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We obtain expressions for the correlations in the phase densities in different points in phase
space and at different times for a non-equilibrium plasma. We use the general formulae to
obtain expressions for the field correlations, the charge density, the particle-distribution
correlations, and the charge-density correlations. We consider the case where the plasma

is in a constant uniform magnetic field.
INTRODUCTION

RECEN TLY attention has been drawn to the prob-
lem of constructing a theory of fluctuations in a
plasma which is not in thermodynamic equilibrium.
Hubbard, (1] Rostoker, (2] and one of the authors (3]
have considered the theory of fluctuations in the
electromagnetic field in a collisionless plasma.

In [1,2] only the Coulomb interaction was taken
into account, while in [3] the fluctuations in the
total electromagnetic field were considered.*

The correlations of currents and the effective
temperature for stationary states of a non-equilib-
rium plasma were evaluated by Bunkin, 4] who as-
sumed that the collisions were the decisive factor.

In the present paper we evaluate the correla-
tions

8Na (Ta, Pas £) ONg (rp, Pp, 1) 1)

of the phase density functions
N = 218 (ra — fai (1)) 8 (Pa — Pa: (1))

for quasi-equilibrium states of a collision-free
plasma. The quasi-equilibrium condition means
that the averages of the functions Ny change little
over distances of the order of the correlation ra-
dius and times of the order of the correlation time.
We solve this problem by a method developed
in the papers of one of the authors £5] in connection
with the analogous problem for equilibrium states
of a plasma. Kadomtsev L6] has also used equa-
tions for the phase density to study fluctuations
in gases.
The general formulae obtained here are used
to determine density correlations, the field, and

*In [*] there was also given a quantum theory of electro-
magnetic fluctuations; this is important for fine-grained
correlations.

correlations in the particle distribution and in the
charge density distribution. We consider both the
case of a plasma without strong fields and the case
where the plasma is in a constant, uniform mag-
netic field.

1. SOLUTION OF THE SET OF EQUATIONS FOR
THE FUNCTIONS Ny, (ry, Pa» t)

We use as initial equations the set of equations
for the functions

25

which are the charged-particle densities in phase
space. The index «a corresponds to the different
kinds of charged particles in the plasma. When
there are no average fields and we are dealing
with charged particles with Coulomb interactions
the equations for the functions N, are of the form

N (ra, Pa, ¢ )6( — Pus (1))

— Tt

WNa — 0.

oN, N, Uyg (|1, —14])
) rpp, PesLe T 1) )
e * 1.1

o T VeTr, T4 ﬁap

The averages of the functions N, are proportional
to the first distribution functions f,. Denoting an
average by a bar on top, we write

) = nafa (fa, Pa, ?).

Here ng is the average number of particles of
kind o« per unit volume.

We define the deviations 6N, of the functions
from their averages

Na (ra, Pa.

Ny = Ny — N,.

The average of a product of functions 6N,6N
at the same instant of time is connected with the
single-time correlation functions ggg(rey, rg,
Pa: Pgs t) by the relations
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ON.ONg = 8upd (ra — 16) & (Pa — Pg) n8fs + narpgus. (1.2)

Using Egs. (1.1) we find an equation for the func-
tions 6Ng.

By virtue of the condition e?n!/® « mv?/2 the
functions 6Na6Nﬁ will be small compared to the
product of the functions NaNB This enables us
to break off the chain of equations for the functions

SN.5Ns, SNONDN, . . .

or the corresponding chain for the correlation
functions. The neglect of triple products corre-
sponds then to the neglect of triple correlation
functions. One must note that in this approxima-
tion we do not assume that the other ‘‘energy’’
parameter (4relngy/k?)/(mv?/2) is small. This
enables us to take polarization effects in the
plasma into account in the framework of the ap-
proximation used here.

If we can neglect triple products in the equation
for the function éNaéNﬁ we can drop terms con-
taining double products in the equations for the
functions 6N, themselves. As a result we get
the following equations for the functions 6N :

OON SN, Uy (| 1y —rgl) f

a a al a
o T Ve o ”naggdpﬁdm ar, =0.
(1.3)

We have dropped in Egs. (1.3) the term that ac-
counts for the average electrical field; this is
possible because the functions f, are assumed
to be slowly varying functions of space and time.

The system (1.3) is solved with the boundary
condition

0N (1o, Pa, ) = ONg (Pa, Tas

0) forr =0.  (1.4)

It is expedient to use in the solution a Fourier
transformation over positive times and a Fourier
transformation over the coordinates. We define
the Fourier components of the functions 6N, by
the equations

3N, (, Kk, pa) = SgdtdruéNa (Fas Pay 1) €1
0

o=0" +iv, 0">0,
from which it follows that the functions
0Ny (w, k, py) are analytical in the upper half-
plane of the complex variable w.

We first find an expression for the Fourier
components of the total charge density

8 (ras) = lex | 8No (ra, pa. 1) dpa

From the system (1.3) we get the following ex-
pression for the function 6p(w,k):
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. ON, (k, Py, 0) 1
dp (0, k) = lgeag (0 — kv, 4+ iA) dpa e o, k)

(1.5)

In this expression and henceforth w = w’, A = w”,
A >0, and

g(+) (o, k (1- 6)

4nein of dp
B B _'B B
1+2 S 6pB m—ka—f-iA

is the dielectric constant of the plasma.
Using Eq. (1.5) we find a solution of Eq. (1.3)

ONa (Pay Tay £) = 8Ny (re — Vol Pa, 0)

_ (_2;_)4_ ES dmg dke— (@1 —k{rg—ry))
Y

4me,e n N, (ry, P, 0) Of 1

a“y ‘a
P, &) (0, k)

X Sdp,dr«, k(0 — kv, 4 iA) (0 — kv, + iA)
(1.7)

The solution obtained here enables us to find the
functions 6N, at time t, provided we know the
functions 6N at time t = 0.

Using the solution (1.7) we can express the

double-time functions 6Ny (rqy, Pgs t) GNB(rB, pg, 0)

in terms of the first distribution functions and thus
solve the problem of describing fluctuation proc-
esses in a quasi-equilibrium plasma.

We now get the solution of the corresponding
equations for the case where the plasma is in a
constant magnetic field. In the approximation
considered by us we must when there is a mag-
netic field present impose still one more condition
upon the functions fy. We must, namely, assume
that these functions depend merely on the longi-
tudinal and transverse momentum components
( plﬂx, pJa) defined with respect to the vector B, but
should not depend on the corresponding angular
variable. We assume thereby that the functions
fo are also in a magnetic field slowly varying
functions. Under those conditions there occurs
in Egs. (1.3) only the additional term
(eq/c)[Vq x B186Ny, /0py,.

The expression for 6p(w, k) is now of the
form

T 8N, (P, (0, 2, p,), k, 0)
5p (0, k) = ze é dt  dp. e

X exp {i (ot 4+ kRq (0, ¢, pa, 0))}. (1.8)

We have introduced here the following notation:

B
P(t, ,a)_(—'ﬁB sin Q, (t'—t)["“]

B B
+ cosQ, (¢’ — 1) I p“] ],

(1.9)*

*[Bp] =B x p.
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(8N (Pa) 8Np (pe))sk =

’ (B )
R(t, ¢, PayTe) =Ta + B ;’z (t'—1)
[1—cosQ, (¢ —1)] [Bv,]
— 0B
inQ. (¢ — Bv.1B B
n sin <:‘Q(t t) [[Bv,]B] Q. = e“c . (1.10)

B ’

o

The dielectric constant in a magnetic field is
now defined by the equation

e (0, k)

\ dt {dpaexp (i (of +kR; (0, 1, ps, 0))}

—
|
M

o~

= 8
[SRe)
R

™
ot—8

o]

0§2nn;f'dp& X dp}

—00
9 -
k I 0/}[%,‘ e

The J, in this equation are Bessel functions.
Using Eq. (1.8) we find easily a solution of the
set of equations for the functions 6N, when a mag-

netic field is present

" 3fg (P4 (0, £, Pg))
— op,

4:rceﬁ ng

_]+2

> Qw J%L (k_LUF /fﬁ
“ (0 —k ol — nQg+iA)

n=—0c0 (

o L -‘fe
vﬁ- OpBL

(1.11)

6N¢z (ray Pa, t) = 0N, (P (O t, pa) R« (O t, Pas O), 0)

i ey e n e ik (ry—ry) 1
+(2—n)—42 s Rdme f%dke Sdpydry——m( o

af[,_ (P, (0, 7, p,))
P,

x \ drexp {i (0t + kR, (0, T, pa, 0))} k

% \ dtexp {i (0¥ — kR, (¥', 0, py, 0))} 8N+ (py, T+, ).

(1.12)

Se—~"38 o8

We can use the solutions obtained here to deter-
mine averages of product of any number of func-
tions 6Ny. The correlations of the functions 6N,
of any order can thus in final reckoning be ex-
pressed in terms of the first distribution functions

fo.

2. THE DETERMINATION OF THE FUNCTIONS
ONg(rqs Pas t) 61\]/3(r3, pg, 0) FOR A PLASMA
WITHOUT STRONG FIELDS .
We can obtain a solution of the problem men-

tioned in the heading of this section by using Egs.

(1.2) and (1.7). Indeed, multiplying Eq. (1.7) by

6NB( rg, PBs 0) we get after averaging and using

Eq. (1.2)

6Na (ra’ Pa, t) 6N13 (rﬁv Pss 0)
(2n)48 do S dk exp {— i (of —k (re — 1p))}

X (8N o (Pa) 8N (Pe))es. ks (2.1)
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i
(0—kvg+ih)

X {60166 (Pa—ps) 71f8 (P3) + 125G ap(k,PasPs)

% Of 1 [ eﬁnﬁfﬁ (PB)
T e Es‘”(m,k) o —kvg+iA
eYnYnﬁGYB (k, Py» pB)
+ 3o ST @.2)

Y

It is clear from the form of the right-hand side of
Eq. (2.2) that the function defined by this formula
is analytical in the upper half-plane of the complex
variable w. This corresponds to the fact that t = 0
in Eq. (2.1). In Eq. (2.2) Ggp is the Fourier com-
ponent of the pair correlation function

—ik(rm—r‘; )

Gap (K, Pa, Pp) = Sd (ro —rp)e Zap (T — g, Pas Pp)

and is of the form (see L[7:8])

1 4me,eq 0f fa
GaB (k; Pas PB) = k(va—'VB)—iA 7 { m m
afB fa afa af{g 431283 n, f.Y (py)
O—sz(-) (kv,, k) + <k 3p, <km)2 ) SdPY OGAL
1 1
x[k(VB—VY)—I-iA - k(va—vy)—iA ]}' (2.3)

Apart from Eq. (2.1), which determines the cor-
relation in the distributions of the coordinates and
momenta of a pair of particles at different times,
it is expedient also to obtain equations determin-
ing the correlations between the coordinate and
momentum distributions of a particle and the
charge density in the plasma, and also the corre-
lations between the charge density in the plasma
at different times and at different points in space:

8N, (ra, Pa, t) 8p (1, 0)

= e | do {dke KT 0N, (p o), (2.4)
dp (r, ) 5Na (rs, ps, 0)

— ey do \ dlke TR B0o N p (), (2.5)
WWF’_O)

= oz | do {dike™ " (o030 (2.6)

The corresponding expressions can be obtained
from Eq. (2.2) by integration over the momenta,
multiplication by the charge, and summation over
the different kinds of particles. For instance, we
have

(0p8 NG (pa))S )k =

+Egdpa

1 ieghg fa
&™) (0, k) [m— kvg+iA

a.a.B

o —kv, 1A o8 (K: Pes pa)] . 2.7
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This last formula enables us to write, in particular,

(8N (pa) 0N (Pp))6k == Tkvl——}—TA— {5aﬁ‘5 (P« — Pg) 15/

TR kg (503N (PRS-

(2.8)

-+ nangGag (K, Pa, Ps) +

Using the explicit expression for the correlation
function (2.3) we get

do’

(dpdp)erk = iS oo LA 0r00)w, K,

(6pdp)w, k = 23;na

2.9)

x| dPaf (p2) 6 (0 — kva) [V @0 0. @10

We note that since the correlation function for the
Coulomb field is connected with the correlation
function for the charge density through the rela-
tion

(2.11)

(EE),, = (45t/k)* (pdp),,

Equation (2.10) corresponds to the one obtained
in [1-3],

We can use Egs. (2.9) and (2.10) to express the
gorrelation function (2.3) in terms of the charge
fluctuations

B 1 e, eg { % fs
Tk (Vy — Vg) — iA k2 dp, ¢ (ka, k)
of

.4 ay /4, Of
—igr (ko) (k)

k— (6969)25)3(, k]} .

We can also express the other correlation functions
in terms of the charge fluctuations:

Gaﬁ (k’ Pa, pf))

Oy I
95 &) (kv,, k)

X [(8pBp)ivs, (2.12)

(+) ieana fa
(O (o) 80) )k = g {5 o
+ i [m( 51 8pdp)S ik — (5p8p) kv, k } (2.13)
+) _ teﬁne fB
(6pON g (Pg))w, k o kv, i {s(“ "
o) O (+) (+)
- l@r( 5@)l(<“>pfﬁp)m+.k—(696@)“B } (2.14)

i
T o—kv, +iA

dme,  4siey 0f 1 ofg 1
“"_kz‘”“ = e (kaT) o —kv, + iA(kd_pE> o—kvg+ iA

(BN« (Px) ONg (Pp))S 8450 (Pa— Pg) 15/

4mte, e 1
) o B
X (8pdp)sk— k2 el v, —kvg — IA

of . fa
{( ap:i) 0— kv +iA [ g-) (kv,, k)

+ 1 (k 527) (0m0p), ]—

X[' fs 4 4n<

&™) (kvg, k)

0,

) (8080){%s, i - (2.15)
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The fact that the function (6pdp) occurs in all
these formulae corresponds to our taking into
account the fluctuations in the force exerted by
the Coulomb field on a particle [cf. Eq. (2.11)].
The additional occurrence of expressions such as

drie, | K€ (KVa, K) (2.16)

corresponds to the modification of the Coulomb
field on the a-th particle in the plasma by the
polarization, which is characterized by a complex
dielectric constant €(w, k).

We note, finally, that by using Egs. (2.13) and
(2.14) we can write Eq. (2.15) in the form

(8N (Ps) 8N (PE))Sx = G — v 73 a60 (P — Do) fa (Pi)
1 4megng 1\ g o
v, —kv— A { 7 ( ) (ONa(pa)dp)o,
4me_n

o (k 52) (0N (P (2.17)

3. THE DETERMINATION OF THE FUNCTIONS
0Nq(rq, Pas t) 6Ng(rg, P, 0) FOR A PLASMA
IN A CONSTANT AND UNIFORM MAGNETIC
FIELD

Assuming that there is a constant and uniform
magnetic field B in the plasma and using Egs.
(1.12) and (1.2) we can write down the following
formula, which is in a certain sense the analog of
Eq. (2.8) of the preceding section:

(8N4 (pa) 8Np () = S dt exp {i (of + kR (0, 7, Pa, 0))}

0

X {808 (pa— P (0, 2, Px)) ngfo (pe)

+ nanBGaB (k, P, (0’ t, pa)r pB)

e, i 0fy (P, (0, ¢, pa))} .

n o
+ (308N (Pe))o ik =z nak 5P 6.1)

(8p3N g (pm‘s’k

(+)
€ (w, "

(o]
Q dte‘”‘Eeanpa exp {— ikR, (¢, 0, pa, 0)}
Vs

X {8apnpfe (Pg) 8 (Px — Pp) + nanpGap (K, Pas Pp)}.  (3.2)

Here Ggqp(K, Pa» PB) is, as in the preceding sec-
tion, the Fourier component of the correlation
function of a pair of particles in the plasma. We
derive an explicit expression for such a function
in the Appendix.

We can also easily obtain the formulae

(8p0p) 5k

1 - .
e(+) (@, k)S dtei tzeaeﬁ Sdpa dpﬁ exp { lkRa (t O Pa, O)J

X {8apngfs (Pp) 0 (Pg — Pa) + 1anpGap (K, Pa, Pp)}s

(3.3)
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(8N (po)0p) Sk = S dt exp {i (ot + kR (0, £, Pa, 0))}

0

X {eanafa (pa) + 2 ephiplig gdPBGaﬁ (kr Py (Ov t, pa)» pB)
B

e n, afa(Pa(O’t’pa))}

-+ (69‘59)(+) : * ik P (3.4)

Using Eq. (A.3), which determines the correla-
tion function of a pair of particles in the plasma
when there is a constant magnetic field present,
we can write Eq. (3.3) in the form
3.5)

L ( di
(5959)1(5!:)1( = L&—mm—j:;g(apap)m k’

1 T dt
(6969)4,,, ) (@ K& (@ k) _—>_ efng SdefB (Pe) S o
’ ’ B iy

{ee]
[ee] [ee]

x cos (of — kRa (£,0, ps, 0)) = Miebna | dpk { 2 dpira
B —00 0

© kot 8(0—nQy—kol)
X 2 J?z( 1B B — [
9 / &% (0, k) @,k

(3.6)

Taking Eq. (2.11) into account we can easily show
that Eq. (3.6) corresponds to the one obtained in
[1-3] for the Coulomb field.

We can also use Egs. (A.11) and (A.14) to ex-
press all the other spectral functions in terms of
the charge density fluctuations. We get thus for
the functions (3.4) and (3.2) the expressions
(N (pa) 09)5Pk = eanag dvexp {i (@7 + kRq (0, T, Pa, 0))}

0

afa (Pa (07 T’ pa))
P,

% [i4% g (8p0p) 5k

13

—r—

+ dtdo’ exp {i (o't + % [Ro (0, + 7, pa, 0)

OL/?S
L8

—Ra (0,7, pa, 0)1)}

4m afa (Pa, (0’ t+tr pa)) . 1 fa
x [k - Gp00),r s+ 5 T )

(3.7

(3005 (o) = eas | dvexp 11 @+ KRy 0, — 7, pa,O)
0

af,a (Pa (0 T, Pg)

(8p8p) 57k

+

*fig
§°°§ dtdo’ exp{—i (0t +k [Rg (0, —, pg, 0)
0 —oo

3 (P (0, £ — 7, Bg))
0PB

—Rp (0, — 7 05, O} [— i G5k

1 f
X ©038)u. 4 + 2 gy ) (3.8)
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We can use Eq. (A.14) to obtain from (3.1) the
corresponding expression for the function

@
(6N, (p )6Nﬁ(pﬁ))

(0N (Pa) ONg (Pp))S )k

= 8apnana \ dt exp {i (0 — kRa (0, £, pg, O))}

0

X 8 (pg —Pa (0, £, pa))
— (8p0p) N LE (0, k, po) LE (— @, — K, pg)

+ 7 S e
X [Ma (o, K, pa) /€7, k)

— (0p0p)57% (LS (', k, Pa) +LE (@', K, Pa))]

+LP @', K, pa)[Mg (— ', — K, pg) /& (o', k)

+ (8p8p) ik (LE? (— o', — Kk, pp) + L (— o', — k, )1}
(3.9)

{L(+) (_' - k! pﬁ)

Here

Ma (@, k, pa) = S dtexp {i (@ + kRq (0, £, Pa;0))} ealtafa,

+oo
L® (0, k,pa) = + | dtexp (i (@f + kR4 (0, £, pa, 0))}
0
lx:l'ce(JL ny . ik 0f . (P(0,2,p,))

P,

The formulae obtained here fully describe all pair
correlations in a plasma with Coulomb interac-
tions, situated in a constant magnetic field.

In the case of a strong magnetic field, interest
attaches to the spectral functions averaged over
the fast changing angular momentum-space vari-
able corresponding to the Larmor rotation. The
function (6pdp )S,)k does, of course, not change
when averaged. The averaged functions
(0Ng(pg ) 0p)G K and (8poNg(pg))Sk are of
the form

5 (kv 1 Q,)
0—kyo} —nQ, +iA

BN (pe) 805> = eana | =
. n

x{m)+i%[k"azil v'f;pi]fa

x [ (8p80)5 % —(8080){7 11 4 na - (3.10)
<(8p 8N (Pp))er > = ieans Z ":lv_ﬂ ;;Zs )+ a

x{m—)ﬁ- e [ 5] Py vﬁi}i]fﬁ

X[ @eB0) e (80005 o1 4n | (3.11)
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When averaging Eq. (3.1) we must bear in mind
that

[e2]

< dtexp (i (@t —kRs (1, 0, 5,00} (05— P2 (0, £, pa)))

=8 (p] —p}) 8 (pf — pd) (trf) ™"

© b ol .
J2 1%a i N
X 2 "( Q, >m—kuva{'—nga+m

n=—o0

4, SPECIFIC EXAMPLES. DISCUSSION OF THE
RESULTS

As an application of the general formulae ob-
tained in the foregoing we consider first the ex-
ample of an equilibrium plasma when the functions
fo(Po) are Maxwell distributions with the same
plasma temperatures for all components. One can
in that case write Eq. (2.14) in the form

(8N (p2) BN (0e))5 e = 5y Do (P — o) ol
b 1
[gaﬂ (k) + 4;:;6 ©—kv, J(rk:’Aa; E:"B—) kv, 1 1A) g (1@, k)j, ’
where v
2.0 = EB e TS @2

Y

are the single-time correlation functions of an
equilibrium plasma. One can also obtain Eq. (4.1)
from Eq. (23) of Rostoker’s paper (2] by general-
izing that equation to the case of a multicomponent
plasma.

However, there is considerably more interest
in the corresponding equations for a non-equilib-
rium plasma, of which a non-isothermal plasma
is a typical example. In that case we get the fol-
lowing expression:

(8N (p:) N5 (06))s s = g7 98 (P — D) 1sfs

4me,n, dnegng (kv,) (kvg)
+ kT, BTy (0 — kv, + iA) (@ — kvg 4 iA)

4me, eg nyhg
Kk kv, — kvy —iA {
i 4n (kv,)
X [8(_) (kva, k) ksz (6969)1“'0( ]

(kv,) | %T, P
o —kvg +iA | g+ (kvg, k)

Fafs (8000)5

(ka) [«%Tg
o —kv, 4 iA

4ru (kvp)
kzuT

(6050)L,. ]}
“.3)

Here, as above, (6pdp )(i) are the spectral func-
tions of the charge densmes They are defined by
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Egs. (2.9) and (2.10), where one must substitute
the functions

Fo (Do) = (20maxT o)~ exp (— p2 [ 2my xT5).

We now consider a plasma in a strong magnetic
field when the longitudinal temperature is consid-
erably larger than the transverse one (T| > Tj)
so that we can neglect the latter. In that case

fa= Fa(pd) 8 (p3) | 2p;
Fu(pd) = @umxT ) "exp [— pl? ) 2mxT 1.

Substituting these expression into Eq. (3.9) we
get

(8N« (Pa) 8N (ps)) )k

8 (p2) 8 (pg) { ing

= I F I
anaLanB’- o—kyol +iA ) Fa(pa)

8asd (pd —p

i Il Il .___1___
T l:ea(?gnanBFa. (pa) Fa (ps) 2 e, (1 + %D

Y

4xie, egn,ng 1 ky °£) (R v”)F (palj)FB(p ]}
BxT | %) (@, k 1) ((o—/’zlI o) +tA)(co—k” vA' +ia) 7
4mie kyoF, (p)) 1 ap)
(+) _ I II Y
& (m’k)_l—l_z k Sd (o—k v“—i—tA’
he

4.4)

f2i| =uxT I /243’(63’1«{.
Y

Using the formulae given here we can find the
space-time correlations of the electrodynamic
functions 6p, j, and E. Such correlations have
been considered before (see l:1'4]). However, for
a complete characterization of the non-equilibrium
state of a multicomponent plasma it is also neces-
sary to be able to determine the correlations of
gas-dynamic functions such as the density, veloc-
ity, temperature, velocity moments, and so on,
and also the mutual correlations of the electro-
dynamic and gas-dynamic functions. The space-
time correlations of all these functions can under
the conditions mentioned in the introduction be
found by using the formulae obtained in the present
paper for the correlations of phase densities.

It is important that, as shown in the present
paper, such complicated functions as the correla-
tions of the phase densities can be expressed in
terms of the simple functions (6pdp), k and
€(w,k), the spectral density of the charges and
the dielectric constant of the plasma, which have
been well studied for many cases. This means that
any arbitrary correlations of electrodynamic and
gas-dynamic functions can also be expressed in
terms of these two functions.
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APPENDIX

THE CORRELATION FUNCTION FOR A PLASMA
- IN A MAGNETIC FIELD

The integral equation for the correlation func-
tion of a plasma when there is a magnetic field
present can be written in the form

eaeﬁnanBGaﬁ (k’ Pa> PB)
= iS drexp {ik (R (0, 7, pa, 0) — R (0, 7, pg, 0)}

0

4 daf, (P
{"“"i”“kaf . ’hﬁ(_k Ps) — Mﬁan fﬁ( ”)h (k, Po)
4me? e? of, ( f( )
+ T s [k T o o) —k Lo 1 )

Pa:pa(O,Typa)) PB:PB(O! T7pﬁ)r
ha (k, Do) = S\eaananp | Gon (k, P Po) dpa.  (A.1)
B

The functions P, and R, are defined by Eqgs. (1.9)
and (1.10). From (A.1) we find an integral equation
for hy(k, pg):

halk, pa) = i 3} dv{ dpg exp {ik [Ra (0, 7, P, 0)
B o

—RB (0’ T, Pss 0)1}

of, (Py) afp ( g)

fa (Pe) —k fa (P) |

(i

0fy (

4mein

aak

o)
ha (—k, Pp)

+[5

4 ofa (P
“%"ak fﬁ( B) (A.2)

- ha (k, P2) ]

We solve (A.2) assuming that the functions
fy(pPy) depend only on the longitudinal and trans-
verse momentum components, but are independent
of the angle variable ¢ . Expanding the function
h,, (k, pjo'z’ p'0|£, ¢ o) in a Fourier series in ¢ :

ho = exp (— e —in%a p{® (K,
p(—i o, smq>a) z e (k, pd . pi),

n=-—oo
we get the following equation for the Fourier com-
ponent hgl):

k
RPe) (kyvd + nQq, k) = 2ni i J,.( -s'-:
of, = nQ.of _ Imen
X[k" “ + J-ap-t]H( )(k"U +nQa»-k)+2
r 6fa 12y 0fy 7 pio vl
T T OpJ-]F (kyod + nQq, K)J, ( . «)

N

+ua_ea(l —g )(k"v + nQq, k)) faJn<

). (A.3)
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Here €“(w,k) = e®*(w,k) is the dielectric con-
stant of the plasma in a magnetic field. It is de-
fined by Eq. (1.11). The functions F(¥) are de-
fined by the formulae

F® (0, k)= ?_mznﬁeg
8
o P X b ool f(-L I
2 (%1% 8 (Pg> Pg) onpl dpl dpl
x 2 S SJm(QB >m-—k" —mQ, +iA Pg Pp OPg -
m=-—00 0 —00

(A.4)

The functions H(1 2)

functions h(n)

are defmed in terms of the

[ee)
S I klvﬁ ) "™ (&, pd  pf)
QB 0 —kyof —mQq 4 iA

oom

H(:t) (o, k) (§’

X 2anLdpédpg| . (A.5)
The functions H(zi) are obtained by replacing

hgl)(k, pg) by hg‘)( -k, pg)-

By a method similar to the one used by Balescu
and Taylor ("] we can show that

HE (@, k) = HF (0, k).

It is thus sufficient to know the piecewise-analytic
function H(w, k) to determine the functions hg‘).
Multiplying Eq. (A.3) by

(A.6)

Jn (B 0E/Q4) 8 (0 — kyod — nQy),

summing over « and n, integrating over p,, and
using the definition (A.5) and the property (A.6),
we get the following expression for the discontinu-
ity in the piecewise-analytic function:

HE)
(=
From the given discontinuity we find the functions
H#F)/e(F) themselves:
— e(—))
>u’, k ’

(A.8)
Substituting the functions Hg found here into
Eq. (A.3) we find the functions h(n)

1 (555 [k, pf5+

- (A7)

H® FO(1 — 8(+)) — F&) (- E,’(-))
&™) ),,, K :< (g0 )w.

8(+)) — F® (1
g el)

(1:(—)(1 —

HE) (0,k) _ 1 g do’
e® (0, k) 2mi Jo—o A

!me n,

nQ, 0fa]

}'l(’l)(k pa;ptx)— ja—p—f
a a

X de
1— e(‘)(m, k))
+ fa naea < Q. >< o) (@, k)

We have used in Eq. (A.9) Eq. (3.6) for (6pdp )y, k-

(8pdp)y,, K
kol +nQ,—o—iA

(A.9)

W=k I va” +nQy
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Substituting the expression we have found for
h(n) into the Fourier series we find the function
ha(k Pa) itself:

b (, Pa) = ig S dt do exp {i (of - Ra (0, £, Pa, 0))}
0 —Oo0
4me? 0, (P, (0, 2, py)) Cngerfy
x {7 nak ——5p———(0000)u, i + 57 m}
— Nalifa (A.10)

To obtain an expression for the correlation
function we must substitute the function
hgy(k, Py (0, T, Py ) into Eq. (A.1). Using Egs.
(1.9) and (1.10) we find that

pa (Oy t’ Pa (0, 1:1 pa)) = pd (01 t + Ty pa), (A°11)
Ra (Or tv Pnn (0) T, pa))
= Ra (0, + 7, pa, 0) — Ra (0, 7, pa, 0). (A.12)

Using these formulae and Eq. (A.10) we get an ex-
pression for the correlation function of a plasma
in a magnetic field:

aB (K, Pa, P) = Sodt oodT oi do {[4neﬁneﬁ (k of, (Paég;r, 1)) >
0 o

3f (P, 0, £ 47, pg))
< (k 8050).,
P, >( pdp) K

0,7, p,)) fg(Pg) ]

i Ame, eBk Of, (P,
2 oP, S(+)(0), k)

21 K

x exp {— i (@t + k[Ra (0, ¢ + T, pa, 0)
0fg (Pg (0, 7, pg)) \

r4Te, 4reg (
k

—Ra 0, 7, pa N} [

oP,
0f, (P, (0, £ 4+ 7,p,)
% (k T ) (000),,
i 4me,ep  0fg (Pa (0, T, pp)) [y (Pa) ]
T InT R oP, e (@, k)

x exp {i (of + k[Ra (0,24 7, Ps, 0)

— R 0,7, pa O3} (A.13)

The average over the angle variables of Eq.
(A.13) is of the form

L. KLIMONTOVICH and V. P. SILIN
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Note added in proof (December 7, 1961): Equation (4.3)
of our paper which is an example of an application of our
general formulae to the case of a non-isothermal plasma is,
in fact, the same as Eq. (22) in a paper by A. I. Akhiezer,

I. A. Akhiezer, and A. G. Sitenko [JETP 41, 644 (1961),
Soviet Phys. JETP 14, 462 (1962)]. In that paper the spec-
tral functions of the particle distributions in a non-isothermal
plasma are found by using a transport equation in which a
random source with a given spectral function is included.

Our paper contains essentially a proof that one can use a
transport equation with a random source to evaluate the
fluctuations in arbitrary steady states of collisionless plasma.
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