
SOVIET PHYSICS JETP VOLUME 15, NUMBER 2 AUGUST, 1962 

THEORY OF RESONANCE SCATTERING BY ATOMIC SYSTEMS 

I. DERIVATION OF GENERAL FORMULAS 

M. V. KAZARNOVSKII and A. V. STEPANOV 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 30, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 42, 489-498 (February, 1962) 

The probability for resonance scattering is expressed in terms of the correlation function 
for the coordinates of particles of the scattering system at four different times, just as the 
probability for scattering in the Born approximation is expressed in terms of the Van Hove [1] 

pair correlation function. The probability for scattering as a result of interference of reso
nant and potential scattering is treated similarly. 

l. Van Hove [1] developed a method for analysis 
of scattering in the Born approximation, using a 
pair correlation function which depends only on 
the properties of the scattering system and the 
energy and momentum transferred by the incident 
particles (or light quanta) during the scattering. 
Then all the information concerning the interac
tions of the incident particle with the individual 
atoms of the system is contained in a factor which 
is independent of the mutual interaction of the 
atoms and, consequently, is independent of the 
state of the system. In Van Hove's paper and in 
later work, [2- 6] many important properties of 
the pair correlation function were studied, and 
it was shown that this function contains extremely 
profound information on the dynamics of the atoms 
in the scattering system. In particular, if the 
atoms of the system carry out oscillations (not 
necessarily harmonic) around their equilibrium 
position, this function can be expressed in terms 
of the Green's function of the phonon field. [5] 

The reason for so much interest in this subject 
is that, in principle, the experimental investigation 
of potential scattering of slow neutrons with pres
ent techniques already enables us to determine the 
pair correlation function. 

With the discovery of the Moss bauer effect [TJ 

it became possible to study the properties of 
atomic systems using resonance absorption and 
emission of y quanta as well as neutrons by atomic 
nuclei (cf., for example, [8- 10]). In a series of 
papers [4•5•11• 12] it was shown that the probabilities 
for such processes can also be expressed in terms 
of the Van Hove pair correlation function. The rea
son for this is that, although these processes occur 
in the second order of perturbation theory, summa
tion over final states in the case of absorption and 

averaging over initial states in the case of emission 
allows one to write the expression for the transition 
probability in a form which is analogous to the Born 
approximation for absorption or emission processes. 

The situation is different for resonance scatter
ing, where one must determine the probability of 
scattering into a given energy and angular range. 
In this case the expression for the differential 
cross section is essentially defined in the second 
order of perturbation theory, taking into account 
the damping of the intermediate state. In an earlier 
paper [10] concerning resonance scattering of neu
trons by systems of interacting atoms, only the 
elastic scattering by crystals was calculated and 
it was implicitly assumed that the crystal consists 
of identical spinless nuclei. Including the effects 
of spins and the presence of a mixture of isotopes 
is quite trivial. More complicated is the general
ization to the case of an arbitrary system of inter
acting atoms and the treatment of scattering with 
transfer of arbitrary amounts of energy and mo
mentum to the scattering system (and not just 
pure elastic scattering). 

This problem is treated in the present paper. 
We first restrict ourselves to the case where the 
potential scattering is negligibly small compared 
to the resonance scattering, and only later treat 
the interference between potential and resonance 
scattering. Just as in Van Hove's work on poten
tial scattering, the expression for the probability 
will be represented as an average over initial 
states of Heisenberg operators* at different times. 

*Time dependent operators have already been used previ
ously in the problem of scattering of slow neutrons, for ex
ample in the papers of Akhiezer and Pomeranchuk,[u] Wick,[u] 
Zemach and Glauber. [u] 
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Whereas for potential scattering such an averaging 
leads to a correlation function for positions of 
particles of the scattering system at two different 
times, for pure resonance scattering the averaging 
gives a time integral of the correlation function 
for particle positions at four different times, while 
in the case of interference of potential and reso
nance scattering we get integrals of the correla
tion function for particle positions at three differ
ent times.* 

In the present paper we shall give the deriva
tion and discussion of the general formulas for 
the probability of resonance and interference scat
tering. In later papers we shall consider special 
cases of resonance scattering for various simple 
models of the scattering materials. 

2. In second-order perturbation theory, includ
ing damping, t the transition probability per unit 
time from the initial state i to the final state f is 

I I '\;1 <f I Hint I/.) <'-1 Hint I i) 12 

W;=2n 'f Ez-E~.+ii\(E;)/2 b(Et-Et), 

where the index A. denotes the intermediate ( reso
nant) states (with width rA.(E)). In our case the 
initial and final wave functions are products of the 
wave functions t of the incident, I /J.~i), pi), or scat
tered, I !J.~f), Pf ), particles with. spin s (where Pi 
and Pf are the momenta and /J-~1 ) and /J.~f) are 
quantum numbers which determine the spin state 
of the particle or the polarization of the y quan
tum, respectively, in states i and f) with the wave 
function for the scattering system in states i and 
f, respectively. The latter can be written as a 
product of "internal" wave functions I v, /J.(i,f) ), 
corresponding to the ground states of the r~so
nantly scattering isotopes (where /J.~i) and /J.~f) 
are the projections of the spin (j) of the v-th 
nucleus in states i and f, respectively), multi
plied by the wave function I mi f) for the motion 
of the centers of mass Rv of the atoms of the 
scattering system, which is characterized by a 
set of quantum numbers which we shall, for sim
plicity, denote by one symbol mi,f· 

The intermediate states are states where one 
of the nuclei ( vA.) is excited (for the case of ab-

*The reason for this is that the resonance scattering ampli
tude depends on the difference between the times of absorption 
and emission of particles, which is zero for the case of poten
tial scattering. 

t For example, see[••]. From now on we use the system of 
units with T = 1, k = 1 (where k is the Boltzmann constant). 

+The wave function of the scattering system with momentum 
p (energy Ep) is written in the form \ p > = (2rrr' / 2 eip·r. Then 
we get the scattering cross section by multiplying the probabi
lity by the factor (2rr)' /(dEp /dpi)· 

sorption of y quanta) or a compound nucleus is 
formed (for the case of neutron capture). We 
shall refer to both of these as excited states. 

For simplicity we shall assume that the exci
tation does not change the part of the Hamiltonian 
which determines the motion of the centers of 
mass of the atoms of the scattering system.* Then 
the wave functions for the intermediate state can 
be written as 

I m~.> I v~., M~·>> fi I v, 1-lf'>), 
V 1' Vf.. 

where I v A.• M~A.)) is the wave function of the v-th 
excited nucleus with projection M~A.) of its spin J. 
In addition we assume that the energy and width of 
the excited state do not depend on the label of the 
excited nucleus or on its spin projection, and that 
the width is also independent of the state of motion 
of the centers of mass of the atoms of the scatter
ing system [ rA. (E) = canst = r ]. Then the total 
probability for resonance scattering of a particle 
with momentum Pi into unit interval of momen
tum around Pf, averaged over the initial states of 
the system (on the assumption that the nuclear 
spins are statistically independent) and over the 
spin projections for the incident particles, will be 

W(p;, p1) = 2nA LWvv(P,, p1)+2nB 2J Wvv'(Pz• p1), (1) 
v-r v' 

X (E;-E 0 - Em~-+ ir)-1 <m1[ exp (- ip1RJ I m~.> 

X <m~.[exp(ipzRJ\m,> <m1\exp(- ip1 Rv,)\m~)· 

X <m~ I exp (ipzR) I m)' b (E, -£1), (2) 

A= ( 2J L [2J <f-l~fl, p1; f-l}fl, VI Hv IV, MJ) 
t.•.fl !J.~/) M J 

X <MJ, VI Hv IV, f-l}il; f,l~i), p)\2 J , 
; av 

B = ( 2J [ 2J <f-lifl, p1; f-l)'l, VI Hv IV, MJ) 
!'-~/) MJ 

X <MJ, V \ Hv] V, f-l}'J; f-lii), P) J 

X [ ~ <1-l~ll, p1; 1-l)il', v' I Hv' I v', M~) 
MJ 

x <M~, v'\Hv'[v', 1-l)il'; ritl, p1)J-') , 
, av 

(3) 

(4) 

*For the case of neutrons this approximation is valid if the 
masses of the nuclei of the scattering system are large com
pared to the neutron massJ17] For y quanta it is always correct, 
except for those cases where delicate relativistic effects be
come important, like those discovered by Pound and Rebka['"] 
in measuring the red shift on the Earth's surface. 
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where gmi is the probability that the scattering 
system is initially in state mi: 

gm,. = (~exp [- Em!Tlr exp [- Em11T] 
m 

(5) 

( T is the temperature of the system); H v is the 
part of the Hamiltonian for the interaction of the 
v-th nucleus with the scattered particle which de
pends on the internal coordinates of the nucleus 

and on the spin variables; E0 is the energy of the 
resonance level of the nucleus and Emt.. is the 
energy of the motion of the centers of mass of the 
atoms of the scattering system in the state mA. 
The subscript "av" denotes an average over 
initial states. 

3. The quantities A and B depend only on the 
parameters for the interaction of the scattered 
particle with a single free nucleus, and can be ex
pressed in terms of the characteristics of the res
onance level. The corresponding expressions are 
calculated in the Appendix. 

The main purpose of this paper is to investigate 
the quantity Wvv' (Pi, Pf) for arbitrary systems. 
Following Zemach and Glauber [15] and Van Hove, [1] 

we go over to a time-dependent representation of 
this function. To do this we use formula (5) and 

00 

6(£1 -Et)=(2nr1 ~ dJ-lexp {i [Ep,+Em,-EPf-Em,Jr.t}, 
-00 (6) 

()() 

=- i ~ dt exp {it [Epl +Em,--- £ 0 - Em1- ++if]}, (7) 

where Epi and Epf are the energies of the incident 
and scattered particles. We then get 

00 00 00 

Wd (p,., Pr) = (2nr1 ~ dJ.! ~ dt ~ dt' Zvv' (p,, pf' J.t, t, t') 
~oo 0 0 

X exp {iJ-l (Ept- Epf) +it (Ep,.- £ 0 + ~ if) 

-it'(£.-£ _ _!._if)} 
Pt 0 2 ' 

Zvv' (p,., Pf' J.t, t, t') = {~ (m I exp (-HIT) I m)}-1 
m 

X ~ ~ ~ ~ (m;lexp [-HIT+ iH (t-t + t- t')J 
mi m>. m~ mf 

(8) 

X exp (- ip,. R •. ) I m;> ~m;, 1 exp (iHt') exp (ipf R •. ) 1m,) 

X (m1 I exp (- it-tH) exp (- ip1RJ I mA) 

X (mA I exp (- iHt) exp (ip, R.) I m,.). (9) 

Carrying out the summation in (9) over all the quan
tum numbers and going over to the Heisenberg rep
resentation (introducing the notation §.(t) 

= eiHt§.e-iHt, where §. is the Schrodinger opera
tor ) , we finally get 

Z ( t t ') {S -HjT}-1 s [ --HjT ZA vv' p,, p,, J.t, ' = pe p e vv•J; 

Zvv' = exp {- ip,R •. (t-t + t- t')} exp {ip,R •. (t-t + t)} 

X exp {- ip1 R. (t)} exp {ipl Rv (0)}. 

(10) 

(11) 

We note that (10) is equivalent to the assertion that 
Zvv' is the (quantum mechanical and statistical) 
average of the operator Zvv'· 

4. In order to understand the physical meaning 
of the function Zvv'• we consider its Fourier com
ponent with respect to the initial and final momenta: 

Lv· ( R1, R2, J.t, t, t') 

= (2n)-6 ~ dp,dp1 Zvv' (p,, pf' J-l, t, t') iRlp,-iR2Pf, (12) 

Zvv' (p,., PI' 1-l·• f, t') = ~ dR1dR2fvv• (R1, R2, J-l, f, t') iRzPf-iRlPi. 
(13) 

Substituting (10) and (11) in (12), we find 

rvv·(Rl, R2, 1-l· t, t') = (2nr12 ~dp,dp1 dp~dp~dR~dR~ 
x exp [ iR1P,.- iR2p1 + i (p,.- p;) R~ + i (p1- p;) R~l 

X (exp (- ip,R.· (J-l + t- t')) exp (ip1Rv• (t-t + t)) 
X exp (- ip; Rv (t)) exp (ip; R~ (O)))av 

= ~dR~ dR~ (6 (R~ + R1- Rv• (J-l + f- f')J 

X b [R~ + R2- Rv• (J-l +f)] b [Rv (f)- R~J 

X 6 [ Rv (0) - R~l)av· (14) 

Thus the function r vv' determines the correlation 
of the positions of the v-th and v' -th particles at 
four different times, in the same way as Van Hove's 
function determines the pair correlations. 

We can get another picture of the physical 
meaning of the functions Zvv' and rvv' by con
sidering their classical limits. To do this, as in 
the case of potential scattering, [i] we disregard 
the noncommutativity of the Heisenberg operators 
at different times. Then 

r ••• (Rb R2, J.t, t, t') = (o [ R1 + R. (0)- Rv' (J-l + t-t')l 
X b [ R2 + Rv {f) -Rv• (J-l + f)l).av • (15) 

We use the symbol D (Rv, R~, Rv'- Rv, R~'- R~, 
f.J., t, t') for the probability that initially ( T = 0) 
the v-th particle was in unit volume around the 
point Rv, while at T = t it was in unit volume 
around R~, while the v'-th particle was in unit 
volume around Rv' at the time T = fJ. + t- t', and 
in unit volume around R~' at time T = fJ. + t. This 
definition still holds if the v-th and v' -th particles 
coincide. Then we can write (15) in the form 
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fvl ( R1, R2, fl, t, t') = ~ dRv dR~ D ( Rv, R:, R1, R2, fl, t, t'). 
(16) 

Thus in the classical limit the function r vv' ( R1, R2, 

Jl., t, t' ) can be interpreted as the probability that, 
at time T = J1. + t- t', the v' -th particle was in unit 
volume at distance R1 from the position of the v-th 
particle at the initial time, and that at time T = J1. + t 
it was in unit volume at distanee R2 from the posi
tion of the v-th particle at time T = t. 

Just as for Van Hove's function, in the general 
quantum mechanical case, the :interpretation of the 
functions r vv' is more complicated. [1] These 
functions can no longer be interpreted as probabil
ities and in the general case are complex quantities. 
Various authors [3•4•6] have shown that replacing 
Van Hove's function by its classical analog leads 
to a violation of the principle of detailed balancing 
for the potential scattering cross section. Some
thing similar also occurs for the functions r vv'· 
But because of the great complexity of the functions 
Zvv' themselves, as well as the fact that the reso
nance scattering cross section depends on them 
(the cross section is proportional to the integral 
of Zvv' over Jl., t, and t' ), the requirements 
which the function Zvv' must satisfy in order to 
satisfy the principle of detailed balancing become 
complicated. 

The following are important special cases of 
the functions Zvv'· 

a) The limit of Zvv' for J1. -- oo corresponds 
to elastic scattering. Then Zvv' can be written 
in the form 

Zvv' (p,, PI' oo, t, t') = {Sp e-HJT}-1 

X ~ (m1 1 e-HJT exp [- ip1Rv• (0) 1 exp [ip1Rv• (t') 1 I m1) 

(17) 

In the most interesting case of crystals, the cor
responding expression was found and discussed 
earlier. [10] 

b) For t = t' = 0, 

Zvv' (p,, P/' fl, 0, 0) 

= (exp [i(p1- p1) R,•(!l)1 exp U (p1 - p1) Rv (O)l)av · 

(18) 

This expression is easy to understand if we con
sider that we can set t = t' = 0 in Zvv' in Eq. (8) 
if the level width r is large ( r - oo). Then the 
scattering loses its resonant character and be
comes essentially potential scattering. We can 
therefore describe it by means of the Born ap
proximation, in the framework of which Van Hove's 

formalism was developed. [1] It is easily verified 
that, if we let r in (8) tend to infinity and substi
tute (18) for Zvv'• we get Van Hove's results. 

c) If t' = 0 (or t = 0 ), 

Zvv' (p1, pf' fl, i, 0) = {Sp e-H/T}-1 

X Sp {e-HJT exp [ i (p1- P1) Rv• (!1 + t) 1 

X exp [- ip1Rv (t)1 exp [ip1Rv (0)1}, (19) 

i.e., Zvv'(Pi• Pf, Jl., t, 0) determines the correla
lations between positions of atoms of the scattering 
system at three different times. 

As we shall see later (cf. Sec. 5), expression 
(19) corresponds to the contribution to the cross 
section from interference between potential and 
resonance scattering. 

d) The case of J1. = 0. 

Zvv' (p1, p1, 0, f, i') 

= {Sp e-H;rr1 Sp {e-H/T exp [- ip1Rv• (- t') l 

X exp [ip1(Rv• (0)- Rv (O))l exp [ip;Rv (-t)]}. (20) 

In particular, if v = v', 

Zvv·(P,, Pt' 0, t, t') 

= {Sp e-H1rr1 Sp {e-HJT e-iviF.v(f -t'liPtRv<oJ}. (21) 

We note that this expression is identical with the 
Fourier component of the Van Hove function for a 
single particle (if we replace Pi - Pf by Pi ) . 

This case is important for the computation of 
the total probability (integrated over energy) for 
resonance scattering of y quanta. 

e) If the width r of the resonance level is small 
compared to the energy of the motion of the atoms 
of the scattering system, the scattering probability, 
according to (8), is given by the function Zvv' for 
t - 00 ' t' - 00 : 

Zvv' (p,, P,. fl, oo, oo) = {Sp e-H/T}-1 

X ~ (m1 j exp UPAv (0)) I m;) (m, I exp (- ip,Rv• (0)) I m1) 

X (m1Je-HJT exp(iP,Rv•(f.l))exp(- ip,Rv(O))jm1). (22) 

5. In the preceding computation, we neglected 
the interference between resonance and potential 
scattering. As is easily verified, including it re
sults in adding to the probability for resonance 
scattering, W (pi, Pf ), a term of the form 

W;nt(P,, Pr) = 4n Re{A'~vvv(P" Pr) + B' ~ Vvv·(p1, p1)}, 
v v.;=v' 

Vvv' (p1, Pr) = ~ ~ gm;~ 6 (Et-Et) (£1- E0 -Em'- + + ifr1 
m; mr m,, 

X <mt \ exp (- ip,RJ I m,) <m~.l exp (ip1RJ I m;> <mt I 
X exp (i (P1 - Pr) Rv·) I my. (23) 
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The real constants A' and B' can be calculated 
in exactly the same way as the previously intro
duced A and B. 

In precisely this same way we can represent 
the function Vvv'<Pio Pf) as 

00 00 

Vvv' (p1, p1} = - i (2:rt)-l ~ df.t ~ dfZvv' (p1, p1, f.l, f, 0) 
-00 0 

X exp {if.l (Ep1 - Ep1) +it (Ep1 - £ 0 ++if)}, (24) 

where Zvv' (Pi• Pf, J.L, t, 0) is defined by formula 
(19). 

6. From experimental cross section data, by 
varying the concentration of the isotope which 
gives the resonant scattering, one can determine 
separately Wvv and Wvv' (for v ¢ v').* But the 
fact that the probability for resonance scattering 
is proportional to an integral of Zvv' has the con
sequence that, in contrast to the case for potential 
scattering, it is impossible to construct the func
tion Zvv' from the cross section for resonance 
scattering. As we see from (8), to determine it 
we must know Wvv' for different values of E0 and 
r, i.e., we must measure the scattering cross sec
tion for a large number of media containing differ
ent amounts of the resonant scattering isotope, 
which is clearly unrealistic. The situation is 
somewhat better for the case of interference scat
tering, which is determined by simpler integral 
expressions [cf. Eq. (24)]. It is, however, hardly 
possible to separate the interference scattering 
from resonance scattering in an experiment. Thus 
there remains the less satisfactory procedure of 
computing Zvv' on some model of the substance 
and comparing the theoretical cross ·sections with 
experiment. But since the study of the correlations 
of positions of particles at three and four different 
times may throw additional light on the dynamics 
of atomic motions in complex systems, even such 
a procedure seems useful, since at present one 
cannot think of any more direct method for study
ing such correlations. 

In a succeeding paper we shall carry out this 
program for some of the simplest models of the 
motion of atoms in a scattering medium. 

The authors are sincerely grateful to V. M. 
Galitskii, D. A. Kirzhnits and V. P. Silin for read
ing the manuscript and making valuable comments. 

APPENDIX 

Let us express the constants A and B, which 
are defined by (3) and (4), in terms of the param-

. *A bar over a symbol means an average over the distribu
tion of atoms of the resonantly scattering isotope. 

eters for the interaction of the scattered particle 
with an isolated nucleus. 

We first consider the case of a nonrelativistic 
particle. We write the wave function for the sys
tem consisting of the particle and the v-th nucleus 
of the scatterer in its ground state (for simplicity 
we drop the index v ) 

I flj; p, fls> = ~ ~ ~ i 1 v;ml(p) {jSfljfls ISMs) 
lm1 SMsJMJ 

and denote the matrix element for the transition 
from the state I SZJMJ), where S = s + j, J = S + 1 
(where 1 is the orbital angular momentum oper
ator for the incident particle and S is the channel 
spin operator) into the state I JMJ) -the excited 
state of the nucleus,* by 

<J M~ l HI SlJ MJ> =aM' M Csti-1. 
J J 

Then we find that the matrix element in formulas 
(3) and (4) is 

(MJ I H l f.ti; f-ls• P) 

= ~ ~ v;mt (p) {jSf.ljlls ISMs) (SlMsmtl J MJ)Cst· 
tm1 SMs 

By using standard methods,t after computations 
which are tedious but not difficult, we finally get 

1 ~ ~ ·1'+1"-1-l"' 
A = ..,.,(2,-1t"'"')•:-;(2"""s-+~1):-;("21:-. +.,--,-,1) SS' ll'l"l"' t 

x C51 C~'l'C~I''Cs·t"'K (Jl'l; Jl"'l"; S'S, 0), (A.1) 

K(Jl'l; J'l"'l";S'S, 6) =-i-~PL{cosO) 
b. 

X(- 1)8'-s Z(lll"J'; SL)Z(l'Jl"'J'; S'L), {A.2) 

Z (abed; ef) = if-a+c [(2a + 1) (2b + 1) (2e + 1) (2d + 1)1'1' 

X W (abed; ef) (acOO I fO), 

where W (abed; ef) is a Racah coefficient, and 
cos 8 =Pi· Pf /PiPf· 

In the case of slow neutrons, l = l' = l" = l"' = 0, 
S' = S = J and formulas (A.1) and (A.2) simplify: 

- (2J + 1) 4 
A - 32n• (2j + 1) I C I · (A.3) 

In the case of scattering of y quanta, we know [19] 

that further discussion is required. 
1) In this case it is convenient to express the 

•It is easy to verify that 

'V I C51 12 = (dEp/rlp) [f (Ep)f2np2], 
£.Jst 

where r(Ep) is the width for emission of a particle with energy 

Ep• 
tFor example, c£.[19 ' 201 
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constant A in terms of the amplitudes Cgp for 
transition from states (or into states ) with defi
nite total angular momentum g = 1 + s ( s = 1 ) 
and definite parity p of the photon. These ampli
tudes are related to the amplitudes Csz introduced 
earlier by the formulas 

Cgp= ~Csz(SJg)(LJp), Cst = ~Cgp(g/S><PIL>, 
Sl gp 

<S Jg) = (g IS> = [(2g + 1) (2S + 1)J'i• W (lsJj; gS), 

(ljp) = (pfl> = J'2(- 1)P+1 (g1- 11Jl0) ~ (l, p), 

(A.4) 

{ 1 for l = g 
6 (l, p) = 0 for l=f=g for p = 0 (magnetic radiation), 

{ 0 for l = g 
~ (l, p) = 1 for l =f=g for p = 1 (electric radiation). 

2) In averaging over the initial states of the sys
tem it should be remembered that a photon with a 
given g. has only two states. 

We finally get for the case of scattering of 
photons 

A 1 • • = 32n• (2j + 1) ~ ~ CgpCg'p'Cg"p"Cg"'p"' 
gg'g"g'" pp'p"p"' 

X~PL (cos 0) Zy (gJg"J; jL) Zy (g'Jg"'J; jL), (A.5) 
L 

Zy(abcd; ef) = [(2a + 1)(2b + 1)(2c + 1)(2d + 1)]'/, 

X (ac -11 I fO) W (abed; ef). 

[Only terms for which L + p + :g + p" + g" is even 
should be included in the sum in (A.5).] 

The constant B is conveniently calculated in a 
representation in which the total and orbital angu
lar momenta of the scattered particle are sharp, 
i.e., we express it in terms of the quantities 

Cgt = ~Cst(S/g). 
s 

Then, as is easily verified, 
1 • • 

B = 4n•(2s + 1) (2j + 1)2 ~ ~Ct·~:CtgCt"g'Ct'"g' 
ll'/"l"' gg' 

x i 1'+1"-t-l'" (ZJ + 1)2 
/( (gl'l· g' l'" !"· ss6) (A 6) 

(~g + 1)(2g' + 1) ' ' . • 

In the case of resonance scattering of slow neutrons 

B = ~n-2 (2J + 1)2 (2j + W2 /CJ4 , (A.7) 

i.e., B = (2J + 1 )A/2(2j + 1 ). 
In the case of photon scattering, remembering 

the remarks made in the calculation of A and the 
identity [21] 

~ (Ld- 111110) (L21-11/l20) ~ (!1, p1) ~ (!2, p2) 

x (2!1 + 1)'1, (2!2 + 1)'1• (l1l200 JLO) W (l1L1l2L2; 1L) 

= + (- 1)L-L,+L, (L1L21- 1/ LO), 

we get 

B - 1 (2J + 1 )2 • • 
- 32n2 (2j + 1)2 ~ ~ CgpCgp'Cg'p"Cg'p"' 

gg' pp'p"p"' 

X ~PL (cos 8) (gg'1 - 1J L0)2 • (A.8) 
L 

[Only terms for which L + p + g + p" + g' is even 
should be included in the sum in (A.8).] If we as
sume for simplicity that photons of a definite mul
tipolarity are being scattered, we easily find from 
(A.5) and (A.8) a relation connecting the constants 
A and B: 

~ P L (cos 6) (gg1 - 1 J L0)2 
B = A (2~ + 1)2 L (A. 9) 

2] +1 ~ Pj_(cos6)Z~(gJgJ; jL) 
L 

We note that if the scattering nuclei are spinless, 
then A = B, as expected. 

Note in proof (January 17, 1962). Recently Dzyub and Lub
chenko[22l have treated the special case of resonance scatter
ing of y quanta in crystals by a method analogous to that devel
oped in the present paper. 
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