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Relations are found which connect the invariant variables of an amplitude for a Feynman 
diagram with n free lines ("n-point" function) and which allow one to express all possible 
invariant variables in terms of the 3n -10 independent ones. It is shown that these relations 
reduce to a linear system of kinematic conditions, arising from the energy-momentum con­
servation law, and (for n ~ 6) to the additional system of geometrical conditions connected 
with the four-dimensionality of space. It is shown what the choice of independent variables 
should be for the n-point function for arbitrary n; in particular a choice of independent 
variables (with adjacent subscripts) for which the geometrical conditions (generally speak­
ing, a system of equations of fifth degree) reduce to a set of quadratic equations with respect 
to any of the variables is analyzed in detail. A graphical method for obtaining the necessary 
relations among the invariants is described. 

THE study of Lorentz-invariant amplitudes, cor­
responding to Feynman diagrams with n free ex­
ternal lines ("n-point" functions) begins with the 
choice of independent invariant variables. These 
may be chosen to be the so-called kinematic invari­
ants: double- Sik = (Pi+ Pk)2, triple- SikZ 
= (Pi+ Pk + PZ )2, etc., which are scalar quadratic 
combinations of the 4-momenta Pi corresponding 
to the free lines of the diagram ( pf = mf ) . As is 
well known, for the n-point function the number of 
such independent invariants is equal to r = 3n -10. 

In the usually studied simplest case of the 4-
point function [i] ( r = 2) the choice of the inde­
pendent invariants is accomplished trivially: any 
pair of the three double invariants si2, s 23, si3 
(connected by a single linear relation) can be 
chosen as the independent variables; it is obvious 
that the three remaining invariants s 34, si4, s 24 
(out of the total number C~ = 6 of double invari­
ants) coincide respectively with si2, s 23 , si3, as 
a consequence of the conservation law Pi + p2 + p3 
+ p4 = 0. In the case of the 5-point function [2] 
( r = 5 ) the choice of the five independent invari­
ants from among the ten ( C~ = 10) double invari­
ants (triple invariants are equivalent to double 
invariants as a consequence of the conservation 
law Pi + p2 + P3 + p4 + p5 = 0) is also largely ar­
bitrary, provided only that in fixing the five inde­
pendent invariants one does not consider those 
quadruple combinations of three double invariants 
that constitute a triple invariant, simultaneously 
with the do1o1ble invariant identical with the indi-

cated triple invariant; for example si2, s 23 , si3 
(s123) and s 45 (see Appendix). 

However, beginning with the 6-point function 
(for n ~ 6) the freedom in the choice of independ­
ent variables disappears and the picture becomes 
drastically more complex as a consequence of the 
four-dimensionality of space. 

It is the aim of this article to show how the 
choice of independent variables should be accom­
plished for the n-point function for arbitrary n, 
as well as to establish the form of the conditions 
(kinematic and geometric ) which connect the in­
variants to each other and permit one to obtain 
their range of variation. 

1. CHOICE OF VARIABLES FOR THE n-POINT 
FUNCTION ( n ~ 6 ) 

Along with the kinematic invariants Sik• SikZ· 
Siklm• etc. it is convenient to also consider the 
corresponding scalar products of the 4-momenta 

(ik) = 2 (PtPk) = Stk - m2 - ml 

and their linear combinations 

(iklm) = 2 (PtPk) + 2 (p;pz) + 2 (PtPm) 

+ 2 (PkPz) + 2 (pkPm) 

+ 2 (PzPm) = Stklm - m~ - m~ - m7 - m':n 

(1) 

etc., which are single-valuedly related to the kine-

394 
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matic invariants of corresponding multiplicity and 
which, as is easy to see, transform very simply 
into each other (with a lowering in the multiplic­
ity): 

(ikl) = (ik) + ( il) + (kl)' 

(iklm) = (ik) + (il) + (im) + (kl) + (km) + (lm) 

= (ikl) + (im) +(km) + (lm) = (ikl) 

+ (ikm) + (lm) - (ik) 

etc.; this makes it possible to use in establishing 
relations among the invariants a simplifying graph­
ical technique (see Appendix). 

Since any invariant of higher multiplicity (triple, 
quadruple, etc.) can be reduced by elementary 
means to an aggregate of double invariants it is 
meaningful to start the analysis of invariant vari­
ables for the n-point function with the double in­
variants, whose number is given by C~ = n(n -1 )/2 

A connection between the double invariants of 
the n-point function arises as a consequence of the 
conservation law 

n 

(2) 
i=l 

which can be transformed by means of scalar mul­
tiplication by 2Pk into a system of n linear equa­
tions for the double invariants (kinematic condi­
tions): 

n 

~ (ik) = 0, k = 1,2 .. . n, (3) 
i=l 

where (ii) = 2mf. Consequently, the number of 
kinematically unrelated double invariants is equal 
for the n-point function to p = cA-n = ( n2- 3n )/2. 
For the 4- and 5-point functions this number is 
equal to r = 3n -10, the number of independent 
invariants (p = r ). Starting with the 6-point func­
tion, however, the number of double invariants un­
related by the kinematic conditions (3) becomes 
larger than the number of independent invariants 
by the quantity q = p- r = (n- 5) (n- 4)/2. This 
latter circumstance is due to the fact that in a 
four-dimensional space no more than four vectors 
can be linearly independent (already in the case 
of the 6-point function there is only one linear con­
dition (2) to be imposed on the six vectors Pi• i.e., 
one would have five linearly independent vectors). 

Without loss of generality we shall choose from 
among the n vectors of the n-point function as lin­
early independent the following four vectors (basis): 
Pi• p2, p3, p4. Then on each quintuplet of vectors 
Pi• P2• P3• P4• Pl (l = 5, 6, ... n -1) which character­
ize the n-point function [the vector Pn is excluded 

by means of the conservation law (2)] there must 
be imposed in a 4-dimensional space the conditions 
of linear dependence (where O'i "'- 0 ) 

1-(,! 

~ a,p;=O, l = 5, 6 ... n- I, (4) 

which, after scalar multiplication by 2Pk (k = 1, 2, 
... n -1 ), go over into a system of linear equations 
for the quantities ai: 

1-4, l 

~ (ik) Cit = 0; k=l,2 ... n-1, l = 5, 6 ... n-1. 
(5) 

The coefficients ( ik) of this system of equations 
form a symmetric (n -1 )2 matrix of double invari­
ants for the n-point function: 

2mi (12) (13) (14) (15) (1, n-1) 

(12) 2m~ (23) (24) (25) (2, n-1) 

(13) (23) 2mi (34) (35) (3, n-1) 

(14) (24) (34) 2m; (45) (4, n-1) 

(15) (25) (35) (45) 2m~ (5, n -1) 

(1, n-1) (2, n -1) (3, n -1) (4, n -1) (5, n -1)... 2m~_1 

where the singled-out left upper corner consists 
of invariants made out of the four basis vectors 
Pi• p2, p3, P4· For the determinant of this four-by­
four matrix we have <l4 ( 1, 2, 3, 4) = I ( ik) I "'- 0 
(i, k :::: 4) (which is the condition that the vectors 
Pi• P2• P3• P4 are linearly independent). 

In order that the system of equations (5) have 
nontrivial solutions for the O'i one must require 
the vanishing of all determinants of fifth order 
(they are usually referred to as the Gramm de­
terminants [3]), that can be constructed from the 
symmetric matrix of invariants by the addition of 
rows and columns to the fourth-order determinant 
.:l4 ( 1, 2, 3, 4 ). One obtains in this way n- 5 condi­
tions with symmetrical Gramm determinants of 
fifth order ( l = 5, 6, ... n- 1) 

2m~ (12) (13) (14) (1!) 

(12) 2mi (23) (24) (21) 

.:15 (1' 2, 3, 4, l) = (13) (23) 2m~ (34) (3l) =0 
(14) (24) (34) 2m! (41) 

(6) 
(11) (21) (31) (41) 2m2 

and ( n- 6) ( n- 5 )/2 conditions with "nonsymmet­
rical" Gramm determinants of fifth order ( l r' k; 
l, k = 5, 6, ... n- 1) 



396 V. E. ASRIBEKOV 

2mi (12) (13) (14) (1k) 

(12) 2m~ (2:3) (24) 

6 5 (1, 2, 3, 4, kl)== (13) (23) 2m; (34) 

(2k) 

(3k) =0. 

(14) (24) (34) 2m; 

(11) (21) (31) (41) 

(4k) 

(lk) (7) 

[We remark that in the matrix and in the determi­
nants one can include the invariants (in ) , i = 1, 2, 
... n , which contain the vector Pn• and then ac­
complish their elimination with the help of Eq. (3); 
the fifth-order Gramm determinants corresponding 
to these invariants turn out to be linear combina­
tions of the determinants (6) and (7).] 

The aggregate of conditions (6) and (7) is equiv­
alent to the condition (4) of linear dependence and 
represents the additional conditions connecting the 
double invariants, which in distinction to the kine­
matic conditions (3) arising from the conservation 
law (2) will be called geometrical conditions (as 
they are a consequence of our use of four-dimen­
sional geometry). The number of geometrical 
conditions, as is easy to see from the symmetric 
matrix of invariants, is equal to n- 5 + (n- 6) 
(n- 5 )/2, which coincides with the number q 
= (n-5)(n-4)/2. 

In this way the n kinematic conditions (3) and 
the q geometrical conditions (6) and (7) leave from 
the total number n(n -1 )/2 of double invariants 
only the required number r = n(n -1 )/2 -n -q 
= 3n -10 of independent invariant variables of the 
n-point function (for n 2: 6 ), whose choice how­
ever is not yet fully determined. 

Before passing to the discussion of invariant 
variables for specific n-point functions let us re­
mark that the nonsymmetric choice of Pi• p2, p3, 

P4 as our basis vectors, as well as the exclusion 
of Pn from the relations (4) and (5), should not be 
thought of as restrictions on the formalism; by 
means of the symmetric with respect to all the 
vectors Pi• p 2, ••• Pn conservation laws (2) and 
linear relations (3) one may transform to any 
other basis Pa• Pf3• Py• Po with t:.4 (a, {3, y, o) ;.! 0 
and exclude from Eqs. (4) and (5) any vector p 7 

-the relations obtained in this manner turn out 
to be equivalent to those given above. In the fol­
lowing this will be illustrated in specific examples 
of n-point functions (n = 6, 7, and 8). 

2. THE 6-POINT FUNCTION 

In the case of the 6-point function (see Fig. 1) 
there are eight invariant variables (r = 8 ). The 
total number of double invariants, composed of 
the six vectors Pi> is equal to ( 6 • 5 )/2 = 15. On 

FIG. 1-

the 15 invariants we impose 6 kinematic condi­
tions 

6 

~ (ik) = 0, k=l,2, ... 6 
i=l 

and one geometrical condition 

(3') 

(6') 

It should be noted that as a consequence of the 
kinematic conditions (3') all fifth-order Gramm 
determinants for the 6-point function are equal to 
each other: 

65 (1, 2, 3, 4, 5) 

=- 6s(l, 2, 3, 4; 56)= 65 (1, 2, 3, 4, 6) 

= ... = 6 5 (2, 3, 4, 5, 6), 

where the transformation is accomplished by add­
ing all rows (columns ) to any one row (column) 
being transformed and replacing (with the help of 
the kinematic conditions) the sum of the elements 
of the determinant by the new element with the op­
posite sign. In this way the vanishing of the one 
determinant t:.5( 1, 2, 3, 4, 5) results in the vanish­
ing of all the other determinants t:.5 and, conse­
quently, the choice of the basis as well as the ex­
clusion of one linearly dependent vector from the 
geometrical condition are arbitrary in the case of 
the 6-point function. 

The choice of independent invariant variables 
from among the total number of double invariants 
is best accomplished in two stages: one first picks 
9 kinematically unrelated invariants and expresses 
the 6 remaining invariants in terms of the picked 
ones by means of the kinematic relations (3'); one 
then imposes on the 9 kinematically unrelated in­
variants the geometrical condition (6'), symmetric 
with respect to all invariants, thus reducing the 
number of independent variables to the required 8. 

It is easy to show that not for any choice of the 
9 kinematically unrelated invariants from among 
the 15 double invariants can the system of equa­
tions (3') be uniquely solved for the 6 remaining 
invariants, because the determinant of the system 
may turn out to be zero (in that case the system 
of equations is undetermined and possesses an in­
finity of solutions). The system of equations (3') 
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has a nonvanishing determinant only for a symmet­
ric choice of the 9 kinematically unrelated double 
invariants, in particular for invariants with adja­
cent subscripts (s 12, s 23, s 34, s 45, s 56, s 61 ) and 
with subscripts differing by three units ( s 14, s 25, 
s36 ). In that case the solution of the system of 
equations (3') results in linear expressions for 
the remaining 6 invariants (s 13, s 24, s 35, s 46, s 51, 
s 62 ), with each of the indicated invariants ex­
pressed simultaneously in terms of all the 9 picked 
invariants. As a consequence of this the geomet­
rical condition (6') turns out to be an algebraic 
equation of fifth order with respect to any one of 
the 9 kinematically unrelated invariants; its solu­
tion, necessary for the expression of one of these 
invariants in terms of the rest (to determine the 
range of variation), presents considerable diffi­
culties. It is characteristic, however, that in the 
formulas under consideration there appear just 
such linear combinations of double invariants 
that correspond to triple invariants. For this 
reason it becomes convenient to consider in addi­
tion to double invariants also the triple invariants 
Sikl when making the choice of the 9 kinematically 
unrelated invariants for the 6-point function. 

In the case of the 6-point function the number 
of triple invariants is C~ = 20; however, as a con-

6 

sequence of the conservation law I; Pi = 0, it is 
i=1 

sufficient to consider only 10 triple invariants 
since the remaining 10 are equal to the first 10 in 
pairs ( Sikl = smnp ). Together with the 15 double 
invariants we thus have a total of 25 invariants 
from which to choose the 9 kinematically unrelated 
ones. The remaining 16 invariants are connected 
to the picked ones by means of 16 linear relations, 
6 of which correspond to the Eqs. (6') for the 
double invariants and the other 10 correspond to 
the transformation equations that express the triple 
invariants in terms of the picked double (and 
triple) invariants. In order to establish the nec­
essary 16 relations it is convenient to make use 
of the graphical technique introduced in the Appen­
dix. 

The choice of the kinematically unrelated invari­
ants may now be accomplished in the following 
symmetric manner: only double and triple invari­
ants with adjacent subscripts are picked- s 12, s 23 , 

s34• s45• s56• s61• St23 = s456• s234 = s561• S345 =s612· 
Then the relations expressing the remaining 16 in-
variants in terms of the kinematically unrelated 
ones have the form (see Appendix) 

(13) = (123)- (12)- (23), 

(26) = (126) - (12) - (16), 

(46) = (456)- (45) -(56), 

(35) = (345) - (34) -- (45), 

(15) = (156)- (16)- (56), (24) = (234) - (23) -(34) 

(36) = S45 + S12 - SJ23 - SJ26, 

(14) = S23 + S&6- SloG- S456, 

(25) = 834 + 516 - 5126 - 5156, 

5134 = 5o6 + 834- 8234- (12), 5146 = 823 + S16- 5156- (45), 
SI36 = S45 + Sl6 - 5126- (23), S125 = S34 + 512- Sl26- (56), 
5124 = 556 + S12- 8123- (34), 5236 = 5 45 + sn- 5 123 - (16). 

(8) 

The additional geometrical condition (6') for the 
9 kinematically unrelated invariants can now be 
written with the help of Eq. (8) in a form suitable 
for solution for any one of the picked invariants, 
for example s 12, namely 

2mi (12) I [13] (14) (15) 

(12) 2m~ 2m~+ (23) (24) (25) 

[13] 2m~+ (23) 2m; + 2mi + 2 (23) (24) + (34) (25) + (35) 

(14) (24) (24) + (34) 2m2 
'i 

(45) 

(15) (25) (25) + (35) (4.5) 2m~ 

=a (12)2 + b (12)-f c=<l, (9) 

where [13] = (13) + (12), and where the invariants 
(13), (14), (15), (24), (25), (35) must be expressed 
in terms of the picked invariants by means of Eq. 
(8). At that the determinant in (9) has been so 
transformed that the desired invariant s 12 appears 
only in the left upper corner, so that we get a 
quadratic equation with respect to s 12 (in an anal­
ogous fashion one obtains quadratic equations for 
any of the other picked invariants ) . 

The solution of Eq. (9) may be simply found 
with the help of the following determinant iden­
tity [3,4]: 

J (ik) I · I (ik) I = I Au Atzl, (10) 
(i, k) Atz A22 

where l(ik)l =a (12) 2 + b(12) + c is the determinant 
appearing on the left side of Eq. (9), and Aik is the 
cofactor of the i,k entry of the matrix ( ik). It is 
easy to see that a= -l(ik)l and b = -2 [At2 

(i,k)>2 

+ (12) I ( ik) I ] , whereas directly from the identity 
(i,k)>2 

(10) we find for the discriminant of Eq. (9) 

As a result we obtain for the picked invariant s 12 
under discussion the two geometrical conditions 

(12h.2 = [- b ± 2 V AuA 22 ]/2a, (11) 

characterizing its two ranges of variation. ( Analo­
gous relations may be obtained for any of the other 
chosen invariants. ) 
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3. THE 7-POINT FUNCTION 

The 7 -point function (see Fig. 2) depends on 11 
independent invariant variables ( r = 11). The 
total number of double invariants composed of the 

fi? Ptwp· 
l'z~Ps 

P.. /14 

FIG. 2 

seven vectors Pi is equal to C~ = 21. They are 
connected by the seven kinematic conditions 

~ (ik) = 0, 
z.'=l 

and the three geometrical conditions 

t- 5 (I, 2, 3, 4, 5) = 0, 6dl. 2, 3, 4, 6) = 0, 

6.(1, 2, 3, 4; 56)= 0. 

(3") 

(6") 

The Eqs. (6") arise from the two relations of linear 
dependence of the vectors 

l-4, 8 

~ f>kPk = 0, 
It 

written for the basis p1, p2, p3, p4 with A4 ( 1, 2, 3, 4) 
~ 0. It is easy to show that any other pair of rela­
tions of linear dependence for the vectors formu­
lated in terms of another basis can be reduced to 
the indicated pair of relations with the help of lin­
ear operations and the conditions (3") and, conse­
quently, the corresponding geometrical conditions 
are equivalent to the conditions (6"). 

The choice of invariant variables proceeds in 
accordance with the principles formulated in the 
case of the 6-point function. The first stage of 
choosing 14 kinematically unrelated invariants 
must involve from the beginning invariants of 
higher multiplicity, namely triple invariants 
(quadruple invariants reduce in the case of the 
7 -point function to triple invariants because of 

1 
the conservation law 2.:) Pi = 0 ), in order to in-

i=t 
sure that the geometrical conditions (6")-as in 
the case of the 6-point function-be quadratic 
equations with respect to the picked invariants. 
The number of triple invariants is equal in the 
case of the 7-point function to C~ = 35. From 
among the 56 double and triple invariants we 
choose 14 invariants with adjacent subscripts: 
7 double 

and 7 triple 

The problem of expressing the remaining 42 in­
variants in terms of the chosen 14, as well as the 
problem of subsequently solving the system of 
three quadratic equations (6"), is resolved by the 
same methods as were used in the case of the 
6-point function (see also Appendix). Let us re­
mark here that each of the three equations (6") 
depends simultaneously on all kinematically un­
related invariants (the invariants are not distrib­
uted among the three different conditions), i.e., 
the geometrical conditions do not violate the sym­
metry in the choice of invariants. 

4. THE 8-POINT FUNCTION 

The 8-point function (see Fig. 3) depends on 14 
independent invariant variables ( r = 14 ) . The total 

l,*p, 
P4 

FIG. 3 

number of double invariants composed of the eight 
vectors Pi is equal to cij = 28. They are connected 
by the eight kinematic conditions 

2] (ik) = 0 (k = I, 2 ... 8), (3 "') 
i=l 

and the six geometric conditions 

6 6 (I, 2, 3, 4, 5) = 0, 

t- 5 (I, 2, 3, 4, 7) = 0, 
t- 5 (I, 2, 3, 4; 57) = 0, 

6,(1, 2, 3, 4, 6) = 0, 

t- 5 (I, 2, 3, 4; 56) = 0, 
6 5 (I, 2, 3, 4; 67) = 0. (6"') 

Following the procedure used in the case of the 
7 -point function one can show that the choice of 
basis p 1, p 2, p3, p4 with A 4( 1, 2, 3, 4) ~ 0 for the 
three equations of linear dependence 

1-4,5 1-4, 7 

~ a1p1 = 0, ~ YtPt = 0 
k 

imposes no restrictions in the case of the 8-point 
function, and an equivalent transition to any other 
basis can be performed. 

Along with the double invariants one considers 
in the case of the 8-point function simultaneously 
56 triple invariants and 35 quadruple invariants 
(half of the total number of 70 quadruple invari-
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ants is equal in pairs to the other half, siklm 
= Spqrs• as a consequence of the conservation law 

8 

p Pi= 0 ). In the first stage one chooses 20 kine-
1=1 

matically unrelated invariants with adjacent sub­
scripts: 8 double 

8 triple 

and 4 quadruple 

The remaining 99 invariants are expressed by 
elementary means in terms of the 20 chosen ones 
with the help of the graphical methods (see Appen­
dix). The geometrical conditions (6"') reduce to 
quadratic equations with respect to any one of the 
chosen invariants in the same way as was discussed 
in the case of the 6-point function. 

5. THE n-POINT FUNCTION 

For the n-point function (see Fig. 4) the number 
of independent invariant variables is equal to r 
= 3n -10, with the total number of double invari­
ants equal to C~ = n(n -1 )/2. The double invari­
ants are connected by the n kinematic conditions 
(3) and the q = (n-5)(n-4)/2 geometrical con­
ditions (6) and (7), formulated in an arbitrary basis 
Pa• Pf3• Py• Po from among the n vectors of the n­
point function, in particular the basis Pt• P2• P3• P4· 

p1 Pn 

p:~/~-
P7 

Po 
Ps P6 

FIG. 4 

The choice of p = (n2-3n)/2 kinematically un­
related invariants proceeds according to the estab­
lished principle of utilizing invariants with adjacent 
subscripts with invariants of higher multiplicity 
taken into account: triple, quadruple, etc., up to 
and including invariants of n/2 multiplicity (for 
even n) or (n -1 )/2 multiplicity (for odd n). 
At that among the p chosen invariants there ap­
pear n triple invariants, n quadruple, etc., and 
finally n invariants of multiplicity n/2 or 
(n -1 )/2 (let us note, however, that in the case 
of even n only half, namely n/2, of the invariants 
of n/2 multiplicity need be chosen, the remaining 

half being equivalent to the first half because of 
the relations Sik ... m = Spq ... r which follow from 

n 
the conservation law :2:::) pi= 0 ). The remaining 

i=1 

invariants are expressed in terms of the chosen p 
by elementary means based on the graphical method 
(see Appendix), and the geometrical conditions form 
-for the indicated choice of invariants-a system 
of q quadratic equations with respect to any one 
of the chosen invariants. 

The author expresses his deep gratitude to 
K. A. Ter-Martirosyan for numerous discussions 
and continuous interest in this work. 

APPENDIX 

The construction of relations, connecting the 
kinematic invariants of the many-point function 
with each other and expressing unknown invari­
ants in terms of a group of given invariants, pro-

n 
ceeds on the basis of the conservation law :2:::) Pi 

i=t 
= 0, which, as is easy to see, gives rise to a series 
of equalities of the form 

Stk ... m = Spq ... r , v = 0, 1, 2, ... n- 1; 
--v- '-,..-' 
n-v v 

at that invariants of higher multiplicity Sik ... m 
should be decomposed in terms of invariants of 
lower multiplicity si = m{, sik• sikl• etc. The 
choice of convenient equations for the unknown 
invariants and the appropriate decomposition of 
invariants of higher multiplicity in terms of in­
variants of lower multiplicity is easily accom­
plished in the following manner. 

We shall represent the n-multiple invariant 
It 

(lkt~-:;) = Sikfmp .. r - Mlklmp ... r' 

M7ktmp ... r = m2 + m~ + m1 + m;. + m~ + ... + m; 
by a polygon with all diagonals (see Fig. 5), which 
can be arbitrarily decomposed into its geomet­
rical elements (segments, triangles, quadrangles, 
etc.) subject to the condition that no line in the 
polygon should appear more than once in the de­
composition elements and, at the same time, that 

l 

m~k 
p~l 

r 

FIG. 5 
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no new lines should appear (or, if new lines do 
appear then they should be compensated ) . The 
various geometrical elements correspond to spe­
cific invariants: segments correspond to double 
invariants, triangles to triple invariants, etc., so 
that as a result we get all possible decompositions 
of the n-multiple invariant in terms of invariants 
of lower multiplicity. 

To clarify the procedure we consider specific 
examples. 

4-point function. From the conservation law 

4 
I) Pi = 0 follow three equations of the form Sik 
i=1 

= szm· establishing the equivalence between three 
pairs of the six double invariants, and four equa­
tions of the form sklm = mf [or ( klm ) = mf 
- M~zm], which represent the sought for relations. 
If we take for the three nonidentical invariants s 12, 

s 23, and s 13 [or correspondingly (12), (23), and 
(13)] whose subscripts are formed from the three 
numbers 1, 2, 3, then with the help of the graphical 
decomposition 

l 

(kim) -4 k6m = J~ + J;;' + 17'-+ (kl) + (km) + (lm) (A.l) 

we obtain just one relation com1ecting these invari­
ants: 

or 

2 2 2 
16 3 -+ (12) + (23) + (13) = m4 - M 123 

4 

S12 + s2a + sta == Mi2a4 "'= ~ m7. 
i=l 

5 
5-point function. The conservation law I) Pi 

i=1 

= 0 leads to 10 equations of the form sikl = Smn 
[ or ( ikl) = smn - Mfkl], which reduce triple in­
variants to double in the case of the 5-point func­
tion and which at the same time establish with the 
help of Eq. (A.l) 10 symmetric relations among 
the double invariants: 

(ik) + (il) + (kl) = Smn 

- M~kl or Sik + Su + Skt = Smn + MIItl· 

The choice of the 5 (from the total number 10) 
double invariants is arbitrary provided that one 
excludes from consideration those quadruple com­
binations of double invariants that appear in the 
above relations; at that for any five chosen invari­
ants one can uniquely establish a system of five 
equations (from among the 10 indicated relations) 
with the help of which the remaining 5 invariants 
can be expressed in terms of the chosen ones. In 

particu,lar, if in accordance with the general prin­
ciple we choose as independent the invariants with 
adjacent subscripts s 12, s 23, s 34 , s 45, s 51, or corre­
spondingly (12), (23), (34), (45), (51), then the re­
lations expressing the remaining invariants in 
terms of the independent ones are as follows (the 
desired quantities are under lined ) : 

2 

[\ -+ (12) + (23) + (13) 
1 3 -

= S45 - Mi23 or S12 + S2a + Sta = S4s + M~2.3 , 

= S01 - M~34 or sza + Sa4 + S24 = ss1 + M~34 , 

5 6 ___,. (45) +(51)+ (14) 
4 1 -

1 

562-+ (51) + (12) + (25) 

6- and 7-point functions. For n equal to 6 and 
7 one makes use of both triple and double invari­
ants. For this reason the series of relations for 
the nonindependent double invariants is obtained 
by decomposition of the independent triple invari­
ants in terms of double invariants with the help 
of Eq. (A.l). In particular we have 6 (for the 6-
point function) and 7 (for the 7 -point function ) 
relations of the form 

-+ (123) = (12) + (23) + (13), 

3 

264 -+ (234) = (23) + (34) + (24) 

etc. The remaining relations for the nonindepend­
ent double invariants follow from the conservation 
law ~Pi= 0: Sik = Smnpq [or (ik) = (mnpq) 

1 

+ M:nnpq- Mfk] for the 6-point function, and 

sikl = smnpq [ or ( ikl ) = ( mnpq ) + M:nnpq - Mfkl] 

for the 7 -point function. At that the right side gets 
decomposed according to the graphical relation 

r + r. 
m p 

which corresponds to the decomposition of the 
quadruple invariant (mnpq) into invariants of 
lower multiplicity: 

(mnpq) = (mnp) + (mnq) - (mn) + (qp) 

(A.2) 
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[the term ( mn) with a minus sign comes about 
as a consequence of the need to compensate one 
of the segments 1~. which appears in two tri­
angles on the right side of Eq. (A.2)]. In this way 
we obtain the three relations for the 6-point func­
tion: 

S21 = Su6t , 
5~( = A + A 
4~ 4~5 f~/j 

s,4~s..612' "~- A + A 
5~2 -5~1 2~1. 

(A.3) 

[see Eq. (8) for the invariants (36), {14), and (25)] 
and seven relations of the form s 123 = s 4567, s 234 
= s 5671, etc., with analogous decompositions of the 
"squares" for the 7 -point function. As a result 
all nonindependent invariants are expressed in 
terms of the independent ones. The nonindepend­
ent triple invariants can be expressed by means 
of Eq. (A.1) as a sum of nonindependent double in­
variants, whose relation to the independent invari­
ants is already known [it was in this way that the 
expressions for the invariants s 134, s 136, s 124, s 146, 
St25• s236 in Eq. (8) were obtained]. 

8- and 9-point functions. For n equal to 8 and 
9 one makes use of double, triple, and quadruple 
invariants. Consequently we have directly from 
the decomposition of the independent triple 'and 
quadruple invariants, according to the Eqs. (A.1) 
and (A.2), 16 (for the 8-point function) and 18 
(for the 9-point function) relations for the non­
independent double invariants of the form 

z 6. - (12J)=[t2j (23) .. {13), "'. 

f J 

z .1 

1"\:71 -(129'-}"' £129)~{234)-(23) .. (t4), ... (A.4) 

'~'" 
The remaining nonindependent double invariants 
are determined with the help of the relations sikl 
= snpqrs [or (ikl) = (npqrs) + Mfi.pqrs- Mfkzl 
for the 8-point function, and Siklm = snpqrs [or 
( iklm ) = ( npqrs ) + Mfi.pqrs - Mfkzm 1 for the 9-
point function, where on the left we have all pos-

sible independent invariants and on the right we 
have quintuple invariants with adjacent subscripts, 
which are decomposed according to the graphical 
relation 

'(i?!Y ='[g]' /[g]' -L + r (A.S) 
n ' n · r s r p r 11 

or (npqrs) = (npqr) + (pqrs) - (pqr) + (ns ). For 
example, the invariant (48) is determined in the 
case of the 8-point function from the relation 

,,,.,.,,.. ,@' ='[g]' + '[g]'-L + r 
~ 8 4 7/1 75 7 4 

{A.6) 
The nonindependent triple and quadruple invariants 
are expressed in terms of independent invariants 
by decomposition in terms of known double (and 
triple) invariants using Eqs. (A.1) and {A.2). 

n-point function. In accordance with the above 
established principle one determines first all non­
independent double invariants in terms of all the 
independent invariants by making use of the de­
compositions of the form (A.1), {A.2), {A.5), etc., 
of the independent invariants of higher multiplic­
ity, and by making use of the equations arising 

n 
from the conservation law ~Pi= 0. Thereafter 

i=t 

all nonindependent invariants of various multiplici­
ties are decomposed in terms of independent in­
variants and already known nonindependent double 
invariants {see the cases of the 6-, 7-, 8-, and 
9-point functions). 
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