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Dispersion relation methods are used to study the process where a high energy photon splits 
into two photons in the Coulomb field of a nucleus. We find expressions for the differential 
cross section for this process in the case where the energy of the second photon is small. 

THE invariant form of dispersion relations [t] 
can be used to study scattering processes involv­
ing an external electromagnetic field. In the pres­
ent paper we employ dispersion relations to study 
the inelastic scattering of a high-energy photon in 
the Coulomb field of a nucleus in the first non-van­
ishing perturbation-theory approximation, i.e., the 
splitting of a photon into two photons. The largest 
contribution to the cross section of this process is 
made by the region where the angle of scattering 
is small and the change in the energy of the inci­
dent photon is small. This is the case considered 
here. 

1. The general expression for the matrix ele­
ment for the splitting of a photon in the Coulomb 
field of a nucleus can be obtained simply from the 
matrix element for photon-photon scattering (see 
Eq. (8) in [2J). To do this we need only replace 
one of the photons in the initial state by the exter­
nal Coulomb field. Denoting the frequency and 
polarization of that photon by w2 and eL2> we must 
perform in the photon-photon scattering matrix 
element the substitution 

(1) 

where Ze is the charge of the nucleus and q the 
momentum transferred to the nucleus. 

We write the matrix element for the splitting 
of the photon in the form 

M = 4n2 Ze5 (2wiw 3w4)-'/, ~ d;~ A 6 (k 1 -i- q - k3 - k4), (2) 

where A is the total amplitude of the process con­
sidered and Wt, w3, and w4 are, respectively, the 
frequencies of the incident, scattered, and second 
photon. We use the unitarity condition and disper­
sion relation methods to determine the amplitude A. 

First, we can write the amplitude A in the form 

where the partial amplitudes At, A2, and A3 de­
scribe the processes 

(k~> e1 ) --. (k3 , e~) + (k4 , c,1), 

(-k3, e3) ~ (-k1, e1) + (k4, e4), 
(-k4, e4) --. (k~. e3 ) + (-k1, e 1). 

(4.I) 
(4.II) 

(4.III) 

The partial amplitudes Ate• A2e, and Aae cor­
respond to the scattering processes involving the 
exchange of the photons ( k3, e3 ) and ( k4, e4); they 
are obtained from At, A2, and A3 through the sub­
stitution ( k3, e3 ) - ( k4, e4). 

The imaginary part of the amplitude At is con­
nected with the operator T occurring in the defi­
nition of the scattering matrix S = 1 + iT as fol­
lows: 

i (k3 , e3 ; k4, e4 I T+- T I k1o e1; q) 

= (4n2Ze5/q2) (2w1w3w4)-'/, Im A16 (k1 + q- k3- k4), 
(5) 

where T+ is the Hermitean conjugate operator with 
respect to T. From the unitarity condition which 
for the operator T is of the form 

T-T+= iT+T, (6) 

it follows that in the first perturbation theory ap­
proximation (of order Ze5 ) Im At corresponds 
to the Feynman diagrams given in the figure 
(dashed lines denote free particles). These dia­
grams are characterized by the following invari-
ants: 

u = (kl- k4) 2 , (7) 

where we have from the conservation law 
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-s + t + u = q2 . (8) 

The crossing symmetry property enables us to ex­
press all other partial amplitudes in terms of the 
amplitude At through the following substitutions 

A1 ~ A2 when (k1, et) ~ (-k3 , e3); s ~ -u, t ~ t. 
At ~ Aa when (k1, et) ~ (-k4, e4); s ~ - t, u ~ u. 

At ~Ate when (k3 , e3) <-7 (k4 , e4); s -. s; t -. u. 
At~ A2e when (k1 , e1) ~ (-k4 , e4) ~ (-k3 , e3) ~ (k1, e1); 

s ~ -t ~- u ~ s. 
At--> Aae when(k1, e1) -> (- k3 , e3) ....... (- k4 , e4) -> (kt, e1}; 

S -> -U -> - f -> S. (9) 

We now write down an explicit expression for 
Im At, using the notation 

Pt - P2 = V, ka + k. = k, kt - q = p, ka - k4 = p' 

[ p1 and p2 are the four-momenta of the free elec­
tron and positron in the intermediate state in the 
unitarity condition (6)], 

Im At = 4~2 ~ d4v ·II (kv) II (k2 - s + 4m2) 

. s 
X (vp-s + q2) (vp'- s) ' 

S = Sp ( + (k + v)- m) 
x rl'( ~ (v- p)- m)r•(+ (k- E)+ m) 
x rp(+<v- p')- m)rae~1>e~3>e~•> (10) 

(k = kJJ"YJ.l.· "YJ.1. are the Dirac matrices, and m the 
electron mass ) . 

2. We consider in detail the case where the fol­
lowing inequalities hold: 

s~t=q2 ~4m2 , t~s-u. (11) 

They are equivalent to the conditions 

2mfY WtWa <Sa< 2 Y wJwt sin ~· , 

. e. ---"" .. ;-- e" .. r::- .. ~-
,w4 sm--z~ r w1wa2 r Wa ~ y w., (11') 

where e3 and e4 are respectively the angles be­
tween the momenta of the incident and the scattered 
and those of the incident and the second photon. The 
emission angle of the photon (k4, e4 ) must therefore 
satisfy the condition 

~ ·• I Wt < sin~~J/2- Vw1w3. (12) 
2 v w. :l ~ 2 w. 

It is clear from (11') that in the case considered 
the photon ( k3, e3 ) is scattered over a small angle 
and carries away the largest part of the energy. 

If condition (11') is satisfied Im A1 is deter­
mined from the equation 

1 
Im A1 ::::::::W [(kt)4 (k4et) (ese•) a+ (k1)4 (k4e3) (e1e4) ~ 

+ (k4)4 (k1e4) (etea) Y + (k;)• (k1e4) (k.et) (k4e3) o J . (13) 

The calculation of the trace in (10) leads to the fol­
lowing expression for the coefficients a, {3, y, and 
o: 
a = - ~ = 2 (rrJs) In (t/s), y::::::::- (rt/s) In (t/s), o 

::::::::- (n/s) In (t/s) (14) 

(the imaginary parts are found with logarithmic 
accuracy. We have here already taken it into ac­
count that s » q2 ). 

For t > 0 only the amplitudes At, A2, Ate• and 
A3e give contributions while one can verify imme­
diately that the contributions of the imaginary 
parts of the amplitudes Ate and Ase do not con­
tain logarithmic terms. The total amplitude is 
thus of the form 

A = 4~2 [wl (k.e1) (e3e4) a + w1 (k4e3) (e1e4) b 

+ w4 (k1e4) (etea) c + (w1/s) (k1e4) (k4et) (k4ea) d], (15) 

where 

Im a:::::::: a- ~c = 0, Im b = ~- r:t.c = 0, 

Im c = y- Yc =- 2 (n/s) In (t/s), 

Im d = o + Oc =- 2 (n/s) In (t/s). (16) 

The functions with index c take into account the 
imaginary part of the amplitude A2 and are ob­
tained from the corresponding functions a, {3, y, 
and o without an index by using (9) and the substi­
tutions- -u, t-t (where t r:::J q2, u r:::J s). 

Substituting the functions a, {3, y, and o into 
the dispersion relations, which have for the chan­
nel (4.I) the form 

co 

Ft (s, t) = ~ \ lmFt(s', t) ds' 
~"' J s'- s ' 

(17) 
4m' 

where Im Ft is any of the functions a, {3, y, and o, 
we find expressions for the real parts of these func­
tions. We write down directly the expressions for 
the real parts of the functions a, b, c, and d oc­
curring in the total amplitude A: 

Rea = Reb= 0, Re c =- (1/s) ln2 (t/s), 

Red=- (lis) ln2 (tis). (18) 

3. The differential cross section for the inelas­
tic scattering of a photon in the Coulomb field is 
connected with the matrix element through the 
equation 

Substituting Eq. (15) instead of A into (2) we get 
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the following expression for the differential cross 
section (we neglect the contribution from the 
imaginary parts): 

de; ~ Z2ct5 ro.dro. ~ do. r(e e )2 (n e )2 ..L 1 
l't2 (J)~ 0~ Sin4 (04/2) l 1 3 1 4 I 2sin2 (0./2) 

X (e1ea) (n4e1) (n4ea) (n1e4)2 

..L 1 ( )2 ( ) 2 ( ) 2] I 4 4ro4sin2(0./2) ( O) 
I 1osin' ( 6,/2) n4el n4ea n1e4 n ro102 , 2 

3 

where ni = ki/Wi· 
We see that the cross section for the inelastic 

scattering of a photon accompanied by a small 
change in energy is proportional to the energy of 
the second photon w4, while inelastic processes 
with the emission of a soft photon contain as usual 
an infra-red singularity of the type dw/ w. [3] Such 
a behavior is connected with the fact that usually 
the matrix element of the basic process corre­
sponding to elastic scattering is nonvanishing. In 
the case considered by us, however, the matrix 
element of the basic scattering process corre­
sponds to Feynman diagrams with three photon 
ends and vanishes by Furry's theorem. 

Averaging over the polarizations we get for the 
'cross-section for the splitting-up of a photon 

x [I + cos2 ~· (I + {- cos2 ~· ) J ln4 4ro• 5~:;~0 •f2l . (21) 

Integrating this expression over the angular vari­
ables of the second photon ( k4, e4 ) with lower and 
upper limits on sin ( () 4 I 2 ) of the order 
,j w1/w4 e3 /2 and ,j w1w3 e3 /2w4 we get 

(22) 

If we integrate this expression over the angular 
variables of the (k3, e3 ) photon with a lower limit 
on e3 equal to 2m/w1 we get the following expres­
sion for the cross-section: 

(23) 

where r 0 is the classical electron radius. The 
cross section decreases with increaslng energy 
of the initial photon w1• The maximum value of 
the cross-section (23) occurs when w4 ~=::: w1 e-5• 

To estimate the magnitude of the total cross-sec­
tion we integrate (23) over w4 from 0 to w1 e-5• 

As a result we obtain 

At Z "" 40 the total cross-section has a magnitude 
of the order of magnitude a"" 10-30 cm2• 

In conclusion I express my deep gratitude to 
Professor A. I. Akhiezer for advice and discus­
sions. 
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