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eN, •K 

calc. I exp. 

PoFe,1,W,1, Oa 406 363 
PbFe,1,Nb,1, Oa 276 143 

I ®N /®I < 1, in contrast to the majority of anti­
ferromagnets which have I ®N /®I > 1. The small 
values of /Jeff and ® of PbFe2; 3W1130 3 may be due 
to inaccurate extrapolation of the linear part of 
x- 1( T ), which was obtained in a relatively narrow 
range of temperatures. Measurements could not 
be carried out at higher temperatures because of 
thermal dissociation of the crystals. 

The x ( T) curves of both compounds did not 
obey the Curie-Weiss law at temperatures imme­
diately above the transition points; this behavior 
was similar to that found for weak ferromagnets. 
The deviation from the Curie-Weiss law was due 
neither to the presence of nonmagnetic ions at 
octahedral sites nor to the broad phase transition 
regions, since the solid solutions Mn1_xMgxO, [3] 

as well as CrSe crystals, [2] had the same prop­
erties but exhibited a x ( T) dependence typical of 
antiferromagnetics. It was therefore possible that 
the two lead compounds were weak ferromagnets 
which did not exhibit a residual magnetic moment 
because of a very large coercive force. To test 
this hypothesis some samples were cooled from 
a temperature well above the Neel point in a field 
of 8000 Oe. Even then no residual magnetic mo­
ment was found. 

In crystals with ferroelectric and ferro- or 
antiferromagnetic ordering one can expect changes 
of magnetic or electric properties on spontaneous 
polarization or magnetization. For example, a 
transition to the ferroelectric state and a conse­
quent change of the lattice symmetry in an anti­
ferromagnetic may produce weak ferromagnetism, 
i.e., a ferroelectric phase transition may induce 
magnetic moment. Changes of the ferroelectric 
or ferromagnetic domain structure may also occur 
in magnetic or ferroelectric transitions. Unfortu­
nately in both compounds the phase transitions 
were broad and these effects were small and 
spread over a range of temperatures. However, 
a maximum of tan o was observed at 261 °K in 
PbFe1; 2Nb1; 20 3; this maximum was displaced when 
the frequency was varied. More work is necessary 
on this feature of tan o. 

The main conclusion of this work is that ferro­
electric and antiferromagnetic properties may co­
exist in crystals. 
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IT is known that the formation and filling of a 
''hole" in the inner electronic shells of atoms 
leads to multiple ionization, to the breaking of 
chemical bonds, and to release of the atom as a 
free ion. [1] Investigations of the charge distri­
bution of atoms during radioactive transformations 
show that when one ''hole" is filled, atoms lose, 
on the average, about seven outer electrons. 
Borde [2] showed that cascade transitions of muons 
in mesic atoms lead predominantly to ionization 
of the inner atomic shells. Thus, for example, 
about five electrons may be emitted in the bro­
mine mesic atom as the muons go from a shell 
with principal quantum number n = 14 to the 
ground state. Consequently, in the case of mesic 
atoms, the average ion charge may be very large. 

The existence of this phenomenon, called elec­
tronic activation of mesic atoms, may cause, for 
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example, the probability R of muon transitions 
between levels of the hyperfine structure, speci­
fied by the state of the electronic shell of the 
mesic ion at the moment of its decay, [3] to de­
pend on the kind of compound entered by the given 
atom. If the mesic ion is in a metal, the electron 
shell returns to the ground state in time t 0 which. 
is small compared to the lifetime T of the mu­
meson. [1] Therefore, because of conversion on 
the electrons of the atom, [3] R will always be 
much larger than 1/T. On the other hand, in di­
electrics (for example, ionic crystals), the mesic 
ions will act as impurity centers and in that case 
t 0 » T. [ 1] Since a decrease in the number of elec­
trons in an atom increases the ionization potential 
of the inner shells, R can be much smaller than 
1/T for dielectrics. 

These considerations may explain the experi­
mental fact [4] that the values of R differ greatly 
in the mesic atoms of the two phosphorus modifi­
cations. Actually, recognizing that for the mesic 
atoms of phosphorus the interaction energy of the 
hyperfine structure is D..W = 185 eV while the L 
absorption-edge energy in silicon (mesic phos­
phorous) is V2s = 156 eV, we can conclude that 
for the black modification (a conductor) there is 
agreement between the calculated and measured 
values of R. Calculation [5] shows that V 2s 2:: W as 
soon as three or four electrons are emitted in the 
mesic atoms of phosphorus. Therefore, for red 
phosphorous (a dielectric) where t 0 » T, even the 
formation of a single "hole," causes R to be less 
than 1/T. 

Experiments [6] have shown that the shell has no 
effect on the polarization of mu-mesons india­
magnetic metals or media. There will therefore 
be no such effect in black phosphorus, either. [4] 

In tests on red phosphorus, [4, 7] the maximum 
asymmetry of the J.!-e decay electrons, observed 
at a mesic-nucleus spin precession frequency 
half as large as the precession frequency of the 
spin of the free mu-meson, indicates that the elec­
tron shell likewise does not influence mu-meson 
polarization in red phosphorus. 
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