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The effect of radiation and absorption of electromagnetic waves by electrons in a plasma in 
a strong magnetic field on electron relaxation and plasma electrical conductivity is investi
gated. In the nonrelativistic case these radiative processes provide a relaxation mechanism 
for the transverse electron momentum (with respect to the magnetic field). The radiation 
relaxation time is determined by the ratio of mean electron energy to mean radiation inten
sity in the magnetic field. If it is smaller than the mean time between Coulomb collisions, 
the radiation relaxation time determines the time required to establish the equilibrium elec
tron distribution with respect to the absolute value of the transverse momentum. Radiation 
eftects can also be important in plasma transport processes. In particular, the transverse 
plasma conductivity depends on radiative effects and Coulomb collisions whereas the longi
tudinal conductivity is determined exclusively by Coulomb collisions. 

1. INTRODUCTION 

IN analyzing transport phenomena and the mech
anisms by which thermal equilibrium is established 
in a plasma one usually starts with a kinetic equa
tion in which only Coulomb collisions are consid
ered. The Coulomb relaxation time increases as 
the cube of the electron thermal velocity and can 
be very large, especially at high temperatures. 
For this reason it is of interest to study other 
possible mechanisms by which thermal equilibrium 
can be established in a plasma. 

In the present work we show that the radiation 
and absorption of electromagnetic waves by elec
trons in a plasma in a strong magnetic field can 
have a profound effect on the establishment of 
thermal equilibrium of the electrons.* Specific
ally, this mechanism means that an equilibrium 
state can be reached in the absolute value of the 
transverse (relative to the direction of the mag
netic field H) electron momentum at nonrelativ
istic temperatures (T « m 0c 2, m 0 is the electron 
mass) and in the transverse and longitudinal elec
tron momenta at relativistic temperatures ( T 
~moc2). 

Radiation effects do not, however, affect relax
ation in the angular variable in the plane defined 

*The effect of photon radiation on the electron distribution 
function has been considered by Trubnikov and Bazhanova[•] 
and by Kudryi!Vtsev[21. These authors, however, have not ex
amined relaxation of the electron and photon gases. 

by the transverse electron momentum. Also, they 
have no effect on relaxation of the longitudinal 
momentum in the nonrelativistic case and on the 
angle between the momentum and the magnetic 
field in the extreme nonrelativistic case. Relax
ation in this variable is achieved via Coulomb 
collisions. 

The radiation relaxation time is given roughly 
by the ratio of the mean electron energy to the 
mean intensity of the electron radiation in the 
magnetic field. If it is smaller than the mean 
time between Coulomb collisions the radiation 
relaxation time determines the relaxation in the 
appropriate variable. In this case the electron 
gas relaxes· by a two-step process: the first step 
is a rapid relaxation in the variable that is af
fected by radiation; this is followed by the slow 
approach of the distribution to a Maxwellian, in 
a time determined by the Coulomb collisions. 

The ratio of the radiation relaxation time to the 
Coulomb relaxation time is approximately unity 
when H = 2 X 105 G, T = 10- 2moc 2 and m = 1013 cm- 3 

where m is the electron density. This ratio di
minishes as H and T increase and as m decreases. 

Radiation relaxation can affect the electrical 
conductivity of the plasma; the transverse conduc
tivity is determined by Coulomb collisions and ra
diation effects but the longitudinal component is 
determined by the Coulomb collisions exclusively. 
For this reason the electrical conductivity of a 
plasma in a strong field can be highly anisotropic. 
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In addition to the electron relaxation process 
there is a photon relaxation process. The distin
guishing feature of the latter is the rapid establish
ment of a quasi-equilibrium photon distribution that 
depends on the instantaneous nonequilibrium elec
tron distribution. This quasi-equilibrium distribu
tion, whose establishment is determined by radia
tion effects and, possibly, by resonance Thomson 
scattering in the magnetic field, slowly approaches 
an equilibrium distribution (in the time required 
for total electron relaxation) near the emission 
lines; this is a Rayleigh-Jeans distribution. 

2. RADIATION COLLISION INTEGRALS 

1. We assume that the electron energy is ap
preciably greater than tiwH, where wH = eH/m0c. 
Although we do not quantize the electron motion it 
is convenient to use a quantum mechanical descrip
tion, characterizing the electron state in the mag
netic field H by a quantum number n, that deter
mines the electron motion in the plane perpendicu
lar to H, and by Pz, the projection of the electron 
momentum along the magnetic field (we shall be 
dealing only with a spatially uniform plasma so 
that no quantum numbers are needed to describe 
the position of the center of the electron orbit). 

In radiation (absorption) of a photon in the 
magnetic field the electron goes from a state 
K = n,pz to a state K" = n-s, Pz-likz (K' = n+s, 
Pz + tikz, where tikz is the projection of the pho
ton momentum tik in the direction of H. Denoting 
the probability for photon absorption in the wave 
vector interval k, k+dk with an electron transition 
from the state K to the state K' by Ws(n,pz; k)x 
6 ( E'- E + tiw) V( 27!" )-3 dk we can write the change 
in the electron distribution function fK per unit 
time brought about by the radiation and absorption 
of photons: 

()() 

• (r) "V \ f X = .LJ .) dk {Ws (n, p,; k) 6(8'- 8- nw) ftx' (1 + Nk) 
S=l 

(1) 

where Nk is the number of photons characterized 
by wave vector k and frequency w ( V is the nor
malization volume). 

Since it is primarily soft photons that are radi
ated, and the energy of these photons is small com
pared with the electron energy, the quantity :f}[> 
can be transformed by the Fokker-Planck tech
nique. We write f<Kr) in the form 

()() 

• (r) "V \ f X = .LJ .) dk {<Ds (n, Pz; k) [a (e' ~ 8 - nw) 
S=l 

-a (8"- 8 + nw)l + [<D. (n, Pz; k) 

- <Ds (n- 1>, Pz- M 2 ; k)] a (8"- e + nw)} V (2n)-~. 

(1') 

<Ds (n, p,.; k) = Ws (n, Pz; k) [f,.• (1 + Nk)- f,,Nkl (1") 

and expand the differences in the square brackets 
in powers of ti, keeping only the first terms. As 
a result the expression in the curly brackets in 
(1') assumes the form 

P~ a~l. rm (7-Pz cos 'fr)rps (p, k) a (e'- e -nw)} 

+ a~~ {nkzq>s (p, k) a (e' - B- nw)}, 

where (/Js(p,k) is the classical limit of <l>s(n,pz;k) 
corresponding to substitution of n -Pi /2tieH 
(ti- 0 ); Pl is the transverse electron momentum 
with respect to the magnetic field and J is the 
angle between k and H. Substitution of this ex
pression in (1') yields 

f'(r) ~_!__a_ ( ·(r)) + _j_ ·(r). 
P - p J.. ap J.. p J.]L ap2 }z ' (2) 

·(r} ~ <D ( k) liro ( e ·" \ dk fJ.. = p, - ---p2 cosu)-(Z )", 
cp 1. c r 1t 

j~> =+~<I> (p, k) 1iw cos 'it (:~3 , 

co 

<f> (p, k) = ~ fPs (p, k) a (81 - B -fiw) V. (2') 
S=l 

In accordance with (1") <I> can be written in the 
form 

<D (p, k) = S (p, k) {fp + Nk (fp'- fp)}!nw, 

where the function S(p, k) gives the classical ra
diation intensity dJ = S(p, k) dk (27r )-3 and the dif
ference fp' - fp is 

nro { atp 1 ( e ) atP} f p'- f P =- -a- cos fi + - -- Pz cos{} -a . 
c Pz P j_ C p J.. 

(3) 

In what follows we assume that the electron ra
diates as though it were moving in vacuum. This 
means that the dielectric permittivity of the plasma 
can be taken as approximately·unity. This assump
tion holds in the nonrelativistic case if the follow
ing inequality is satisfied: 

(4) 

Under these conditions the frequencies associated 
with the photons radiated by the electron are 

and S(p, k) is given by* 

*ctg =cot 

s = 1, 2, ... (5) 
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00 

S (p, k) = 2} Ws (p, {1-) ~ (w - w.) hw; 
S=1 

w (p {1-) = ne•c• {(I _ ~)2 
s ' nro8 (1- V2 cos 'l'tjc) c cos it 

ct 2 fr}J2 ( sv..L sin~ ) (v..l)z/2 ( sv..L sinS \} (6) 
X g 5 c-vcos.'t + c s c-vcositl 

z z ' 

( v z and v 1 are the longitudinal and transverse 
components of the electron velocity v ). 

As expected, :flr), which we will call the elec
tron radiation colfision integral, has the form of 
a divergence of some vector j(r) in the momen
tum representation. This vector may be called 
the electron radiation flux. Using (2') we can 
write the components of the radiation flux in the 
following general form: 

·(r) e ( cpz ) 1!2 l 0Pz ) iJf p 1.1 =- Do--D1 fp+-2-. ao--al _,~ 
cp j_ B cflp j_ B vp j_ 

+-8- (a_ :!2.a )(~-2~) 
c2p l. 1 B 2 iJpz p .1 iip .1 ' 

·(r)- D f _!_a iJfp _s_ (a - cpz a)~ (7) 
]z - 1 P + c 2 i)pz + c•p j_ I 8 2 iJpL ' 

where the functions Dn and Gn are given by 

Dn (p) = + ~ S (p, k) cosn f& ( 2~~3 , 

an (p) = + ~ hwNkS (p, k) cosn {1- (2~~3 • (8) 

We note that Gn = TDn for an equilibrium photon 
distribution N~ = T/tiw. 

2. The change in the photon distribution func
tion Nk brought about by radiation processes is 
given by 

N~)= ~S(:~k) {(Nk+ l)fp•-Nk{p}(2~~)3; 
P~ = Pz + hkz, P~ = P..L + (hw!cp..L) (e/c- Pz cos {1-). 

The quantity :Ni[>, which we will call the photon 
radiation collision integral, can be written in the 
following form in the quasi-classical approxima
tion: 

notion of a photon is to be used at all, i.e., 
T~r)(k)w »1. Thepathlength z~r)(k) can be 
easily computed in the nonrelativistic T « m 0c 2 

and the extreme relativistic T » m 0c 2 cases if 
equilibrium electron distributions are assumed. 

In the first case the radiation spectrum is es
sentially discrete and the quantity TPr)(k) can be 
computed under the assumption that w ~ swH, 
s = 1, 2, . . . . Using (9) and assuming that 
s(T/m0c 2 ) 112 « 1, (swHiw -1 )2 ~ cos2 J we have 

( 1 ) 1 Q2 (m0c2 )'/. 1 + cos2 it 
T~) (k) w-swH = 4 f2n sroH T. I cos it I sin2 {) 

1 ( 2 T . 2 )s { moc2 (ro-sroH)2} (10) 
X 2s! I s m0c• sm f& exp - 2:i' ro• cos2 {) · 

This quantity decreases with harmonic number s 
as (T/m0c 2 )s. 

When T « m 0c 2, the smallest free paths are 
those for photons whose frequencies lie in an in
terval of order wH( T/m0c 2 ) 112 about the resonance 
frequency w = WH· 

In the nonrelativistic case the strongest elec
tron interaction is with these photons. The photon 
mean free time is of order 

(11) 

The path length for these photons is zpr) ~ 2 em 
with H = 105 G, m = 1013 cm-3 and T = 10-2m 0c 2• 

We may note that Tpr)(k) is the same as the damp
ing time for free electromagnetic oscillations in a 
rarefied plasma ( Stepanov [3]). 

2. Because of the Doppler effect, in the relativ
istic case the spectrum becomes essentially con
tinuous. Hence, when T .<: m 0c 2 the quantity 
T~r) ( k) becomes a smooth function of frequency. 
In the extreme relativistic case the chief radiation 
effect is due to harmonics for which s » 1. In this 
case we can replace the summation in (6) by inte
gration over s and use the asymptotic expression [4] 

of the Bessel function Js ( sz) for s » 1, 1- z « 1, 
thereby obtaining an expression for S(p, k) that 
applies when E » m 0c 2 and J » m 0c 2/ E: 

S (p k) = 2'/, e2m_oc• y'f, {(-8- ( 6 - {1-) .\2 ¢2 [(.Jf__ \'/, 
' We stn it m0c2 ; 2 ) 

(9) x(r+(in>(6-{I-)Y)J 

where fp'- fp is given by (3). 

3. PHOTON PATH LENGTH FOR RADIATION 
PROCESSES 

1. The quantity l~r) = CT~r)(k) represents the 
mean path length for a photon ( k, w ) with respect 
to radiation processes. This quantity must be ap
preciably greater than the photon wavelength if the 

~ ( ~ t ¢'2 [ ( + t { l + (m:c• (6 - {1-) Y} ]} ' 
(12) 

where ci> ( z ) is the Airy function. This expression 
shows that when T » m 0c 2 most of the photons 
are radiated at frequencies w ~ WH( E/m0c 2 ) 2 in a 
range of angles J of order (m0c2/E )2 about the 
angle e. 
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Substituting (12) in (9) we have 

3 QZ 

32n VZ wH fsin {) 

X F (m0c2 vf w ) . 
T wHsin {) ' (13) 

00 

F (x) =-V ~ ~ exp (- xz-'l•)z-"I•U (z) dz, 
0 

00 

U (z) = 2<D' (z) + z ~ <D (t) dt. (13') 
z 

The order of magnitude of the time T~r)(k) is given 
by the following expression when w ...., wH(T/m0c 2 ) 2 

and T » m 0c 2: 

"t(r) k ~ WH (_I_)2_1_ 
P ( ) Q2 m0c2 sin .9 ' (14) 

Using (11) and (14) we can show that the condition 
w T~r) ( k) » 1 is well satisfied over a large range of 
m, wH and T; when T « m 0c 2 this condition is the 
same as (4). 

4. ELECTRON RADIATION FLUX 

1. The expressions for the components of the 
electron radiation flux contain the functions Dn (p) 
and Gn (p ), for which simple asymptotic expres
sions can be obtained in the nonrelativistic and 
extreme relativistic cases. We first consider 
Dn ( p). Using the relations 

00 

"' 2 z2(4+z•) ;5:1 s 2 J s ( sz) = -16"-(-'-1----'---,z"-;) •;', 

~ '2 4+3z2 1 ;=1 s2Js (sz) = 16(1-z")';, ' z < 1, 

after integration over w and summation over s 
we have 

1 

D ( e2 (eH)2 \ n 2 [ ( v, v )2 
n p) = 64ne•c• j X V j_ v - c X, 

-1 

2 0 2 ]~•;, {( v ) 2 [ v )2 +(1- ~2 )(1- ~) . x--f 4(1---f-x 

+ v~ (I - x)2 J + [ ( 1 -X v: r -v~ (1 - X2) J 
x [4(1-xv;)"+3v} (1-x2)J}dx. (15) 

The following expressions are obtained in the 
nonrelativistic case: 

_ e'(eH)2 (vj_ 12/ (n+1)(n+3)' 
Dn (p) - 4n (m0c2)2 c ) ) v, 3n + 7 

c (n + 2) (n + 4) 

n = 0, 2, ... 

, n= 1, 3, ... 
(16) 

In the extreme relativistic case we have 

e2WJt ( e )2 Do (p) = -6 2 - 2 sin2 8, 
nc m0c 

(17) 

where e is the angle between p and H. We see 
that when v ...., c the radiation is primarily at an 
angle e with respect to the magnetic field. 

2. In the nonrelativistic case the Gn are given 
by 

1 \' dk 
Gn (p) = c .l (nffi1)2 w1 (p, -fr) cos"-frNka (ffi- ffi1) (2n)3, 

ne2c2 ( v j_ ) 2 
W1 (p, -It)= 41iwr -c- (I + cos2 -fr), 

( v )-1 
ffil = ffiH 1- 7cos -fr • 

(In deriving this expression we have kept only the 
s = 1 term in S(p, k), in which we have limited 
ourselves to the first term in the expansion in 
1/c; wherever possible we have also replaced 
w1 by WH· We may note that this substitution can 
not be made in the expressions for Nk because 
T~r)(k) varies rapidly near w = wH .) Carrying 
out the integration over w in the expression for 
Gn we have 

e21iw3 (' 
Gn (p) = 32n2:. v3._ j (1 + cos2-fr) cosn-fr N (p,, -fr) dok, (18) 

where N(pz, J.) is the value of Nk at w = Wt· 
The function S(p, k) has a sharp maximum at 

J. = e in the extreme relativistic case. Hence 
Gn ( p) can be written in the form 

1t 

Gn (p) = (2~)' cosn 8 ~ ffi~N (ffi, 8, cp) dffi dcp ~ S (p, k) dok 
0 

( cp is the azimuth of the vector k). Using (12) 
and (13), we have 

\' ( wH )'I• e2 (m c2 )'/, .l s (p, k) dok = 2n'lo w- rosin-'/, e -{- J u (y'!.). 

Finally, 

Gn (p) = Go (p) cosn e, 

G ( ) e21i ( m0c2 )'lo o p =-,- ffiH-
81"1 l•c• e 

oo .ztt 

x sin-'/•8 ~ ffi'I•U (y'!.) dffi ~ N (ffi, 8, cp) dq;. (19) 
0 0 

3. We now simplify the expressions for the com
ponents of the electron radiation flux. It is evident 
that in the nonrelativistic case Ar) contains an 
additional factor of 1/c compared with jir). Hence 
we need only calculate jir). Keeping the principal 
terms in 1/c in (7) we have ( E 1 =Pi /2mo) 

·(r) ~ m0c {D f + G -~} J.L~ P op o 08 ' 
j_ j_ 

f'(r) 1 a ( ·(r)) 
p = --,- pj_]j_ • 

p j_ up j_ 

(20) 
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Then, using (18) and (20) we can write jlr) in the 
form 

1·(r) ~ __!_ p .l (r + r (t)· !!.!_) . .l ~ 2 (r) p ., as , 
~e .l 

~ (t) = 1:n '!iffiH ~ (l + cos2tl') N (Pz, tl') dok, 

(21) 
where r 0 = e 2/m0c 2• 

We note that z~r) = VT~r) represents the electron 
mean free path with respect to photon emission and 
absorption. 

In the extreme relativistic case we have from 
(17) and (19) 

·(r) __ 1_~ . 2 £l (f + _1_~ ~) 
1 - 2T(r) cT sm u P c Do ap , 

1 foW~ T 

e 
7rf = 3nc moe2 

e 

f'(r) __ 1_ ~ ( 2 "(r)) 
" - p2 ap P 1 · 

5. THOMSON SCATTERING IN A MAGNETIC 
FIELD 

(22) 
(23) 

1. In analyzing electron and photon relaxation 
processes we must take account of Coulomb colli
sions, bremsstrahlung, pair production, and the 
Compton effect, in addition to radiation effects. 
When T « m 0c 2 the branching ratio for brems
strahlung and synchrotron radiation is of order 

w<B) =_!:.._22 (..£..)2(_.I_)'f• 
w<Ml 137 wH mocz 

( Ze is the nuclear charge) and is much smaller 
than unity when Z ,..., 1 and wH ~ n. The probabil
ity of pair production is also much smaller than 
for synchrotron radiation when T ;>;. m 0c 2• Hence 
we neglect these effects below. The role of Cou
lomb collisions is analyzed later; here we evaluate 
the role of the Compton effect. 

In the nonrelativistic case the Thomson scatter
ing is of resonance nature because of the magnetic 
field and can become appreciable when w ,..., wH. 
The cross section for Thomson scattering in the 
magnetic field is given by:* 

da(c) = a(c) (pz, k, k') dok' 
1 2 wtF 

= -ro dok' (24) 
2 (w2(1-v2 cos.'t/c)2-w~J2+rzwz ' 

where y = 2r~wiJ /3c is the damping due to synchro
tron radiation 
F = (1 - ffi~/ffi2) (1 + cos2 :x) + 2 (ffiH/ffi)2 (cos2-fr + cos2fr') 

+ (ffiH/ffi)4 sin2 fr sin2 -&', 

*The form of the function F has been given by Gurevich and 
Pavlov[5J. 

J. and J.' are the angles between H and the wave 
vectors for the incident (k) and scattered (k') 
photons and x is the angle between k and k'. 
(The factor 1-vzcosJ./c is important near reso
nance and takes account of the motion of the scat
tering electron.) 

Using the expression for a<c> when T « m 0c 2 

we can estimate the mean time between electron 
Compton collisions in which p 1 is not changed: 

liT~ c) ~ (r(1(J)'f.t/c) T fmoc2 • (25) 

The quantity Tkc) is appreciably greater than Tkr>: 

,;fl f'r~c) ~Timoc2 <, I. 

This estimate shows that Compton scattering can 
only affect the Pz relaxation in the nonrelativistic 
case; the effect of Compton scattering is then the 
same as that of the radiation processes. 

2. In the nonrelativistic case the change in the 
photon distribution function due to Thomson scat
tering is given by 

Nt> = ~ (Nk' -Nk) ca<c) (pz; k, k') a (8 + nffi- 81 

, , dok,dp' 
-liffi) d (liffi) (2nli)" • (26) 

The total change in the photon distribution function 
is 

Equation (21), which gives the electron radiation 
flux, contains the function N(pz, J.) = (Nk)w=wt• 
where w1 = WH( 1- Vz cos J./c )-1• The function 
N(pz, J.) can be given by a simple integral equa
tion if we take account of the fact that the cross 
section for Thomson scattering has a sharp maxi
mum at y ( y = wHv' T /m0c 2 ). This equation is of 
the form 

1 1 + cos21t { e 
N (Pz, tl') = - T 1 cos ~tl N (Pz. fr) - ~ 

p n(J)H 

+ 4rc(N (pz, fr)- li~H )} , 
1 e2c -1 (' - (' I ~ t; = 16n2/i3 ffiH ~fpdp_L, 8.1 = ~8.lft,dp.l vpdP.l• (27) 

The quantity Tp is appreciably smaller than 
Tkr) over a wide range of variation of H, m, and 
T. Under these conditions Tp has a simple phys
ical meaning: it determines the time in which a 
quasi-equilibrium photon distribution, correspond
ing to a given energy for the electron distribution 
function fp, is established. 

The quasi-equilibrium distribution, which is 
found from the equation N(pz, J.) = 0, is of the 
form 

(27') 
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This quasi-equilibrium distribution and the elec
tron distribution slowly approach the Rayleigh
Jeans equilibrium distribution in a frequency in
terval of order WH(T/m0c 2 ) 112 about the frequency 
w = WH· 

Comparison of the quantities Tp and TPr) in 
the nonrelativistic case shows that the photon mean 
path with respect to radiation processes is of the 
same order as the photon Thomson mean free path 
in the magnetic field. In the relativistic case the 
Compton effect is no longer a resonance effect and 
thus has no effect on the relaxation of the photon 
gas. 

6. RELAXATION OF THE ELECTRON GAS 

1. We now write the electronic kinetic equation 
in the presence of a magnetic field 

atp + atp- t' (s) -' t' (r) (28) at wH a(jl - P r- P ' 

where ips) and f<pr) are the changes in the electron 
distribution function due to Coulomb collisions and 
radiation effects. An expression for the Coulomb 
collision integral has been given by Landau. [6] In 
what follows we shall be interested in determining 
the conditions for which radiation effects are more 
important than Coulomb collisions; for this reason 
we evaluate the latter using a very approximate ex
pression for f<ps): 

(29) 

where f~ is the equilibrium Maxwellian distribution 
and T~s) is the mean time between collisions. In the 
nonrelativistic [6] and the extreme relativistic [7] 

cases this quantity is given by 

'f~s) = { (4rtc/r0Q2L) (T fm0c2)'h, 

(4ncjr0Q2L) (Tjm0c) 2 , 

T~m0c2 

T~m0c2 ' 
(29') 

where L is the Coulomb logarithm which, in gen
eral, depends on H. 

Using (21), (27'), and (29) in the nonrelativistic 
case with t » Tp ( Tp « T~r)) we write (28) in the 
form 

arP atp __ 1 _ _ a_ ( (t - atp )) --L t~- fp 
at + WH a(jl- 'f(r) ae f.J. p + 8 1. ae 1 (s) ' 

e j_ J. 'l.'e (30) 

It follows from this expression that € 1 is independ
ent of t when T~r) « T~s). This limiting value of 
€ 1 for t » tp is denoted by T: € 1 ( oo) = T. * 

Taking 

fp = fp (1 + 'l'J), f~ = e-~, s = eJ./T, 

*In other words, when r~s) » r~) the distribution in (27') 
is an equilibrium distribution. 

when T~r) « T~s) we can write (30) in the form 

aTJ aTJ __ 1_ { a2TJ aTJ } TJ 
at + wH a<p - 't'<rl s a1;2 + <1 - 6) as - w · 

e T, 
(31) 

The solution of this equation is 

(32) 
n=Om=-oo 

where Ln( ~) is the Laguerre polynomial. It fol
lows from the normalization condition that a 00 = 0. 
Further, since 

Bj_ = T = ~ 8j_{pdpj_ I~ fpdpj_ 

it follows that a 10 = 0. 
The coefficients anm ( t) satisfy the equation 

tZnm + (n/'f~r) + 1/'f~s) + imwH) Gnm = 0, 

whence 

Gnm (t) = Gnm (0) exp {- t (n/'f~r) + 1/'f~s) + imwH)}. (33) 

These expressions show that the relaxation of the 
n-th harmonic in the expansion in (32) is deter
mined by the quantity n/T~r) + 1/T~s). The fact 
that a 0m ( t) approaches zero when t - oo is due 
to Coulomb collisions only. However, the quanti
ties anm ( t ) ( n .r 0 ) approach zero when t - oo 

because of radiation effects in addition to Coulomb 
collisions. 

If 1/T~r) » 1/T~s>, the quantities P1• Pz, and 
cp do not reach Maxwellian distributions at the 
same rate. Equilibrium is established first in the 
distribution over P1 (in a time ~ T~r) ). Equilib
rium is established more slowly for Pz and cp 
(in a time T~s) ). The quantity 1/T~r) has a sim
ple physical meaning. It obviously represents the 
ratio of mean energy radiated by the electron per 
unit time to the mean ener~ of the electron. From 
(21) and (29') 

This ratio diminishes as the density or tempera
ture decrease and as the magnetic field increases, 
and is of order unity when T ~ 10-2m 0c 2, m""' 1013 

cm-3, H ~ 2 x 105 G and of order 10-2 when T 
""' 10-2moc 2, m""' 1011 cm-3 and H""' 2 X 105 G. 

The ratio of the photon relaxation time to the 
electron relaxation time in the nonrelativistic 
case is, from (21) and (11): 

T~l/t'rl ~ (rowHic) (wH/Q)2 (T/m0c2)'1'. 

This quantity must be small if the present analysis 
is to apply. When T""' 10-2m 0c 2, m""' 1013 cm-3 
and H""' 2 x 105 G the ratio Tpr>;T~r) is 10-9• (We 
note that under these conditions z<r> ~ 10 em where 
zpr) is the photon mean free path. r 
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The quantity T~r) I T~r) has a simple physical 
meaning when T « m 0c 2: it represents the ratio 
of the equilibrium density of electron energy 
lEe- Tm to the equilibrium density of photon en
ergy &p - ( T ltiwH) ( wiJ I c3 ) ~ for photons in the 
range (wH-~• WH +~)where~- WH(Tim0c 2 ) 112 

is the width of the radiation line for s = 1: 

&, I IEp- 't'~r> I 't~,. 

This quantity is appreciably greater than unity. In 
other words, even though the photon reservoir con
tains a small fraction of the total energy it can 
have an important effect on the relaxation of the 
electron gas. 

2. The coefficients anm = 0 are easily related 
to the values of 77 at the initial time: 

2tt co 

anm (0) = 2~ ~ e-lm"'dqJ ~ e-ELn (£) 'll (0, ~. rp) d£. 
0 0 

Substituting this expression in (33) and noting that 

= _1_ exp (- _z_ (£ + ~')) lo ( 2 "VU'Z ) 
1-z 1-z 1-z 

= !( (£, £'; t), 

where I0 is the Bessel function of imaginary argu
ment, z = exp (- tiT~r) ), we have 

00 

'll (t; £, rp) = ~ e-<-' !( (£, 6'; t) rt (0; 6', qJ + ront) dE,'. 
0 

If T~r) « T~S), t ~ T~S) then K ~ 1 and 
00 

'll (t; £, rp) = ~ e-<.'rt (0; £', qJ + wnt) d'S'. 
0 

This formula shows ciearly that the radiation col
lisions lead to relaxation in p 1 but do not affect 
relaxation in the variables Pz and cp. 

3. The analysis of electron relaxation is much 
more complicated in the relativistic case. It can 
be shown, however, that when T ~ m 0c 2 radiation 
collisions cause relaxation in p 1 as well as Pz. 
This result follows because when T ~ m 0c 2 the 
radiation flux Ar), which we have neglected for 
T ~ m 0c 2, will be of the same order as jir). Re
laxation in cp, however, occurs only by virtue of 
Coulomb collisions. 

The order of magnitude of the relaxation time 
T~r) can be estimated from (21) when T "' m 0c 2• 

The relativistic radiation relaxation time gets 
smaller when T increases whereas T~s) · gets 
bigger when T increases. Thus the relative im
portance of radiation effects is increased mark
edly under these conditions. 

4. In the extreme relativistic case the radiation 
collision integral is given by (22). The expression 
for j(r) contains the function G0 which can be 
found explicitly from (19) for t » T~r). In this 
case Nk can be replaced by the quasi-equilibrium 
distribution Nk = T~r>(k) v(k) where v(k) and 
T~r)(k) are determined from (9). Taking fp 
= f~(1+7J) and assuming that 7J « 1 we have finally 

• 00 

.;,<r) = _1_ .!:..__ sin2 e _j_ \ g (1: 1:') { dTJ (s') - dTJ (£)} dl:' 
"1 't'(r) £2 d£ ~ "'' lo d£' d£ • ' 

• 0 

00 

g (;, £') = 2'1• (s 6') '1• e -~-<.· ~ x_.1•F-1 (x) 
0 

(34) 

6' = cp'/T. 

In this expression we have not written out terms 
that contain the derivatives of the distribution func
tion with respect to the angle e which differ by the 
factor m 0c 21T from the term above. 

It is evident that e appears only in the form 
sin2 e. It follows that if the initial electron distri
bution is independent of e it will then relax to a 
Maxwellian distribution in a time of order T~r). 
If the initial distribution depends on e, however, 
it cannot relax to a Maxwell distribution by virtue 
of radiation processes alone. 

7. EFFECT OF RADIATION ON PLASMA ELEC
TRICAL CONDUCTIVITY 

1. Having an expression for the radiation colli
sion integral, in principle we can calculate the ef
fect of radiation on various transport processes in 
the plasma. Here we investigate the effect on 
plasma electrical conductivity in a strong mag
netic field in the nonrelativistic case.* Obviously 
the problem reduces to the solution of the kinetic 
equation 

dfp dfp dfp 
-wn-a +eEz-a +e(ExcosqJ+EusinqJ)-a-' ~ ~ 

, (E E . ) 1 atp 
-j- e yCOS qJ- gSID qJ- -d-

p l.. cp 

1 a ·(r)) 1 fo f = -P ap (PJ...ll.. + w< p- p). 
l.. l.. 't'e 

(35) 

where E is the electric field. This equation can 
be solved when E1 ~ 0, Ez = 0 or E1 = 0, Ez ~ 0. 

In the latter case a solution of (35) that is linear 
in Ez is 

*Actually we detennine the limiting value of the electrical 
conductivity of a uniform plasma in an alternating field at van
ishingly low frequency. 
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and the electrical conductivity is given by usual 
formula azz = (e 2 ~R/m0 ) T~s>. Thus, as expected, 
in the nonrelativistic case radiation does not af
fect the longitudinal plasma electrical conductivity. 

We now investigate the transverse plasma con
ductivity. Taking 1J = 1) 1 ( ~ ) cos <P + 1)2 ( ~ ) sin <P 

and introducing the notation w = 1)1 + i 1)2, E + = Ex 
+ iEy after linearizing in E we obtain an equation 
for w: 

d2w dw ( -rt> . (r)) 
~ ~- + (1 - S) df- ,;~s) + lWH'te W 

_ _ (r) £+ ( _2 -)'/z t'/2 

- 'te e moT "' · (36) 

Expanding w in Laguerre polynomials Ln ( ~ ) 
we have 

2 'I oo ( ,;(r) )-1 
w (s) = e£+,;~'> ( m T ) ' ~ a,.L,. (s) n + ---fu + iwH,;~'> , 

0 n=O -r, 
00 

an= ~ e-r;.'S''I•L,. (s') ds'. (36') 

0 

The components of the vector density of the elec
trical current s 1 are related to 11 1 and 1)2 by 

e \ 0 dp e \ fo dp 
Sx= 2mo .)ThPJ.fp (2nn)3' Sy = 2mo .)'I'J2P1. P (2nn)3. 

Determining 1) 1 and 1)2 from (36) we find s 1 = a 1 E 
+ (Ex H )/RH, where 

~e2 n ~ n/'J:~r) + 1/'J:~s) ( (2n- 3)11 )2 
0 l. = --m;;- T ro2 + (nj-r<r> + 1;-r<•>)2 2n!! • 

n=O H e e 

When T(r) » T(s) since e e • 
co 

'V ((2n- 3)!!)2 = ~ 
...:::..J 2n!! n ' 
n=O 

we obtain the familiar relations 
0' 1. = !ne2m~1't~s) ( 1 + Wh't~s>') -I, 
R.-1 = ffie2m01wH,;~•>' (I + w1,;~•>'t 1 . 

In the limit T~r) « T~s), in which case radiation 
effects are especially marked in the electron re
laxation, the expressions for a1 and R- 1 assume 
the form 

0 = ~ez ~ ~ n-rY> ((2n-3)!!)2 
l. m0 4 ...;;.; n2 + ro2 ,;(r)' 1 2n!! ' 

n=O He 

(37') 

In this case a 1 is of order 
~en 2f 2 (r) cr 1. ~ "~e mowH'te , 
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