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The growth of fluctuations is investigated in plasma characterized by an unstable distribu­
tion function (primarily systems consisting of a plasma and a beam of charged particles). 
The expectation values for the amplitudes of the growing oscillations excited by the beam 
passing through the plasma are determined, as are the correlation functions for various 
physical quantities (electric field, charge density of the plasma system, density and ve­
locity of the beam). These correlation functions and the squares of the oscillation ampli­
tudes contain terms that grow exponentially with time; the exponential is proportional to 
N}{2 and is multiplied by a factor that is also proportional to N}{2 ( NB is the beam density). 
If the beam velocity is high compared with the mean thermal velocity of the plasma electrons 
a resonance arises between the plasma oscillations excited by the beam and the Langmuir 
oscillations of the plasma. In this case the correlation functions grow with a factor propor­
tional to Nt but the exponential is multiplied by a factor that is independent of beam density. 

l. It is well known that a plasma through which a 
stream of charged particles moves is unstable: 
in contrast with the fluctuations in a stable sys­
tem, in such a system the fluctuations can increase 
with time. The frequencies of these "driven" os­
cillations and their growth rates have been deter­
mined by A. Akhiezer and Fa1nberg [i] and by Bohm 
and Gross. [2] 

However, in addition to knowing the frequencies 
of these oscillations it is important to know the 
most probable values of the oscillation amplitudes 
and certain more general quantities-the average 
(over the fluctuations) products of various phys­
ical quantities measured at times that are not 
necessarily coincident. These averaged products 
can be called correlation functions. In particular, 
the correlation function for a given physical quan­
tity at coincident times is the mean square of the 
oscillation amplitude of this quantity. 

The present work is devoted to an analysis of 
the correlation functions in a plasma character­
ized by an unstable distribution function, primar­
ily a plasma and a compensated beam of charged 
particles. 

The instability in such a system can be ana­
lyzed only for a bounded time interval; hence, to 
describe this system we must assign the initial 
conditions that characterize the various physical 
properties. These initial values are obviously 
random quantities and some averaging process 

must be used to obtain their correlation functions. 
An extremely important feature in this connection 
is the fact that the averaged product of the fluctua­
tions of the plasma particle distribution function 
can be given as a sum of a singular term, which 
describes the "autocorrelation" of a particle, and 
a smoothly varying term [cf. (11)], whose actual 
form is unimportant in certain cases. In particu­
lar, when the plasma is traversed by a beam of 
sufficiently low density the contribution of the 
smooth term in the correlation function is propor­
tional to the beam density to a higher power than 
the contribution of the singular term. Hence, one 
can obtain the correlation function in a beam­
plasma system without assuming that the fluctua­
tions at the initial time are of equilibrium nature. 

2. We determine the distribution function Fa 
for particles of the a-th species, characterized 
by mass rna, charge eza and mean velocity ua, 
using the kinetic equation, neglecting the collision 
integral 

( a a ) eza dF~ (v- ua) 
(f[ + v a;: Fa (v, r, t) + ma dv E (r, t) = 0 (1) 

with the initial conditions 

Fa (v, r, 0)- F~ (v- ua) = ga (v, r), 

where F~ is the distribution function, averaged 
over the fluctuations, and E is the self consistent 
field, related to the functions Fa by the equations 
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divE = 4:rte ~ Za ~dvFa (v), rotE= 0 
a 

(the particle velocities are assumed to be non­
relativistic). 

(2)* 

By taking the Laplace transform (in time) we 
can express the particle distribution functions and 
the various physical quantities determined by these 
functions (density and mean velocity of particles 
of the a-th species, charge density, electric field) 
at time t in terms of the fluctuations of the distri­
bution functions g. For a given Fourier spatial 
component of the charge density we find 

(3) 

where E is the dielectric permittivity of the plasma 

E (k, w) = I +4:rt~Xa (k, w- ku12) (4) 
a 

and Ka is the electrical susceptibility of the a-th 
component 

e2z~ \' k dF~ (v) 
Xa(k, w) = k2ma j w-kv+ iO ~ dv. (5) 

The density fluctuations of particles of the a-th 
species are given by a similar expression: 

8pa (k, f) = eza'ON a (k, t) 

(6) 

where 

flaa' (k, W) = 3aa' E (k, w) - 4:rtXa (k, W - ku12). 

The integration over w in (3) and (6) is carried 
out along the line Im w = y, which passes above 
all poles of the function E-1• 

Averaging over all possible initial values of the 
particle distribution functions we write the corre­
lation function of the charge density in the form 

C (k, t, t') == ~ dre-lk(r-r') (p (r, t) p (r', t')) 

oo+iy 
_ C \ dwdw' exp (- iwl- iw't') , 
- j j (2n)2 8 (k, w) 8(- k, w') A (k, w, w ), 

-oo+iy 

where 
A= ~ Aaa', 

a,a' 

Aaa' (k, w, w') = - e2 ZaZa• ~ dv (w- kv + i0)-1 ~ dv' 

X (w' + kv' + iO) -1 ~ dre-ik(r-r') 

(7) 

(the symbol ( ... ) denotes an average over the 
fluctuations). 

A knowledge of the correlation functions allows 
us to determine the expectation values for the am­
plitudes of the oscillation of the physical quantities. 
For example, the mean square amplitude for the 
charge density oscillation characterized by the 
wave vector k is given by the relation 

<I P (k, t) [ 2> = c (k, t, t), (9) 

where p ( k, t) is the spatial Fourier component of 
the charge density. 

In accordance with (2) the correlation function 
for the electric field is related to the correlation 
function for the charge density as follows: 

E ( z 1 u. < t r,t)Et(r',t'))=---n:,dkeik(r-r') ~.' C(k,t,t'). (10) 

It follows from (7) that the behavior of the cor­
relation function C is determined by the position 
of the poles of the functions c 1 and A. It is evi­
dent from (8) that the poles of A lie in the lower 
half plane of w; hence, contributions from the 
poles in A yield terms in the correlation function 
that diminish in time. The effect of the poles of 
E-1, however, is different; in a stable system these 
poles also lie in the lower half plane and C dimin­
ishes with increasing t and t'. On the other hand, 
if the system is unstable E-1 has poles in the upper 
half plane so that the correlation function contains 
terms that grow exponentially with increasing t 
and t' as well as terms that grow when either one 
of these quantities increases. 

It should be noted that in deriving (7) we have 
neglected random forces acting in the time inter­
vals ( 0, t) and ( 0, t'), whose contribution is pro­
portional to t/ T or t' IT ( T is the mean time be­
tween collisions ) and vanishes as T - oo • 

3. The expressions in (7)-(10) relate the cor­
relation functions with the fluctuations in the par­
ticle distribution functions at the initial time (the 
time at which the system is "switched on"). The 
Fourier component of the averaged product of the 
initial values of the distribution function can be 
written in the following general form: 

~dre-lk(r-r'>(ga(v, r)ga·(v', r')) 

= 6aa' 6 (v- v') F~ (v- U 12 ) + Yaa•(v, v', k), (11) 

where the first term corresponds to an ideal gas 
(cf. Kadomtsev [3]) while the second is due to the 
electromagnetic interaction between the particles. 

X (ga (v, r) ga• (v', r')) 

*rot= curl 

(8) It is important that the second term is a smooth 
function of velocity whereas the first contains the 
delta function o(V-V'). In a plasma in thermody-
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namic equilibrium the function Y is 

Yaa' (v, v', k) =- (4rtJT)e2ZaZa,pg (v) p~, (v') (R-;;2 + k2t\ 

where R0 is the plasma Debye radius. 
Substituting (11) in (8) and making use of (5) 

we have 
, _ k" ~ wxa (k, W- kua) + Ci>'Xa (k, w' + kua) 

A (k, ro, ro ) = ww' L.J T a (!) + w' 
a 

+M(k, ro, ro'), (12) 

where 6A denotes that part of A which does not 
have a pole at w + w' = 0 [the contribution due to 
y and part of the contribution of the 6-function 
term in (11)]. For simplicity we assume that the 
distribution functions F~ are Maxwellian and char­
acterized by temperature Ta.) 

In a plasma characterized by a stable distribu­
tion function the basic contribution to the correla­
tion function comes from the first of the two terms 
in (12), which has a pole at w + w' = 0. This then 
is the term that makes the basic contribution in a 
plasma traversed by a beam of low density (this 
is the case because the characteristic frequencies 
in such a system satisfy the inequality 11Jk + 1J-k I 
« I1Jk 1. 

We now consider A for a plasma with a non-
equilibrium but stable distribution function:* 

A (k, ro, ro') = e2rt21l (ro + ro') 

x ~ z; ~ dvF~ (v) ll (ro- kv) + 3A (k, ro, ro'). (13) 
a 

Substituting (13) in (7) and taking t, t' » I Im wk_1 1, 
where wk is a root of the equation €( k, wk) = 0, 
we have r d -iw(t-1') \ 
C (k, t- t') = e2 } ~:(k, w) 1• ~ z;} dv F~(v) ll (ro- kv). 

-co a (14) 

A similar formula has been given earlier by 
Rostoker. [5] 

4. We now consider in greater detail the case 
in which the plasma is traversed by a "cold" beam 
( TB ~ 0) whose density is smaller than the plasma 
density. In this case the dielectric permittivity is 
given by 

e (k, ro) = e0 (k, ro)- Q1l (ro- kut2 , (15) 

where Eo is the dielectric permittivity of the free 
plasma and Qk = 47Te2m - 1NB ( NB is the electron 
density in the beam). The quantity E differs ap­
preciably from E0 only near the characteristic 
frequencies 

*The conditions that must be satisfied by such a stable 
function F 0 have been given by A. Akhiezer, Lyubarskii, and 
Polovin. [ 4 f 

'Ilk = ku { 1- ~~~ 1 [ e0 (k, ku) ]-'/,}, 

llk = ku {1 + ~~~~ [e0 (k, ku)]-'1,}, (16) 

where the frequency 1Jk corresponds to a growing 
oscillation while 17k corresponds to a damped os­
cillation. 

Substituting (15) in (7) we can write the charge 
density correlation function in the form c = c<1> 
+ c<2> + c<3>; the term em grows when both times 
t and t', increase; the term c<2> grows if either 
t or t' increases, and the term C <3> diminishes 
with increasing t, t'. The growth terms are given 
by 

- k2T Q B exp (- i'l]kl- i'l]_kl') 
C<ll (k, t, t') = ----r6i1 fklll 1 e" (k, ku) [• 

, k•T QB Ime0 (k,ku) 
C<2) (k, t, t) = 16n fkUI I e" (k, ku) I• 

X {exp {-i'l]k (1-l')}+exp{i'l]_k(l-1')} 

Im V e0 (k, ku) 

. exp{ -i1']kl-ilJ_kl'}-exp{-irJki-i1']_kl'}} 

+t ReVe"(k,ku) 

k•T Q {exp {- i'l]kl} I(- k, t') 
+ 16n B V eo (k, ku) 

+ exp {- l'l]_ki'} I (k, t)}, 
feO(k,-ku) 

where 

Imeo(k,ku) 

Im V e0(k, ku) ' 

(17) 

cotio dw e-iwt 
I(k, t) = ~ \ -" J ww-ku e0 (k, w)' 

-co+io 

The expression for I is simplified considerably if 
t » Q-1 (Q is the plasma Langmuir frequency). 
In this case I(kt) = ( w0 - k • u )-1 x exp (- iw 0t) 
where w0 is the frequency (complex) of the elec­
tron plasma oscillations ( Re w0 ~ Q). 

Using (7) it is a simple matter to find the damped 
part of the charge density correlation function c<3>. 
The quantity c<3> differs from the charge density 
correlation function in the absence of a beam by 
virtue of the terms proportional to ,j NB ; these 
terms depend on the times t and t' in the combi­
nation t - t' and t and t' separately. 

We may note that the growing part of the charge 
density correlation function [and, in accorda.nce 
with (10) the growing part of the electric field cor­
relation function] is proportional to ,j NB and has 
a growth rate that is also proportional to ,j NB . 

5. We now determine the charge density corre­
lation function for the beam. In this case we use 
the relation 
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Caa' (k, i, f') :== ~ dre-ik(r-r') (3pa {r, f) 3p0 • {r', t')) 

oo+h 
= \ \ dwdw' exp (- iwt- iw'l') 

j j (2n)2 e (k, w) e (- k, w') 
-oo+h 

X 2J f!ac{k, w) f!a'c'{- k, w') Ace' {k, W, w'), (18) 
c, c' 

which follows from (6) and (8); we assume that both 
particle species a and a' are present in the beam 
and that TB = 0 so that 

]f!ac{k, w)f!a'c' (-k, w')Acc•(k, w, w') 
c.c' 

=(4n) 2xa(k, w-ku) Xa•(k, w' +ku)A(k,w,w'). 

We obtain the following expressions for the 
growing parts of the charge density correlation 
functions in the beam c~> + c~>: 

c~) (k, t, t') = I e0 (k, ku) [2 C<I) (k, t, t'), 

C(2) , _ k2T QB 0 s (k, t, t) - 16n fkUi Im e (k, ku) 

Jexp {- iT]k(l -l')l+exp {i1Lk(l-t')} 

X l Irn Ve 0 (k, ku) 

(19) 

Thus, in general the growing fluctuations in the 
beam are of the same order of magnitude as the 
growing fluctuations in the plasma and are there­
fore relatively large quantities. 

The damped part of the beam charge density 
correlation function is 

(3 ) , k2T QB .~ '""" , Ime0 (k,ku) 
Cs (k, t, t) = 16n fklliexp {-lf]kt -- tl]-kt} IrnVeo(k,ku)' 

(20) 
We note that when TB = 0 the correlation func­

tion for the velocity fluctuations of the beam com­
ponents 

v~r (k, t, t')- ~ dre-ik(r-r') (ou7 (r, t) ou';' (r', t')), 

(,~uf(r, t) = N-;1 1 dv c'tFa (v, r, t)- u~), 
\ ~ J 

can be expressed in terms of the correlation func­
tion for the density fluctuations for these compo­
nents: 

aa' I f k; I . a k \} 
Vtj (k, t, t) = [Ui + JiZV at- U) 

{ k( a \\ caa'(k,t,t') 
X Uj- Jf, i i)t' + ku)J e'zaza,NaNa'. 

Hence, the correlation function for the electron 
velocity fluctuations in the beam is 

v~ (k, t, t') = (UtU/eW1) Cs (k, t, t'). (21) 

6. If the beam velocity is appreciably greater 
than the mean thermal velocity of the plasma elec­
trons the growth rate for the fluctuations Im 7Jk 
has a sharp maximum for wave vectors satisfying 
the relation I k · u I = n. This maximum corre­
sponds to a resonance between the plasma oscilla­
tions excited by the beam and the plasma Lang­
muir oscillations. [l] 

If the following condition is satisfied 

where 

Im e0 (k, Q) = 2Vn (Q j!?s)3 exp {- (Q/ks) 2}, s2 ~= 2T!m, 

the correlation functions near the resonance val­
ues of the wave vector I k · u I f:::: n are given by 
the expressions in Sees. 4 and 5. 

In the other limiting case [ ( nB /U )2/3 

» lm E: 0( k, U )) the Characteristic frequencies of 
a beam-plasma system with I k · u I = n are not 
characterized by (16), but by the relations 

l]k = Q sign ku [I - (Ds/4Q)'i'] + i V3 Q (Qs/4Q(', 

rJk = Q sign ku [I + 2 (Qs/4Q)'/•]- ~ iQ lm e0 (k, Q), 

(22) 

where 7Jk corresponds to a growing oscillation and 
71k• 71k to damped oscillations. 

We obtain an expression for the charge density 
correlation function near resonance by substituting 
(12) and (22) in (7) and neglecting terms propor­
tional to Nt: 

C (k, t, t') = C0 (k, t- t') + ~:: (e-i11k1 + e-i~t + e-tn~t) 

(23) 

where C0 is the known value of the charge density 
correlation function in the plasma in the absence 
of the beam: 

00 

co (k t - f') = k2T \' dw e-iw(t-t')Irn ---=-!__, 
' (2n)2 j w e0 (k, w) 

-oo 

In accordance with (18) the charge density cor­
relation function in the beam is of the form 

-t1l_k -ta -l"IJ-kf' --i1l f' + ia ( . t' . - * ) 
x e + e + e -k , (24) 

where a = ( 27T/3) sign k · u. 
As before, the correlation function for the elec­

tron velocity fluctuations in the beam is related to 
CB by (21). 
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If t, and t' » n-1 (~/~B )~3• then when I k · u I 
= ~ we have 

C (k, t, t') = ;;: exp { Q (t + t') V3 C~f'} 
x exp {- iQ (t - t') sign ku [I - (QB I 4Q)'1'l}; 

CB (k, t, t') = (2QB I Q)'1' c (k, t, t'). (25) 

Thus, at resonance the charge density correla­
tion function has a growth rate proportional to N~3 

and the exponential is multiplied by a factor that is 
independent of beam density (it is assumed that 
the condition ( ~BI~ )2/ 3 » 1m E: 0(k, ~) is satis­
fied). Near resonance the quantity CB is propor­
tional to Nj{3 (not Nl{2 as in the nonresonance 
case ) and is characterized by a high growth rate. 
We assume, in accordance with (9), that t = t' in 
(23)-(25) so that we can find the mean square am­
plitude of the resonance plasma oscillations. In 
particular, the oscillation amplitude for the elec­
tric field at t » ~-1 ( ~~~B ) 213 is 

{(IE (k, t) 12)}';, = -j- V2n:Texp {Qf Jl3 (QB 14Q)'!.}. (25') 

We now estimate the width of the oscillation 
resonances excited by the beam in a plasma. We 
may note that the growth rate near resonance is 
of the form 

-v- (QB)'!.{ _4(!2--lkull2(QB·)'l,} 
Im 1'Jk- 3Q 4!2 I ' 2 4!2 ' 

- ,)QB 

so that the most rapidly growing oscillations are 
those whose wave vectors satisfy the relation 
II k· u 1- ~I< ~~~1/6c 1/2 • The quantity multiply­
ing the exponential in the expressions for the ex­
pectation values of the square of the oscillation 
amplitudes in the plasma falls off by a factor 
( N/NB )1/ 2 when I k · u I changes from ~ to 
~ [ 1 ± WB /~ )213 ]. Thus, immediately after in­
troduction of the beam into the plasma the oscil­
lations with greatest amplitude are those with 
frequencies in the range ( ~- ~w. ~ + ~w) where 
~W"' ~(~B/~) 2/3 • Startingat t"' ~- 1 (~/~B) 2/3 
it is necessary to take account of the reduction of 
the resonance width with time: ~w "' ~j33 ~1/Gt-1/2. 

However, a nonlinear theory is needed to describe 
the behavior of the plasma accurately when t 
» ~-1( ~~~B )2/3. 

7. In order to investigate the instability of the 
beam-plasma system it was necessary to assume 
some initial time, at which the system is switched 
on. At this instant of time the dielectric permit­
tivity changes sharply from that of the free plasma 
Eo to that of the beam -plasma system E. However, 
it is not necessary to assume that the fluctuations 
at the initial time are of equilibrium nature. It 
must be assumed, however, that these fluctuations 
do not increase greatly during the time in which 
the leading edge of the beam passes through the 
plasma (while the system is still inhomogeneous ) : 
for this reason the condition 1m 7Jk « u/L must be 
satisfied, where L represents the dimension of 
the system in the direction of motion of the beam. 

On the other hand, to analyze a beam plasma 
system as an infinite medium it must be assumed 
that the wavelength of the oscillations is small 
compared with the dimensions of the system. 
Hence, the results given apply when the inequality 
I k · u I » u/L » 1m 7Jk is satisfied, where, in ac­
cordance with (16) and (22), 1m 1Jk "' ~B in the 
nonresonance case and lm1Jk"' ~(~B/~) 213 in 
the resonance case ( k · u ~ ~). It is evident that 
this inequality is satisfied for small values of ~B 
and that it imposes certain limitations on L. 
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