
write down the expression for the Hugoniot adiabat 
in its differential form: 

. D PoD 1 = Poo = m , 
Here 

_ •2 (!!!!..) = M2 (1- z) 
1 dP H 1-M2z ' (4) 

M = PooD = D-U, Z = _21 r(ma-1). 
pC C 

(5) 

( dv) 1 (de;) 
- df H = fio<S2 dP H 

is the derivative of the Hugoniot adiabat. The de-

*This range contains the values of the Griineisen constant 
Y1at for normal conditiofts, as reported by various workers. 

0.036 1.17 2430 
0.025 1.64 2130 
0.027 1.87 1840 

nominator in Eq. (4) is always positive in those 
regions of the adiabat where the shock wave is 
stable. This follows from the condition 0 ~ M < 1 
(see, for example, [s]) and from the inequality on 
the left-hand side of the following criterion of 
stability, derived by D'yakov: [9] 

- 1 < j 2 (dv I dP)H < I + 2M. (6) 

If the inequality on the right-hand side of Eq. (6) 
is ui=led as well, then the denominator in Eq. (4) is 
subject to a more restrictive condition: 

(1- M 2z) > f (1-M)> 0. 

Thus the sign of - ( dv/dP) H is governed by the 
sign of the numerator, i.e., by the sign of ( 1 - z ). 

It follows that along those segments of the 
adiabat where ( dP/da) H > 0, the inequality 
'Y < 2/( rna - 1) should be satisfied; along the seg
ments where ( dP/da) H < 0, the quantity 'Y is 
given by 

1+M 2 . 2 
2M2 mJ - 1 > Y > rna - 1 ; 

in the segments where dP/da = oo we have 
'Y = 2/(ma- 1). 

We can conclude for the foregoing, for example, 
that for the highest experimental point of the adi
abat with m = 3 [the point on line I in Fig. 3 where 
( dP/da) H > 0] we have 

r<21(3·0.922-1)= 1,13, 

i.e., the value of 'Y is considerably smaller than 
the Griineisen constant under normal conditions. 

It is of interest to consider in detail the seg
ments of the shock adiabats where the density has 
an extremum. We have not studied these segments 
in detail, but for m = 3 the density minimum can 
be taken as the point in the medium range of pres
sures (line II in Fig. 3). At this point we find 

r = 21(3·0.865-1) = 1.26; 

the value of 'Y decreases along the adiabat above 
this point, and rises below it. 

When a porous body is compressed by a wave 
with an infinitesimally small amplitude ( P - 0, 
a - 1, D - 0, U- 0, C - C0 ) we obtain from 
(4) the result, reported by E. I. Zababakhin, that 
at the point P = 0, a = 1 
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(dPjd cr)H> 0 

(dP/da)H= oo 

(dPjdo)H< 0 

when m < (1 +2/r~at), 
when m = (1 +2/r~at), 
when m > (1 +2/r~at). 

5. It is interesting to consider qualitatively the 
shock adiabats at pressures much greater than 
those reached in our experiments. Figure 6 gives 
the experimental Hugoniot adiabats and the adiabats 
constructed using the Thomas-Fermi model (TF) 
and Latter's data. [to] If the experimental curves 
have density minima, then the TF shock adiabats 
have density maxima above which the density falls 
with increase of pressure, approaching gradually 
a value representing a fourfold compression. The 
TF adiabats at the density maxima have values of 
'Y = 2/( mamax - 1) varying from about 0.48 to 
0.39 when m changes from 1 to 4. Above the 
density maxima, the value of 'Y rises, approaching 
%asP- oo, 

f'i 

Table IV 
Characteristic point 

ET, Hf0 
T, lo' 

Point on 
degK adiabat 

P, lo'2 dyn/cm2 [ a 
erg/g 

{ 
3.58 1.212 I 8.682 21.6 

m=1,8 1.31 1.065 2.875 4.11 
0.31 L017 0.648 2.27 

m =2.59 2.865 1 11.77 27.1 
m = 2.096 1.174 1 3.32 10.0 
m=2.06 0.285 1 0.78 2.7 

{ 2.160 0.789 14,87 32.0 
m=4 0.727 0.773 4.64 13.2 

0;187 0.938 1.38 4.73 

Hugoniot adiabats with m = 1.8 and m = 4 (three 
experimental points for each) and for a density 
a= 1 equal to the initial density of nonporous tung
sten (also three experimental points). The calcula
tions were carried out for the points lying on lines 
I, II, and III (Fig. 3). 

The authors thank L. V. Al'tshuler, Ya. B. 
Zel'dovich and E. I. Zababakhin for their interest, 
and to S. N. Pokrovskil, A. N. Kolesnikova, A. A. 
Zhiryakov, A. V. Blinov and T. T. Lisovitskaya 

14 
FIG. 6. Extrapolation of dy- for their direct help in this work. 

namic adiabats. 
13 
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Thus the shock adiabats of a metal can have 
various forms with positive and negative slopes; 
in particular, the adiabats can be S-shaped at 
large values of m. D'yakov [9] showed that such 
adiabats can have segments where the shock waves 
are unstable. Our analysis of the stability criteria 
showed no such segments either in the TF adiabats 
or in the experimental adiabats, calculated from 
the equation of state (2). Moreover, no segments 
were found where a shock front can generate sound 
spontaneously, though such generation was pre
dicted by D'yakov. 

6. Let us now estimate the temperatures reached 
in shock compression of porous tungsten. We shall 
take the heat capacity as Cv = Cvo + {3T, where 
the first term is the lattice specific heat according 
to Dulong and Petit, and the second term gives the 
contribution of the electrons. The coefficient 

{3 = 1.11 x 10-3 J/mole-deg was taken from the 
data of Waite et al, [1{] who carried out measure
ments close to the absolute zero. The tempera
tures were calculated using 

T 

Er = ~ CvdT. 
0 

Table IV lists the calculated temperatures for two 
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