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The problem of the transition radiation of a charged particle in a plasma is solved in the 
kinetic approximation, with spatial dispersion taken into account. Mirror reflection of the 
electrons from the plasma-vacuum boundary is assumed. The limiting cases of weak and 
strong spatial dispersion are treated for both nonrelativistic and relativistic plasmas. With 
weak dispersion the radiative energy loss of a particle is composed of the transition radia
tion and Cerenkov radiation from longitudinal waves which emerges into the vacuum. The 
latter radiation has a comparatively narrow spectrum. With strong spatial dispersion the 
expressions for the radiation field and the energy loss of the particle can be obtained in 
the surface-impedance approximation. The radiative energy loss of a particle moving 
along the axis of a gyrotropic substance without spatial dispersion is calculated. The prob
lem of the features of the transition and Cerenkov radiations of an electron in a transparent 
medium are discussed. 

l. In 1946 it was shown by Gin:~ burg and Frank [t] 
that the passage of a charged particle through the 
boundary separating two media is accompanied by 
a specific radiation, which has been named transi
tion radiation. Transition radiation is analogous 
to the radiation from collisions, since at the instant 
of passage from vacuum into the medium there is 
an "annihilation" of the electron and its image. 

The theory of transition radiation in a medium 
without spatial dispersion has been developed in 
a series of papers by Garibyan, [2- 5] Pafomov, [GJ 

and others, in which it is shown that if the speed 
v of the particle is sufficiently large there is 
Cerenkov radiation of electromagnetic waves in 
addition to the transition radiation. In a medium 
with spatial dispersion longitudinal waves (plas
mons ) can be excited and transformed under cer
tain conditions into an electromagnetic wave at 
the bounding surface. The effect of spatial dis
persion on the radiative energy loss of a particle 
passing through a bounding surface has been con
sidered by Zhelnov C7J and by one of the present 
writers. [8] * 

*There is a mistake in Eq. (8) of[•], We take this opportunity 
to present the correct expression for A: 

(e1- e.) (1 - e2 ~ 2 + ~ V e1- sin26) 
A= -;:--'-~:;-'-"~-;:-:--~~~===:o:=;~ 

(1- ~2e2 cos2 6) (1 + f3 Ve1 - e2 sin2 6) 

vo.(1-e.) {[ 1 v L( (1 v~2 . •e)]-l 
- V V ez (1 + V e2po2/ poi) - Uo2 f/ 82 - C2 Sill 

1- f32e2 } 2 . 
- t-~•e.cos•() , e2=1-ro'OJro(OO-!VJ, 

where vis the frequency of collisions of the plasma electrons. 

In the same paper, [8] the energy losses of the 
particle to transition radiation are calculated in 
the hydrodynamical approximation. This approx
imation corresponds to weak spatial dispersion. 
In the limiting case of weak spatial dispersion the 
kinetic theory which will be developed here leads 
to a natural result, namely: the difference between 
the kinetic and hydrodynamical theories amounts 
to a factor 3 in the expression for the parameter 
a that characterizes the spatial dispersion: ak 
= 3ah = 3(T/mc2 )(w0 /w)2 [see Eq. (16)]. 

Zhelnov C7J took into account the presence of 
longitudinal waves in a phenomenological way by 
expanding the dielectric constant of the medium 
in a power series in the wave vector; this obvi
ously also corresponds to the case of weak spatial 
dispersion. Longitudinal waves appear here, too, 
and the order of the Maxwell equations is raised, 
and consequently an additional boundary condition 
is necessary. It is clear that there will be emerg
ence into the vacuum of the Cerenkov radiation 
produced from the longitudinal waves in the medi
um only if the longitudinal and transverse waves 
get "intermingled" in the boundary conditions. It 
is by this fact that the choice of the boundary con
ditions in Zhelnov's paper was dictated. 

Although such phenomenological boundary con
ditions do make it possible to obtain the qualitative 
features of the transition radiation, these condi
tions are not entirely consistent. 

The physical model to which the additional con
dition ~En= 0 on the bounding surface corresponds 
is unclear. Furthermore, in writing the fundamen-
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tal relation D = EE + o~E the term 61 grad div E, 
which is of the same order as o~E. has been 
omitted. Finally, one cannot determine the limits 
of applicability of this condition within the frame
work of the phenomenological theory. 

In the present paper the problem of the transi
tion radiation at a plasma-vacuum boundary is 
treated in the kinetic approximation. Then the 
question of the additional condition for the elec
tromagnetic field does not even arise, since the 
condition results in a natural way from the bound
ary condition for the distribution function of the 
plasma electrons at the boundary with vacuum. 
This allows us to consider not only the limiting 
case of weak spatial dispersion, but also that of 
strong spatial dispersion. Assuming specular re
flection of the electrons from the surface of the 
plasma, one can solve the problem exactly even 
when there is a uniform external magnetic field 
perpendicular to the bounding surface. In the case 
of weak spatial dispersion the final formulas differ 
considerably from those obtained by Zhelnov. [7] 

The differences are due both to the different form 
of the additional boundary condition (which for us 
is of the form jn = 0 on the boundary) and to the 
fact that the term in grad div E is omitted in [ 7]. 

In the case of strong spatial dispersion it is 
shown that the transition radiation is determined 
only by the surface impedance of the plasma (im
pedance approximation). 

In the last sections of the paper we consider the 
radiative energy loss of a particle in gyrotropic 
and transparent media without taking spatial dis
persion into account. In the investigation of the 
transition radiation emitted forward in the case 
of a tra.qsparent medium bounded by vacuum dif
ficulties arise owing to the diverging of certain 
integrals over the frequency of the Cerenkov waves. 
Mathematically these difficulties are due to the fact 
that in the integrals from which the radiation field 
is determined the pole and the saddle point can lie 
close together, and the asymptotic form of the field 
depends strongly on the distance between them. 

In this connection there are contradictory views 
in the literature concerning the generation of cylin
drical Cerenkov waves. [2, 6] By using the method 
of Vander Waerden [a] we have succeeded in ob
taining an asymptotic form for the field which is 
useful for any distance between the pole and the 
saddle point. This also makes it possible to settle 
the question of the features of the transition and 
Cerenkov radiations in transparent media. 

2. Let the electron move along the normal to 
the surface z = 0 of a plasma which occupies the 
half-space z > 0. The complete system of equa-

tions consists of Maxwell's equations and the lin
earized kinetic equation for the electrons in the 
plasma (the motion of the ions is neglected): 

rotH = ~ E + 4: [j + ev0 11 (r- v0t)], j =- e ~ vfd3v, 

rotE=-~H, (iro+v)f+vvf=eEv~;. (1)* 

Here E and H (,.... eiwt) are the electric and mag
netic fields; f is the term added to the equilibrium 
distribution function f0; E, v, and v are the energy, 
speed, and effective collision frequency of the plas
ma electrons; v0 = (0, 0, -v0 ) is the velocity of 
the particle. The boundary conditions for the fields 
are the usual ones: the tangential components of E 
and H are continuous. For the distribution func
tion we use the condition of mirror reflection: 

f (0, W,- Vz) = f (0, W, Vz). (2) 

The system (1) is most simply solved by the 
Fourier method. Using the condition (2), one can 
show that with the even continuation of the tangen
tial components of the electric field [ Er(- z) 
= Er( z )] and the odd continuation of the normal 
components [ Ez (- z ) = Ez ( z ) ] into the region 
z < 0 the Maxwell equations expressed in terms 
of the Fourier components become the algebraic 
equations 

Ltk (ro, _x, k) f&k (ro, x, k) = N; (ro, x, k), (3) 

where 

(

1 
( w I c)2exx- x!- k2 ( w I c) 2 exy + xxxy (w I c)2 Bxz + ikxx) 

L;k= (wlc)2 eyx+xxxy (wfc) 2 EYY-x!-k2 (wfc)•euz+ikxy , 

(WI c)2 Bzx- ikxx (wlc) 2 ezy-ikxy (wfc)•e22 -x2 

Na. = E~ (0, 1<, ro) +ixaEz (0, 1<, ro) (a= X, y); 

Nz = ~::. [1>+ (ro + kv0)- i>+ (ro- kv0)], 

fEr (x, k) = ~ d3 re ixp ~~~ kzE;(p, z). 

The cosine Fourier expansion is used for the 
tangential field components, and the sine expan
sion for the normal component; Greek letters de
note the tangential components; repeated indices 
are summed from 1 to 3; 

00 

II+ (x) = ~ ~ el"-x da = i) (x) + ~ p ~. 
0 

The dielectric constant tensor is 

Etk (x, k, ro) = i>tk + ( 4:rt/ iro) a,k (x, k, ro1 ; 

~ w w e-•IT cPv ~ v2 e-•IT dB v 
o fl = A a fl o zz = A -;-;-c--=z'---.--,.--,--

a. i(w-xw-kv2 )+v' i(w-xw-kv2)+v' 

A = (ne2/T) (m/2:nT)'1•, (4) 
--*,-r_o_t _=_c_u_rl,.....-
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n and T are the equilibrium density and tempera
ture (in energy units) of the plasma. 

We shall calculate the radiation field in the 
vacuum. First we must find the general solution 

· of the Maxwell equations in plasma and vacuum, 
and then by using the radiation condition at infin
ity and the continuity of the tangential components 
at the bounding surface we must find the connec
tion between the undetermined constants in the 
solutions of the homogeneous equations. 

The procedure for the calculations is described 
in detail in a paper by Garibyan. [2] Therefore we 
give directly the final result of the calculations 
for the spectral density of the radiation in the 
vacuum, when the motion of the electron is from 
the plasma to the bounding surface:* 

(5) 

Here {3 = Vo/c; e is the angle between the z axis 
and the direction of observation; and dfl is an ele
ment of solid angle in the direction e. This for
mula gives both the transition radiation and the 
Cerenkov radiation emerging into the vacuum from 
the longitudinal waves in the plasma, in the pres
ence of a finite damping of the waves in the plasma. 

3. In the case of weak spatial dispersion the 
quantity 1J is of the form 

1 + f3~ + f3B (1 -· f32 cos2 6) 
TJ = cos e + ~; • 

where 

(eo- sin2 6)'/, +a.'/,(~-- a. sin2 6)'/, 
~ = (1. (eo/rt.-sin2 6)'/, [(eo- sin2 6)'/, + (eo._/_rt. __ '---s-in_2_6--,-)'l,--2 ] ' 

liB =a [l- ~ (e0 - sin2 8)'1•] [1- ~ (e0a-1 - sin2 8}'1•] 

X [(eo- sin2 8)'/, + (eo/a- sin2 8)'1']; 

(i)2 

eo= 1- o . ) ' 
Cil(Cil-lV 

(6) 

(7) 

(8) 

In the formulas (7) and (8) the radicals have the 
arithmetical value for positive radicand, and for 
negative radicand the imaginary part of the root 
is positive. 

The formulas that have been obtained are valid 
if the phase velocity Vph = w/q of the waves in the 

Near resonance w = w0 the formulas are valid, 
since 

I eo I .::::::: 2 I w - Wo I I Wo < I . 

The frequency region in which spatial disper
sion is of importance is determined from the con
dition I E0/a I~ sin2 e and is of the order of 
( 3Tw0 /mc2) sin2 e. 

It is also not hard to get analogous expressions 
for the intensity of the radiation from a particle 
traveling through a relativistic plasma in which 
the dispersion law of the electrons is of the form 
E = cp. All of the formulas are of the same form, 
and now* 

e _ I _ 4nne2 c2 

o - w (w- iv) 3T ' 

For a relativistic plasma the frequency region in 
which the formulas (5)-(8) can be applied is lim
ited by the condition 

I 1.--9' I . J *j..-9' • (4nne2c2)'!, eo~ ,I.e., w-wo ~wo= ~ . 

4. Let us now turn to the study of the features 
of the radiation in the range of frequencies in which 
the condition for strong spatial dispersion, Vph « s, 
is satisfied. This inequality is identical with In I 
» c/s » 1, where n is the effective index of re
fraction. Since the effective dielectric constant is 
large, it is obvious that in calculating the spectral 
density of the radiation we can describe the plasma 
by means of the surface impedance ?; = E/H, where 
E, H are the tangential components of the alternat
ing fields at the surface of the plasma. As is well 
known, to find the radiation in the impedance ap
proximation we can confine ourselves to the solu
tion of the external electrodynamic problem. In 
this approximation there are no longitudinal waves 
in the plasma, and there remains only the transi
tion radiation. Its spectral density is given by the 
previous formula (5), where now the quantity 1) is 
of the form 

(9) 

( 2 )';, (w2y mT)'I• . .. 13 
~ = 27n ---ri&C (I + t r ). (10) 

plasma is large in comparison with the mean ther- In this approximation 1?; 1 « 1, since Eq. (9) is 
mal velocity s == (3T/m)1/2. For frequencies w valid for I Eo I s2jc2 ~ w5s2/w2c2 » 1. 

far from Wo this condition is practically always Consequently, in the entire range of angles for 
satisfied if I Eo I « C2/s2. In this case the spatial which I cos e I > I t; I the transition radiation is 
dispersion is unimportant; the parameter a can just the same as for an ideally conducting medium: 
be set equal to zero, and the formula (6) goes over 
into the well known formula of Ginzburg and Frank.[ 1]-~~~--:-

*In the calculation of the dielectric constant of the relati-
*For the opposite direction of motion one has only to change 

the sign of f3 in the final formulas, 
vistic plasma we have not taken into account processes of pro
duction and annihilation of electron-positron pairs in the plasma, 
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dW I dwdQ = e2~2 sin2 e f n2c ( 1 - ~2 cos2 8) 2 • (11) 

For a relativistic plasma the condition for strong 
spatial dispersion is realized for '1T~e 2c2/w2T » 1, 
and the expression for ?; is just Eq. (10), if in this 
formula we replace the mass m by 8T/1rc2. 

It must be noted that the formula (9) is valid in 
all cases in which the medium can be described by 
means of an isotropic surface impedance, and not 
only for small ?;. In particular, Eqs. (9)-(11) keep 
the same form in the case of strong spatial disper
sion when there is a constant magnetic field perpen
dicular to the bounding surface, since ?; does not 
depend on the magnetic field. 

The expressions (5) and (9) can also be used to 
estimate the intensity of the transition radiation 
in metals or in sufficiently dense plasma in a mag
netic field parallel to the bounding surface. 

With strong spatial dispersion the wavelength 
in the medium is small in comparison with the 
radius of curvature for the electron, and therefore 
we can neglect the bending of the particle path and 
assume that it has a rectilinear motion near the 
surface. To get the transition radiation in this 
case we have only to substitute the known expres
sions for the surface impedance of the medium 
[iO,U] in the definition of 17, Eq. (9). 

In the case in which the medium has a suffi
ciently large permeability JJ. the conditions for 
strong spatial dispersion are satisfied because of 
the large value of JJ., and the impendance ?;, pro
portional to JJ.112, may not be small in comparison 
with unity. 

5. Let us consider the transition radiation in 
the case of a gyrotropic medium without spatial 
dispersion, when the particle moves along the 
axis of gyrotropy. In such a medium the tensor 
Eik is of the form 

(
81 - ig 0 ) 

Etk = ig 81 0 . 
0 0 e0 

(12) 

An example of a gyrotropic medium is a cold 
plasma in a perpendicular magnetic field, for 
which 

8 = 1 - w~(w-iv) 
1 w [(w- iv)2 - Q2] ' 

(1)2 

€ = 1- 0 
0 w(w-iv)' 

(J)~Q 
g = w [(w- iv)2 - Q2]; 

Q = I e I H/mc is the electron cyclotron frequency. 
The particle moves along the magnetic field. In 
this case the spectral intensity of the radiation in 
the vacuum is given by the general formula (5), in 
which 11 is now of the form 

TJ = [(cose + P) (1 + Q cos S) 

- R2 cos e J-1 { (1 + Q cos S) (1 + ~P) - ~R2 cos e 

+ 1- ~· cos2 e [ (~ti-s~) (1 -t- Q cos ej + qR cos e 
eo (!l~- f1i) 1- ~f11 

_ (!l;- si)(l-t-Qcos6)-t-qRcose]} 
1- ~11· ' 

where 

p = s~ (si + f1rf.t2) 
Eof.tr!lz (f1r -+- !lz) ' 

Q = ErS~ + Eo!lr!lz 
8of1r!lz (fir -+- !lz) ' 

(13) 

si = €1 - sin2 8; 
(14) 

and JJ.t, JJ.2 are the roots of the equation 

Eof.l4 - [.l2 (e1s~ + e0si) + s~ (e1si- g 2) = 0, 

11i.2 = (2eot1 {els~ + Eosi ± [(e1s~- e0si)2 + 4e0s5g2 J'1'}, 
(15) 

with positive real parts and negative imaginary 
parts. For g = 0 the formula (13) goes over into 
the well known formula obtained in the paper of 
Pafomov [G] for the radiation loss of a particle at 
the boundary between a uniaxial crystal and vac
uum. Equation (13) shows that under certain con
ditions besides the transition radiation in a gyro
tropic medium there is also an energy loss of the 
particle owing to the generation of Cerenkov radi
ation from the extraordinary waves. The fre
quency of this radiation is determined by the con
dition 1 - f3JJ.t = 0. 

6. In conclusion let us examine the question of 
the radiation energy loss of a particle in an iso
tropic transparent medium without spatial disper
sion. 

The expression for the radial component of the 
electromagnetic field in the vacuum obtained in 
Garibyan's paper [2] [Eq. (23)] is of the form 

00 

E (R, e, t) = ~ dwE"'(R, S) e-twt. (16) 
-oo 

The Fourier component Ew of the field is deter
mined by the integral 

00 

Ew (R, 8) = ~ dx exp {iw ~ h(x)} W (x), (17) 
0 

where 

W (x) = .!__ ( w )'1• e-31ti/4 x'1• (1- x2)'f, 
nv 2nRcsin 6 e(t-x•)'l• -t- (8 -x•)'f, 

X { 1 + ~ (e- x2)'/, _ e + ~ (8- x•)'/,} 
x2 - (8- ~ 2 ) x2 -1 + ~ 2 ' 

f(x)=xsine-t-Vt-x•cos e. (18) 
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The formula (17) differs from the corresponding 
expression (23) in Garibyan's paper only by our 
having replaced K (the radial eomponent of the 
wave vector) by the quantity x = cKiw. 

The function W ( x) has a pole at the point Xp 
= ( E- {3- 2 ) 112 (the other poles are of no impor
tance). Since E is complex ( E = E' + iE" ), the 
pole lies above the x axis (Re Xp > 0 ). The saddle 
point is xs =sin e. We are interested in the asym
ptotic behavior of Ew(R, e) for large values of 
wRic (for simplicity we take c.~ > 0; all the calcu
lations are analogous for w < 0 ). Since E' de
pends on w, for a certain value w = w' the pole 
(or more exactly Re Xp) can coincide with Xs; 
w' is the frequency of the Cerenkov waves emerg
ing into the vacuum. [2] 

In order to obtain an asymptotic form which is 
valid for arbitrary distance between the pole and 
the saddle point we use the method of Van der 
Waerden. [9] For this purpose we add to and sub
tract from the function W ( x ) a term W 0 I ( x - Xp ) , 
where W0 is the residue of W(x) at the pole 
x = Xp. Then 

Ew (R, e)= r dx[ W (x) -x~:Jexp {i w; f(x)} 
0 

00 

+ Wo \ ~exp {i wR f (x)}. 
~X-X C 

(19) 
0 p 

In the first integral in Eq. (19) the pole x = Xp is 
absent, and therefore its asymptotic behavior is 
determined by the saddle point only [f" ( xs ) 
= - cos-2 8] 

Er.., (R, e) 

[ Wo J {· wR :rti} .. J 2:rtc / I ~ w (xs)- x.- xp exp t c - 4 v rot[ cos e . 
(20) 

In the second integral we deform the path into 
the curve of steepest descent, which passes through 
x = Xs at the angle 45° with the real axis of x. 

For 0 ::::: ( E'- {3- 2 ) 112 ::::: sin e and sufficiently 
small E" the pole Xp lies between Im x = 0 and 
the curve of steepest descent. Therefore 

2W (R, e) = 2niWo exp {i ~ Rf (xp)} 

co exp (3n//4) 

- W o \ _!!!..__ exp v·~-- Rt (x)} . (21) 
-co ex~ (37tl/4) x- xp c 

In the last integral it must be noted that the coeffi
cient of the exponential cannot be expanded in pow
ers of x- xs, since the radius of convergence of 
this series is small. The exponent can be expanded 
near the saddle point. After obv:ious transforma
tions we get the following final asymptotic formula: 

Ew (R, e) ~ E1w (R, e) + 2ni Wo exp ( i: Rf(xp)) 

+Esro(R,8), (22) 

00 ~· 
E3ro (R, 8) = Wo exp (i wcR) ~ ~£~~; 

-oo 

Equations (22) and (23) give the correct limit
ing results for small and large values of I A 1. 
When the saddle point and the pole are located 
sufficiently far apart <I A I » 1 ), E3w is can
celled by the corresponding term in E 1w and one 
gets the same result as in Garibyan's paper. [2] 

When I A I - 0 (the pole and the saddle point co
incide), f(xp)- 1 so that 

Ero, = E1w (R, 8) + niWo exp (iwR!c). 

Thus for I A I « 1, E3w reaches its maximum 
and behaves like a cylindrical wave, and for I A I 
» 1 it behaves like a spherical wave. Since for 
a transparent medium E"( wRic )112 « 1, and the 
effective width of the frequency interval in which 
E 3w reaches its maximum is proportional to R- 112, 

in the expression (24) for E( R, t, 8) the term Eaw 
gives a contribution of the spherical-wave type, 
just as E 1w does. 

In the case of a nontransparent medium, for 
E" ( wRI c )112 » 1 (i.e., I A I » 1) we cannot let 
the damping go to zero, there is no cylindrical 
wave, and there remains only the spherical wave 
from the saddle point 

.. /2nc . ( w R :rt ) Ero~W(xs) V wR cos 8exp t 0 -4 · (24) 

In Garibyan's paper [2] two limiting cases were 
treated separately, namely the case when the saddle 
point and the pole are far apart ( I A I » 1 ) and 
that when they coincide (A= 0 ). The general case, 
in which the saddle point and the pole are an arbi
trary distance apart, was not treated. As can be 
seen from the results obtained here, although the 
frequency interval Aw' I w' ~ ( 7riR )112 is indeed 
small, its contribution to the total energy loss is 
by no means small. The remark of Pafomov [GJ 

about the inaccuracy of the interpretation of 
Garibyan's result actually does not apply to this 
case, since he considers a nontransparent medium 
with sufficiently large damping, so that there is 
no pole between the real axis and the curve of 
steepest descent and there is no cylindrical wave. 

It is obvious that the situation is quite analogous 
in a plasma, in which Cerenkov radiation from the 
longitudinal waves arises at the frequency w 
= w0 [ 1 + ( slv )2 (1 + {32 sin2 e )] 112• 
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