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We obtain expressions for the correlations in the phase densities in different points in phase 
space and at different times for a non-equilibrium plasma. We use the general formulae to 
obtain expressions for the field correlations, the charge density, the particle-distribution 
correlations, and the charge-density correlations. We consider the case where the plasma 
is in a constant uniform magnetic field. 

INTRODUCTION 

RECENTLY attention has been drawn to the prob­
lem of constructing a theory of fluctuations in a 
plasma which is not in thermodynamic equilibrium. 
Hubbard, [i] Rostoker, [2] and one of the authors [3] 

have considered the theory of fluctuations in the 
electromagnetic field in a collisionless plasma. 
In [i, 2] only the Coulomb interaction was taken 
into account, while in [3] the fluctuations in the 
total electromagnetic field were considered.* 

The correlations of currents and the effective 
temperature for stationary states of a non-equilib­
rium plasma were evaluated by Bunkin, [4] who as­
sumed that the collisions were the decisive factor. 

In the present paper we evaluate the correla­
tions 

oN a. (r "' Pa., t) oN 13 (r13 , p0, t') 

of the phase density functions 

Na. = ~o (ra.- ra;(t)) o (Pa.- Pa.i(t)) 

(1) 

for quasi-equilibrium states of a collision-free 
plasma. The quasi-equilibrium condition means 
that the averages of the functions Na change little 
over distances of the order of the correlation ra­
dius and times of the order of the correlation time. 

We solve this problem by a method developed 
in the papers of one of the authors [S] in connection 
with the analogous problem for equilibrium states 
of a plasma. Kadomtsev [G] has also used equa­
tions for the phase density to study fluctuations 
in gases. 

The general formulae obtained here are used 
to determine density correlations, the field, and 

*In Pl there was also given a quantum theory of electro­
magnetic fluctuations; this is important for fine-grained 
correlations. 

correlations in the particle distribution and in the 
charge density distribution. We consider both the 
case of a plasma without strong fields and the case 
where the plasma is in a constant, uniform mag­
netic field. 

1. SOLUTION OF THE SET OF EQUATIONS FOR 
THE FUNCTIONS Na (ra, Pa• t) 

We use as initial equations the set of equations 
for the functions 

which are the charged-particle densities in phase 
space. The index a corresponds to the different 
kinds of charged particles in the plasma. When 
there are no average fields and we are dealing 
with charged particles with Coulomb interactions 
the equations for the functions N a are of the form 

The averages of the functions. Na are proportional 
to the first distribution functions fa. Denoting an 
average by a bar on top, we write 

Na (ra, Pa., t) = na.fa. (ra., Pa., t). 

Here na is the average number of particles of 
kind a per unit volume. 

We define the deviations 6Na of the functions 
from their averages 

The average of a product of functions 6Na6Nf3 
at the same instant of time is connected with the 
single-time correlation functions gaf3(ra, r13, 
Pa• Pf3• t) .by the relations 
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{jNu{jN~ = {ja{l{j (ru- rfl) {j (Pa- Pll) nflf!l + n~nflg.~(;o (1.2) 

Using Eqs. (1.1) we find an equation for the func­
tions 6Na. 

By virtue of the condition e2n113 « mv2/2 the 
functions 6Na6N/3 will b~ s~all compared to the 
product of the functions NaN/3. This enables us 
to break off the chain of equations for the functions 

{jN u{jN fl• {jN a{jN fl{jN y, 0 0 0 

or the corresponding chain for the correlation 
functions. The neglect of triple products corre­
sponds then to the neglect of triple correlation 
functions. One must note that in this approxima­
tion we do not assume that the other "energy" 
parameter ( 47re2ua /k2 )/ (mv2/2) is small. This 
enables us to take polarization effects in the 
plasma into account in the framework of the ap­
proximation used here. 

If we can neglect triple products in the equation 
for the function 6Na6N/3, we can drop terms con­
taining double products in the equations for the 
functions 6Na themselves. As a result we get 
the following equations for the functions 6Na: 

a/JNu a/JNu ""\ auu6 ([r"-r~[) atu 
---a~+v"ar-n"LJO)dPfldrfl a IJNfl-a =Oo 

" fl r" Pa 
(1.3) 

We have dropped in Eqs. (1.3) the term that ac­
counts for the average electrical field; this is 
possible because the functions fa are assumed 
to be slowly varying functions of space and time. 

The system (1.3) is solved with the boundary 
condition 

{jNu (ru, Pa, t) = {jNu (Pa, r", 0) fort= Oo (1.4) 

It is expedient to use in the solution a Fourier 
transformation over positive times and a Fourier 
transformation over the coordinates. We define 
the Fourier components of the functions 6Na by 
the equations 

00 

.{jNa (w, k, Pa) = ~ ~dtdra{jNa (ru, Pu, t) e"(wl-kr"), 

0 

w = w' + iw", w" > 0, 

from which it follows that the functions 
6Na(w, k, Pa) are analytical in the upper half­
plane of the complex variable w. 

We first find an expression for the Fourier 
components of the total charge density 

{jp (ra, t) = ~ea ~ {jN a (ra, Pu. t) dpao 

From the system (1.3) we get the following ex­
pression for the function op(w, k): 

I) (w k)= o""e"\ IJN"(k,paoO) d 
p ' l-7 .) (w-kva+i~) Pa s<+>(w,k). 

(1.5) 

In this expression and henceforth w = w', .6. = w", 
.6. > 0, and 

e<+l (w, k) = I + ~ 4ne~nfl ~ k .!!i.E_ dP,s 0 (1.6) 
{l k 2 ap(l w-kv{l+t~ 

is the dielectric constant of the plasma. 
Using Eq. (1.5) we find a solution of Eq. (1.3) 

- _i_"" \ dw \ dke-i(wl-k(ra-ry)) 
(2n)4 L.J j .) 

y 

X ~ dpydr y 4neaeyna/)N y (r Y' Py• 0) k at CJ. 1 
k2 (w-kv"+i~)(w-kvy+iM ap" 8 <+>(w, k) • 

(1. 7) 

The solution obtained here enables us to find the 
functions 6Na at time t, provided we know the 
functions 6Na at time t = 0. 

Using the solution (1.7) we can express the 

double-time functions 6Na(ra, Pa• t) 6Nf3(rf3, Pf3• O) 

in terms of the first distribution functions and thus 
solve the problem of describing fluctuation proc­
esses in a quasi-equilibrium plasma. 

We now get the solution of the corresponding 
equations for the case where the plasma is in a 
constant magnetic field. In the approximation 
considered by us we must when there is a mag­
netic field present impose still one more conditio~ 
upon the functions fa. We must, namely, assume 
that these functions depend merely on the longi­
tudinal and transverse momentum components 
(p~, P-&) defined with respect to the vector B, but 
should not depend on the corresponding angular 
variable. We assume thereby that the functions 
fa are also in a magnetic field slowly varying 
functions. Under those conditions there occurs 
in Eqs. (1.3) only the additional term 
(ea/c)[va X B] a6NalaPa· 

The expression for op ( w, k) is now of the 
form 

/Jp(w, k) = ~ea ( dt \ dpa I)Na (Pa (0, t, Pa), k, 0) 
"

0 ~ .l s<+> (w, k) 

X exp {i (wt + k~a (0, t, Pa. 0))}. (1.8) 

We have introduced here the following notation: 

P (t , t ) ·(Bp") 8 0 , [Bp"] 
, , Pa = ~ -smQa(t -t)-s-

+ ,.... (t' _ t) [[Bp"] B] cos.,a 82 ' (1.9)* 

*[Bp] = 8 X P· 
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[1- cos Qoc (t'- t)] [Bvocl 
QocB 

(1.10) 

The dielectric constant in a magnetic field is 
now defined by the equation 

e<+> (ro, k) 

k iJf~(PB(O, t, PG))- I+~ 4ne~n{l '? 2 Ld _!_ f d II 
X ap - .LJ k2 \ rrp,, Pil .l Pil 

(3 (3 •J -00 

"' Jn(klvr!r!,s) -- 'n •. {l a f co 2 L [ a o l 
X I - k,, I T --- il· 

n!:.co (w- k 11 v(} - nQ 18 +ill) " Of!~, v(,- aprJ; ~ 

(1.11) 

The Jn in this equation are Bessel functions. 
Using Eq. (1.8) we find easily a solution of the 

set of equations for the functions oNa when a mag­
netic field is present 

oN"" (rcr., Pa. t) = oN" (P .. (0, t, Pa), Ra (0, t, Poc, 0), 0) 

i ~4rreaeyn._ (' . \ dk ik(r -r) \ d d .1 + (2n)• .LJ k2 .• \ dwe-lwl .l e y a .\ py rye<+) (w, k) 
y r iJf,(Pa(O,-r,pa)) 

X .) dT exp {i (wT + kRx (0, T, Pa, 0))} k · . apa 

0 

00 

X ~ dT'exp {i (wT'- kRy (T', 0, py, 0))} oNy (Pn ry, 0). 

0 (1.12) 

We can use the solutions obtained here to deter­
mine averages of product of any number of func­
tions oNa. The correlations of the functions <'>Na 
of any order can thus in final reckoning be ex­
pressed in terms of the first distribution functions 
fa. 

2. THE DETERMINATION OF THE FUNCTIONS 

oNa(ra, Pa. t) o~(rf3, Pf3• 0) FOR A PLASMA 

WITHOUT STRONG FIELDS 

We can obtain a solution of the problem men­
tioned in the heading of this section by using Eqs. 
(1.2) and (1.7). Indeed, multiplying Eq. (1.7) by 
<'>Nf3(rf3, P[3. 0) we get after averaging and using 
Eq. (1.2) 

oN"" (ra, Pa, t) oN il (rfl, Pil• 0) 
1 ' [' 

= (Zn)• ~ dw ~ dk exp {- i (wt- k (ra- ril))} 

X (oN a (Pa) oN il (pfl))~\. (2.1) 

N N ( <+> i (o oc(Poc)O {l Pfl))w,k=(w-kvoc+iM 

X {oa(lO (Pa-Pfl) nilfr> (Pil)+nan{lGa{l(k,pa,Pil) 

_ 4neoc n k iJj oc 1 [ e13n{lf(l (pil) 
k' oc iJPoc 8 (+) (w, k) w- kv{l + i!'l 

...L"' 1 d eynyn{lGy{l (k, Py' P(l)J} 
1 L.J \ py w - kv + ill · • y 

(2.2) 
y 

It is clear from the form of the right-hand side of 
Eq. (2.2) that the function defined by this formula 
is analytical in the upper half-plane of the complex 
variable w. This corresponds to the fact that t :=::: 0 
in Eq. (2.1). In Eq. (2.2) Gaf3 is the Fourier com­
ponent of the pair correlation function 

Gocfl (k, Pcr., Pil) = ~ d(rcr.- ril)e-ik(rcrfll g._il(rcr.- rfl, Poc, Pil) 

and is of the form (see [7 • BJ) 

1 4neae{l{ iJj"" fil 
Gail (k, Pa, Pil) = k (v""- vil)- ill~ k iJp"" e<+l (kv!l, k) 

k iJj!l foc (k iJj""\(kiJ/fl)""4ne~nY\ d fy(Py) 
- iJp!l,H (kv._, k) + ape<) iJp{l -'7 ~ j p-y Je (kv) I' 

x[k(v!l-~'l)+ill- k(v""-1v)-i~J}· <2·3> 

Apart from Eq. (2.1), which determines the cor­
relation in the distributions of the coordinates and 
momenta of a pair of particles at different times, 
it is expedient also to obtain equations determin­
ing the correlations between the coordinate and 
momentum distributions of a particle and the 
charge density in the plasma, and also the corre­
lations between the charge density in the plasma 
at different times and at different points in space: 

6Na (roc, p"", t) op (r, 0) 

= ___ 1_ I dw (' dke-i(wt-k (roc-r)) (oN (pI op)(+) 
(2n)• ~ ~ ex ocJ "'· k, 

(2.4) 

op (r, t) 6N fl (rfl, Pfl, 0) 

= _1_ \' d \ dke-i<Olt-k<r-ril»(o oN (p ))<+> 
(2n)•.) w .) p ll f3 "'· k, 

(2.5) 

op (r, t) op (r', 0) 

= _1_ \' d \ dke-i("'l-k(r-r')) (o 0 )<+> 
(2n)4 .) w .) P P "'· k• 

(2.6) 

The corresponding expressions can be obtained 
from Eq. (2.2) by integration over the momenta, 
multiplication by the charge, and summation over 
the different kinds of particles. For instance, we 
have 

(0 oN ( ))<+> _ 1 [ ie13n13 t 13 
p f3 Pf3 "'• k- e<+> (ro, k) w- kv!l+ill 

\' iecr.ncxnf3 J + ~jdPcxw-kvoc+il'l Gcxll(k, Poc,Pil) • (2. 7) 
a 



202 Yu. L. KLIMONTOVICH and V. P. SILIN 

This last formula enables us to write, in particular, 

( I'JN a (p._) I'JN ~ (pp))~~\ =~ w _ k:" +if}. { I'J._pi'J (p._- P!l) nG{e 

' 4:rte._n._ . at.. \+)} 
--;- n~n/3Gaf3 (k, p._, P.B) + ---v- tk ap" ( I'Jpi'JN 13 (P13))w. k . 

(2.8) 

Using the explicit expression for the correlation 
function (2.3) we get 

(opop)~~~ = i ~ w __ !~~ i~ (opop)w·. k, (2.9) 

(opop).,, k = ~e~n" 

X~ dp._f._ (p._) 0 (ro- kva) je<+l (w, k) cH (ro, k). (2.10) 

We note that since the correlation function for the 
Coulomb field is connected with the correlation 
function for the charge density through the rela-
tion 

(EEt. k = (4rcfk? (opopt_ k' (2.11) 

Equation (2.10) corresponds to the one obtained 
in [1-3]. 

We can use Eqs. (2.9) and (2.10) to express the 
porrelation function (2.3) in terms of the charge 
fluctuations 

(2.12) 

We can also express the other correlation functions 
in terms of the charge fluctuations: 

(2.13) 

(2.14) 

[. t13 4:rt ( at~) <+> ]1 X t (+l + fii' k ap (opop)kv13 , k f' 
8 (kv13 , k) ~ 

(2.15) 

The fact that the function ( opop ) occurs in all 
these formulae corresponds to our taking into 
account the fluctuations in the force exerted by 
the Coulomb field on a particle [cf. Eq. (2.11)]. 
The additional occurrence of expressions such as 

(2.16) 

corresponds to the modification of the Coulomb 
field on the a-th particle in the plasma by the 
polarization, which is characterized by a complex 
dielectric constant E ( w, k). 

We note, finally, that by using Eqs. (2.13) and 
(2.14) we can write Eq. (2.15) in the form 

(oN a (p._) oN 13 (pp))~\ = ro _ k:a + i~ OafJO (p._- P/3) nilf~> (p13) 

1 {4:n:e13n8 ( at13 ) (+) 
-kva-kvll-i~ ~ kap/3 (oNa(Pa)Op).,,k 

4:n:e._na ( at") (+) } 
-~ kapa (opoNil(PfJ)).,,k. (2.17) 

3. THE DETERMINATION OF THE FUNCTIONS 

6Na(ra. Pa. t) 6Nf3(r{3, P{3• 0) FOR A PLASMA 

IN A CONSTANT AND UNIFORM MAGNETIC 

FIELD 

Assuming that there is a constant and uniform 
magnetic field B in the plasma and using Eqs. 
(1.12) and (1.2) we can write down the following 
formula, which is in a certain sense the analog of 
Eq. (2.8) of the preceding section: 

co 

(oN a (Pa) oN ll (p13))~\ = ~ dt exp { i (rot + kRa (0, t, Pa. 0))} 
0 

X {oallo (Pil- P._ (0, t, Pa)) nflfll (p13) 

+ nanllGo.fl (k, Pa (0, t, Pa), P13) 

co 

(3.1) 

= (+) 1 ~ dteiwt ~ e" ~ dpa exp {- ikR._ (t, 0, p._, 0)} 
8 (w, k) 0 a 

X {oallnllfll (Pil) o (Pa-P~>)+ n"n13G"/3 (k, p._, Pll)}. (3.2) 

Here Ga(3(k, Pa. P{3) is, as in the preceding sec­
tion, the Fourier component of the correlation 
function of a pair of particles in the plasma. We 
derive an explicit expression for such a function 
in the Appendix. 

We can also easily obtain the formulae 

(I'Jpop)~\ 
co 

= 1 I dtelwt"' eaeJl (' dp" dpi> exp {- ikR" (t, 0, p._, 0)) 
e<+l (ro k) ~ ~ ~ 

' o ail 

X {bailni>fil (P~>) o (p13- p") + na.nllGail (k, P"' Pll)}, (3.3) 
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()() 

(bNa. (Pa.)bp)~\ = ~ dt exp {i (wt + k~a. (0, t, Pa., 0))} 
0 

Using Eq. (A.3), which determines the correla­
tion function of a pair of particles in the plasma 
when there is a constant magnetic field present, 
we can write Eq. (3.3) in the form 

(/) /) <±l . \' dw' . 
p P)oo, k = t J w _ w' ± ib. (bpbpt •. k , 

()() 

(bpbpt. k = e<+> (w, k)ie<-> (w, k) ~ e~nfl ~ dpflffl (P!l) ~ g~ 
{l -00 

(3.5) 

Taking Eq. (2.11) into account we can easily show 
that Eq. (3.6) corresponds to the one obtained in 
[ 1- 3] for the Coulomb field. 

We can also use Eqs. (A.11) and (A.14) to ex­
press all the other spectral functions in terms of 
the charge density fluctuations. We get thus for 
the functions (3.4) and (3.2) the expressions 

()() 

(bN a. (Pa.) bp)~~)k = ea.na. ~ d't' exp {i (w't' + k~a. (0, 't', Pa., 0))} 
0 

{ .4n k i:Jfa.(Pa.(O,-r,pa.)) (I)/))<+> 
X t k' i:JP P P "'· k 

(J_ 

()() ()() 

+ ~ ~ dtdw' exp {i (w't + k [~a. (0, t + 't', Pa., 0) 
0 -()() 

- ~ .. (0, 't', p .. , O)l)} 

[~kat._(P"(O,t+-r,p")) .(li fJ) +___!_ fa. ]} 
X k2 i:JPa l p p oo', k 21t e<->(w',k) ' 

(3. 7) 

00 

(bpbNfl (PJ>))t'\ = eflnfl ~ d't' exp {i (w't' + k~fl (0,- 't', Pfl, 0))} 
0 

{ . 4n k i:Jfp, (Pfl (0,- 't', Pfl) ( ... /) )(+) 
X £ k2 i:JP up p "'· k 

(3 

00 ()() 

+~ ~ dtdw'exp{-i(w't+k[~13 (0,t-'t',p13 ,0) 
0 -oo 

_ n (O _ 't' p O)J)} [- .4n k i:Jf13 (P{l (0, t--r, p13)) 
1'\(3 ' ' 13• 1 k2 i:JP 

(3 

X (/) /) ) ' + _1 f (3 ]} (3 8) 
p p "'· k 2n e<+) (w', k) · • 

We can use Eq. (A.14) to obtain from (3.1) the 
corresponding expression for the function 
(oN (p ) 6N{3(p{3))<+>k a a w, 

00 

= ba.{l na.n13 ~ dt exp {i (wt- k~13 (0, t, p13, 0))} 
0 

X I) (p13- Pa. (0, t, Pa)) 

- (bpbp)~~>kL~+> (w, k, Pa.) L~-> (-w,- k, Pl3) 
()() 

+ 1 ~ dw' L<+> ( , k 
-2 · • ·b. { f3 -w ' - , P13) 1tl (J) -(J)-1 

-00 

X [Ma (w', k, Pa.) / e<->(w', k) 

- (bpbp)~-:;>k (L~+> (w', k, Pa.) +L~-> (w', k, Pa))l 

+ L~+> (w'. k, Pa.)[Mil (- w', - k, Pll) I i+> (w', k) 

+ (bplip)~\ (L&+> (- w', - k, Pll) +L~-> (- w',- k, p13))1}. 

Here (3.9) 
()() 

Ma(w,k,pa.)= ~ dtexp{i(wt+k~a(O, t, Pa,O))}ea.na.fa, 
-()() 

±oo 
L<±) (w, k, Pa) = ± ~ dtexp {i (wt + k~a (0, t, Pa., 0))} 

0 

The formulae obtained here fully describe all pair 
correlations in a plasma with Coulomb interac­
tions, situated in a constant magnetic field. 

In the case of a strong magnetic field, interest 
attaches to the spectral functions averaged over 
the fast changing angular momentum -space vari­
able corresponding to the Larmor rotation. The 
function ( opop >tJ~k does, of course, not change 
when averaged. The averaged functions 
(<'>Na<Pa) op )~~k and (opoNf3(Pf3))~~k are of 
the form 

((bN a (Pa) bp)i;,lk) = iea.na ~ J~ (k ..L v;t- I Qa.) 
"w-k 11 v~ -nQ" + ib. 

(3.10) 

(+) ' J~ (k ..LVt I Qil) 
((bpbNil(P!l))oo,k)=ielln{l~ k 11 "+·A 

n w- 11 v13 -n••p, tu 

{ f{l .41t [k a nQ{li:J J 
X e<+> (k vII +nQ k) + 1fi2 II ap II+ v..Li:Jp..L fl3 

II 13 13• /3 f3 13 

(3.11) 
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When averaging Eq. (3.1) we must bear in mind 
that 

co 

<~ tit exp {i (wt- kR13 (t, 0, P13,0))} b (p13- Pa (0, t, Pa))) 
0 

co 2 (k 1_vt) i 

X n~coJn o:- ffi-kllv~ -nQot+i!l. 

4. SPECIFIC EXAMPLES. DISCUSSION OF THE 
RESULTS 

As an application of the general formulae ob­
tained in the foregoing we consider first the ex­
ample of an equilibrium plasma when the functions 
fa (Pa) are Maxwell distributions with the same 
plasma temperatures for all components. One can 
in that case write Eq. (2.14) in the form 

(bN ot (Pot) bN{l (P13))~Jk = (J)- k:a +ill bot{lb (Pa- P!l) nllfll 

inotn/3 
+ ffi+i!lfafl3 

, [ 4neot ell (kv al (kv {l) 1 J 
X g""13 (k) + k2xT (ffi- kvot +ill) (ffi- kvll+ ill) e<+l (ffi, k) ' 

(4.1) 
where 

r2 = xT 
d ~ 4ne2 n LJ y y 

(4.2) 

y y 

are the single-time correlation functions of an 
equilibrium plasma. One can also obtain Eq. (4.1) 
from Eq. (23) of Rostoker's paper [2] by general­
izing that equation to the case of a multicomponent 
plasma. 

However, there is considerably more interest 
in the corresponding equations for a non-equilib­
rium plasma, of which a non-isothermal plasma 
is a typical example. In that case we get the fol­
lowing expression: 

(bN ot (Pot) bN {l (p13))~Jk = (J) _ kv~ + i!:l b""{lb (Pcz- P13) nllfll 

4neotnot 4nelln!l (kv"") (kvll) b b (+) 
+ k2xTot k2xT!l (ffi-kvcz+i!l)(ffi-kvll+i!:l) f""fll( P P)o>,k 

4ne'" ell nczn{l { (kv 13) I xT ll 

+ k2 kv'"-kv{l-i£). ffi-kvcz+i!:l 

[ 
i 4n (kv'") H ] 

X eH (kv'", k) - k•xr--; (bpbp)kv,.. k 

(kv'") fxTot [ i 4n (kv{l) (+) ]' 
ffi-kvfl+if). e<+l(kvB,k) k•xr(l (llpllp)kv{l,k f" 

(4.3) 

Here, as above, ( opop )~>k are the spectral func­
tions of the charge densities. They are defined by 

Eqs. (2.9) and (2.10), where one must substitute 
the functions 

f'" (Pcz) = (2nm""xT a)-'1. exp (- p~ /2m'" xT a:)· 

We now consider a plasma in a strong magnetic 
field when the longitudinal temperature is consid­
erably larger than the transverse one ( T11 » T1) 
so that we can neglect the latter. In that case 

fa= Fa (pd) b (pt) j2npt; 

Fa (p~) = (2:rtma'XT 11 )-% exp [- p~ 2 j 2ma'XT 11 ). 

Substituting these expression into Eq. (3.9) we 
get 

y 

_ 4neote{lnan{l 1 (k 11 v~)(k 11 v~)Fot(p~)F 13 (rd1 l ]}· 
k•xr 11 e<+!(ffi,k 11 ) (ffi-k 11 v~ +i!:l)(ffi-k 11 v~l +if).) ' 

(+) _ 4ne~ny ~ II k II aF y(P~ )/ ap~ 
e (w,k)-1+~-k-2 - dpy 11 . , 

Y ffi-k 11 vY +t!:l 

r~l = xT 11 j ~ 4ne~ny. 
y 

(4.4) 

Using the formulae given here we can find the 
space-time correlations of the electrodynamic 
functions op, j, and E. Such correlations have 
been considered before (see [i-4]). However, for 
a complete characterization of the non-equilibrium 
state of a multicomponent plasma it is also neces­
sary to be able to determine the correlations of 
gas-dynamic functions such as the density, veloc­
ity, temperature, velocity moments, and so on, 
and also the mutual correlations of the electro­
dynamic and gas-dynamic functions. The space­
time correlations of all these functions can under 
the conditions mentioned in the introduction be 
found by using the formulae obtained in the present 
paper for the correlations of phase densities. 

It is important that, as shown in the present 
paper, such complicated functions as the correla­
tions of the phase densities can be expressed in 
terms of the simple functions ( opop) w,k and 
E ( w, k), the spectral density of the charges and 
the dielectric constant of the plasma, which have 
been well studied for many cases. This means that 
any arbitrary correlations of electrodynamic and 
gas-dynamic functions can also be expressed in 
terms of these two functions. 



THE 0 R Y 0 F F L U C T U AT I 0 N S 0 F THE P ART I C L E DIS T RIB UTI 0 N S 205 

APPENDIX 

THE CORRELATION FUNCTION FOR A PLASMA 
IN A MAGNETIC FIELD 

The integral equation for the correlation func­
tion of a plasma when there is a magnetic field 
present can be written in the form 

00 

Here E:<->(w,k) = E:<+>*(w,k) is the dielectric con­
stant of the plasma in a magnetic field. It is de­
fined by Eq. (1.11). The functions F(±) are de­
fined by the formulae 

= i ~ d't exp {ik (Ret (0, 't, Pet, 0)- R13 (0, 't, Pf3, 0)} The functions Hl~{ are defined in terms of the 
0 functions h(n): 

{4:rte~n" of a (Pal 4:rte~ n13 ot13 (P13) a 
X ~k----aPh13(-k,P13)-~k--ap-ha(k,Pet) oo oo 00 k J. h<m> k 11 J. 

et 13 H<:i=>(w,k)=J_.~~ ~ ~ lm(J.vtl) 13 ( ,ptl,p/3) 

+ 4:rte!e~ [k iJfa (Pet) f (P ) - k iJ/(3 (P(3) f (P l]}. 2:rtt [3 o -oom=-co Qtl (J)- k II v~l - mQfl ± iA 
k• nantl iJP !3 !3 iJP " " ' 

" fl 

Pa = Pa (0, 't, Pa), P13 = P13 (0, T, Pll), 

ha (k, Pa) = ~ eetetlnani3 ~ Ga/3 (k, Pa, Pt3) dp13. (A.l) 
fl 

The functions Pa and Ra are defined by Eqs. (1.9) 
and (1.10). From (A.l) we find an integral equation 
for ha(k, Pa ): 

00 

ha(k, Pa) = i ~ ~ d-r ~ dp13 exp {ik [Ra (0, T, Pa, 0) 
tl 0 

- Rtl(O, T, Pfl, 0)1} 

{4:rte!e~ [k iJfa(Pet) f (P )-k iJfi3(PI3) f (P l] 
X k• nanfl iJP 13 fl iJP a et 

et fl 

+ [4:rte!net k iJfa (Pal h (- k p ) 
k2 iJPa (3 , fl 

4:rte%n13 i}ffl (P13) ]} 
- ----p- k ~ het (k, Pa) . (A.2) 

We solve (A.2) assuming that the functions 
fa(Pa) depend only on the longitudinal and trans­
verse momentum components, but are independent 
of the angle variable cpa. Expanding the function 
ha ( k, p~, p ~, cpa ) in a Fourier series in cpa: 

k v.l 00 

h ( . j_ et . ) ~ -in~" h(n) (k !I j_) a = exp - £ --g;;- Sill <ra L.l e a ' Pa ' Pr:t. ' 
n=-oo 

we get the following equation for the Fourier com­
ponent hW>: 

(n) H II . 4:rte~n" (k .l vet) 
h" 8 (k 11 Va + nQa, k) = 2n£ ---,z;:- J n n-

" . 

The functions H~±) are obtained by replacing 
hw)(k,p11 > by hw><-k.p11 ). 

(A.5) 

By a method similar to the one used by Balescu 
and Taylor [7] we can show that 

Hi±> (w, k) = H~±> (w, k). (A.6) 

It is thus sufficient to know the piecewise-analytic 
function H ( w, k) to determine the functions hW). 
Multiplying Eq. (A.3) by 

ln (kJ.vetjQ") 1'\ (w- k11vJ1 - nQa), 

summing over a and n, integrating over Pao and 
using the definition (A.5) and the property (A.6), 
we get the following expression for the discontinu­
ity in the piecewise-analytic function: 

(HH _ H<+>) _ (pH (1- e<+>)- p(+) (1- e<-J) ) 
H <+> - (+! < > • (A. 7) 

8 8 "'· k 8 8 "'· k 

From the given discontinuity we find the functions 
H(±)jE:(±) themselves: 

H<±> (w, k) = __!__ \ dw' . (pH (1 - e<+l)- p(+) (1 - e<->)) 
e<±J (w, k) 2:rti .) w- w' ± iA e<+>e<-> w'. k. 

(A.8) 
Substituting the functions H~:1 found here into 

Eq. (A.3) we find the functions hW>: 

(n) 11 j_ _ 4:rte~n" (kj_vet)[ iJfa nQ" iJfa] 
ha (k, Pa , Pa) - ~ J n -Q- k II i}~ + ---y -i} j_ 

a P" V" Pa 

~ (6p6p)"' k 
X dw · 

k 11 v~ +nQet-w-iA 

+ f 21 (k J. vet) (1- e<->(w, k)) 
anaeet n Q () 

" 8 (w,k) w-k vll+nn 
-II " " 

(A.9) 

We have used in Eq. (A.9) Eq. (3.6) for ( opop >w,k· 
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Substituting the expression we have found for 
h~) into the Fourier series we find the function 
ha(k, Pa) itself: 

00 00 

ha. (k, Pa.) = i ~ ~ dt dw exp {i (wt + Ra. (0, t, Pa., 0))} 
0 -00 

~4ne! kat"(P"(O,I,pa.)) (o 0 ) _, na.e! fa } 
X l k2 na aPa. p p "'· k I 2Jt E(-) (w, k) 

(A.10) 

To obtain an expression for the correlation 
function we must substitute the function 
ha(k, Pa(O, T, Pa» into Eq. (A.1). Using Eqs. 
(1.9) and (1.10) we find that 

Pa. (0, t, Pa. (0, -r, Pa.)) = Pa. (0, t + -r, Pa.), (A.ll) 

Ra. (0, t, Pa., (0, -r, Pa.)) 

= R" (0, t + -r, Pa.. 0) - Ra. (0, -r, Pa., 0). (A.12) 

Using these formulae and Eq. (A.10) we get an ex­
pression for the correlation function of a plasma 
in a magnetic field: 

1 co~ 00~" ~ {l4Jtea.4Jte~(· afa. (Pa.(O,'t',pa.))) 
Ga./3 (k, Pa.. P!l) = dt d-r _\ dw --k.- k aP • • a. 

0 0 -00 

X exp {- i (wt + k[R~ (0, t + T, P/3• 0) 

l
. 4Jte12 4nell 1· 

- Ra (0, -r, Pa.. 0)])} + k2 \ k 

(·kaf"(P"(O,t+-r.p,))\(o 0 ) 
x aP J P P "'· k " ' 

X exp {i (wt + k !Ra (0, t + t', Pa, 0) 

- Ril (0, "'· Pil• 0)1)}}. 

at~(P13 (0,T,p13 )) l 
aPil , 

(A.13) 

The average over the angle variables of Eq. 
(A.13) is of the form 

{[ a nQ" a J f~ 
X kll apll + -;T ap.L fa e<+> (k vii + mQ) 

a. a a II il ~ 

.4Jt[k at" nQ" ata.] [ at{l mQ~ ar/3] 
- t 7i,2 II ap II + -;;I" ap.L k II ap II + v.l apJ. 

" " " 13 {l ~ 

Here 

f" =fa. (pt, Ph 

Note added in proof (December 7, 1961): Equation (4.3) 
of our paper which is an example of an application of our 
general formulae to the case of a non-isothermal plasma is, 
in fact, the same as Eq. (22) in a paper by A. I. Akhiezer, 
I. A. Akhiezer, and A. G. Sitenko [JETP 41, 644 (1961), 
Soviet Phys. JETP 14, 462 (1962)]. In that paper the spec­
tral functions of the particle distributions in a non-isothermal 
plasma are found by using a transport equation in which a 
random source with a given spectral function is included. 
Our paper contains essentially a proof that one can use a 
transport equation with a random source to evaluate the 
fluctuations in arbitrary steady states of collisionless plasma. 
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