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The position and width of giant resonances and the total photoabsorption cross section are 
calculated in a simple way with a model based on the shell interpretation of collective dipole 
excitation of nuclei. The model also yields a qualitative explanation of the relation between 
different photoabsorption branches and the character of the energy spectra of the photo­
products. Calculations of photodisintegration of C12, 0 16, Ca40 and Pb208 nuclei are carried 
out. 

THE main difficulty of the single-particle model 
of photonuclear reactions [l] lies in the explanation 
of the position of the maximum energy of dipole 
photon absorption. The "giant resonance" energy 
calculated with this model is 1. 5 or 2 times lower 
than obtained by experiment, because correlations 
between nucleons are neglected in the single­
particle model. Detailed calculations of the photo­
disintegration of several nuclei ( o16, Ca40, Pb2os) 
were undertaken to determine the influence of 
residual interaction on the formation of giant res­
onance. [2- 4] These yielded good agreement with 
experiment, indicating that the shell model of the 
nucleus, with account of the residual interactions 
between the nucleons, permits a detailed descrip­
tion of nuclear photodisintegration in the giant­
resonance region. These calculations have shown 
that the residual interactions between nucleons 
play an important collectivizing role in the forma­
tion of the dipole excitation of the nucleus, namely 
that the dipole excitations are characterized by 
strong mixing of a large number of single-particle 
states. 

Unfortunately these detailed calculations, which 
call for the diagonalization of the energy matrix of 
the dipole states, have been carried out only for 
the doubly-magic nuclei. To extend this procedure 
to non-magic nuclei, with the exception of a few 
special cases, tremendous technical difficulties 
must be overcome. It is therefore desirable to 
have a simpler description of the dipole states, 
one that does not require a complex diagonaliza­
tion procedure. One such attempt is well known­
the collective model proposed in 1945 by Migdal. [5] 

The collective dipole excitations of the nucleus 
were treated in this model hydrodynamically, and 

therein lies the reason for its failure. While yield­
ing the true position of the giant resonance, the 
hydrodynamic model cannot explain the character 
of the decay of the dipole state, and particularly 
the large yield of fast photoprotons from the nu­
cleus. This raises the question whether it is pos­
sible to borrow from this model the idea of collec­
tive dipole excitation and to develop the idea on the 
basis of a shell model rather than a hydrodynamic 
model. 

We propose here such a generalized model. The 
model claims a collective description of the energy 
position of the giant resonance, the total absorption 
cross sections, and a qualitative explanation of the 
spectra of the photoproducts. 

1. WAVE FUNCTION OF THE DIPOLE STATE 

The starting premise of the model is the ex­
perimental fact that all nuclei have a narrow en­
ergy band of dipole absorption (giant resonance). 
The exact expression for the nuclear dipole exci­
tation operator is proportional to the total nuclear 
electric dipole moment: 

D = eZNA -I (Rz- RN). (1) 

Here Rz and RN are the positions of the centroids 
of all the protons and neutrons of the nucleus. 

The wave function lJ!dip of the dipole state of 
the nucleus is constructed by having the operator 
D act on the wave function l¥0 of the ground state 
of the nucleus: 

where N [ w0] is a normalization factor that de­
pends on the form of l¥0. 

(2) 
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The wave function 'lidip is not an eigenfunction 
of the Hamiltonian fi of the nucleus. (Brink has 
shown [G] that 'lidip is an eigenfunction of .A: for a 
system of noninteracting protons and neutrons in 
the central potential of a harmonic oscillator. ) 
However, the relatively small width of the giant 
resonance enables us to treat 'l!dip as an ei ... gen­
function of some approximate Hamiltonian H', 
which is close to H. The deviation of H' from H 
determines the width of the collective state and 
the width of the giant resonance. The ground state 
wave function 'lio is chosen in accord with the shell 
model. 

The operator D which generates the dipole 
state can be represented as a sum of proton and 
neutron single-particle operators 

D= .~ (e ~)a~(jplrljp·)aip• 
lp· ip' 

+ . ~ (- e ~ ) at, (jn I r I jn·) ain"" 
in· In' 

(3) 

Here aJP and ajp' are the operators of creation 

and annihilation of the proton single-particle state, 
while aJn and ajn' are the creation and annihila­
tion operators for the neutron single-particle state 
(jp,n denote arbitrarily the entire set of individual 
quantum numbers of the nucleon). From (3) we 
readily obtain an expansion of 'lidip in terms of 
the single-particle states <l>A_: 

(4) 

( The coefficients a A. are proportional to the 
single-particle matrix elements of the electric 
dipole moment (d)A.) Thus, the procedure (2) 
gives rise to a dipole state with strong mixing of 
shell configurations. It is clear therefore that 
the position of this state depends appreciably on 
the nondiagonal (in the single-particle states ) 
residual interaction between the nucleons. 

2. ENERGY OF DIPOLE EXCITATION, TOTAL 
PHOTODISINTEGRATION CROSS SECTION 

The average dipole state energy E is given by 

£ = <'I' dip I If -Eo I 'I' dip> (Eo = <'I' o I ill 'I' o> ). (5) 

Let the Hamiltonian H of the nucleus be given 
as the sum of the single-particle Hamiltonian :H:0 
and the potential V of the residual nucleon pair 
interaction: 

(6) 

We substitute H = H0 + V in (5): 

('¥dip Iff! \If dip)= (N ['¥ol)-'1• (D'¥o I H" \ D'¥o) 

+ (N [\f0 l)-'',(D'¥o [.)l,Vij ID'¥o) · 
l<J I 

{7) 

In the calculation of the first term in (7) it is con­
venient to use the expansion of 'lidip in terms of 
the single-particle states (4), where <l>A, are the 
eigenfunctions of the Hamiltonian H0: 

(8) 

Therefore 

), 

Expression (9) enables us to get around the diffi­
culties connected with the uncertainty in the single­
particle potential, since the values EoA. can be ob­
tained directly from the experimental data on the 
levels of the neighboring nuclei (see [3]). 

Expression (5) is of little value in comparison 
of theory with experiment. It is more convenient 
to introduce in place of E the quantity 

Edip = (liE) (\l'dlp I (H- Eo)2 I \)!dip), (10) 

which, as can be readily seen, gives an exact ex­
pression for the energy position of the "centroid" 
of the dipole-absorption curve. With the aid of 
(4) we obtain 

~ E~;, J Ct;, \ 2 + 2 ~ et~ Ct;,· £ 0 -,.1/!-.!-.' + ~ a>,.l'-,.;. .. 1/!-."!-.' Ed· ------- ----------------- ------- -
'P - ~ Eo). I rt).[2 + 2; et~ a)_, I/ u· (11) 

The radiation width of the dipole state, together 
with the total photoabsorption cross section, is cal­
culated from the usual formulas with the aid of (4). 
The result is 

(12) 

Let us compare (12) with the corresponding expres­
sion for the single-particle model: 

(13) 

It is appropriate to note that the series of in­
tegrals in (5) and (10) and later in (15) can be cal­
culated without implying any particular nuclear 
model, using the well known "s urn rules." For 
example, 

(14) 

where 

vn = ~v(Ev)dEy, 

etc. Unfortunately, although relations based on 
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the "sum rules" are most general, they neverthe­
less give skimpy and rather one-sided information 
on giant resonance. The use of nuclear models is 
apparently unavoidable if we want a theory that de­
scribes various aspects of photonuclear reactions 
(including the properties of the disintegration 
products), and particularly a theory in which a 
connection is established between photonuclear 
reactions with other nuclear-spectroscopy reac­
tions. Consequently a comparison with the "sum 
rules" can be naturally regarded as a check on 
the initial premises of the model, while agreement 
between individual results of the model and the 
"sum rules" can be regarded as some indication of 
the correctness of the model. 

3. ENERGY DISTRIBUTIONS OF PHOTODISIN­
TEGRA TION PRODUCTS 

The expansion (4) of the function -.Jidip in single­
particle shell states enables us to use the usual 
shell-model technique of fractional-parentage co­
efficients to calculate the reduced widths of the 
dipole state corresponding to decay into different 
states of the final nucleus. We can therefore ob­
tain a qualitative picture of the photoproton and 
photoneutron energy spectra corresponding to 
giant resonance. It is obviously clear that, gen­
erally speaking (particularly in light nuclei), 
the proposed model, which is based on the pro­
cedure of [2], cannot give a quantitative descrip­
tion of the spectra, which will be slightly impov­
erished owing to insufficient admixture of ''weak 
transitions" in the giant resonance. A quantitative 
description of the photoproduct energy distribu­
tions can therefore be obtained at present only by 
detailed calculation based on diagonalization, sim­
ilar to that given in [a] for the photodisintegration 
of Ca40• 

At the same time, this model, unlike the hydro­
dynamic model, explains the large fraction of fast 
photoprotons contained in the photodisintegration 
spectrum as being due to strong admixture to the 
dipole state of single-particle states above the 
lowest levels of the final nucleus. We note that 
the single-particle model also fails to give a con­
sistent explanation of the spectra, for if we disre­
gard the mixing of the configurations, the majority 
of the channels corresponding to "strong transi­
tions" are closed. 

4. WIDTH OF GIANT RESONANCE 

The question of the width of giant resonance is 
closely connected with the question of verification 

of the present model. The energy spread ~ of the 
dipole state is a measure of the extent to which 
"IJidip does not satisfy th~ Schrodinger equation 
with total Hamiltonian H: 

1:!.2 = ( 1/E) ('I! dip J (H -Eo - Edtp)2 (H -Eo) J'l! dip) 

- ('¥dip J (H- Eo)SI '¥dip> - (E )2 
- A dip 0 

<'¥dip I H - Eo I '¥dip > 
(15) 

From (15) follow, in particular, the conditions 
for an infinitely narrow resonance, corresponding 
to the Brink theorem [G] and the Brown-Bolsterli 
scheme. [ 7] 

When Vn' = o 

1 1: EOA EOA' (EoA- £0A')2J etA J2J etA, J2 

1:!,.2 = 2 11: EOA I etA J2J2 , 
(16) 

~ vanishes with EoA. = EoA.' = const. This holds 
true for a harmonic oscillator (Brink's theorem). 

In the case when VA.A.' ¢ 0 we get ~ = 0 when 

E0A = EoA' = const, (17) 

-the Brown-Bolsterli scheme. [ 7] 

In the present article we defer the theoretical 
justification of the introduction of the potential H', 
which will be treated in greater detail later on. A 
similar situation occurrs in the treatment of the 
giant resonance of the force function that describes 
the scattering of slow neutrons by nuclei. For the 
time being we can advance only qualitative argu­
ments in favor of the approximate diagonalization 
of the total proton-neutron potential: the nondiago­
nal interactions between the protons and the neu­
trons in the deep internal shells are cut off by the 
Pauli principle, and therefore the smearing of the 
dipole state is explained essentially by the inter­
action between the protons and neutrons on the 
Fermi surface. 

We have not touched upon the problem of "natu­
ral" width of the dipole state, which determines 
the lower limit of the giant resonance width. The 
"natural" decay width of the dipole state is cal­
culated in usual fashion from the reduced widths 
that correspond to different decay channels (see 
Sec. 3 ). 

5. EXAMPLES 

a) Energy position of the dipole states. Table I 
lists the calculated energy positions of the giant 
resonance and the total absorption cross sections 
in the given model, for the nuclei c12, o16, Ca40, 

and Pb208• The column "Exact calculation" con­
tains the results obtained by diagonalizing the en­
ergy matrix of the dipole states. In our calcula-
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Table I 

I Exact calculation I Present work Experiment 

Edip 22.6-25.2 [2) 23.7 22.0-25.5 (8) 

Ql6 crabs 370 390 160 

Ca40 Edip 19.6 [3 ) 19.4 19.0 i9J 
crabs 1080 1000 

Pb2os Edip 13.5 [4 ) 13.4 13.0-14.0 [8) 

crabs 3915 4000 3600 

C12 
Edip 22.2 PI 24.0 23.0 

crabs 

tion the parameters of the single-particle states 
and of the residual interaction for the different 
nuclei are the same as in the corresponding cal­
culations with diagonalization. The calculations 
for the non-magic nucleus c 12 are given in the 
LS-coupling scheme, i.e., the ground-state function 
was chosen to be (ls)4(lp)8[444] 11S0, and the ls 
- lp transitions have been left out for simplicity. 

The figure shows the change in energy of dipole 
states in Pb208 when the residual interaction is 
turned on. The lower dashed curve corresponds 
to an account of the diagonal part of the residual 
interaction only. 

(l.4Me~ 

I 
-~-7MeV 

I 
I 
I 
I 
I 

Dependence of the energy 
position of the dipole state in 
Pb208 on the nucleon-nucleon 
interaction. 

b) Spectra of photodisintegration products. We 
give the expansion of the wave function of the di­
pole state of Ca40 in terms of the shell states: 

'Vdp = -0.091 d-;;,_1p,!,> + 0,21 I d-;;,XP.;,> + 0.531 d-;;,_1f,;) 

+ 0.33 i s;;,1p,) + 0.241 s;;./v.1,> + 0.631 d-.;/f.1,> 
+ 0.281 d-;;/Pa) + 0,141 d'f/f•;,>· (18) 

The use of Ca40 as an example is far from being 
the most fortunate, since giant resonance corre­
sponds here to a small number of transitions. 
However, this example illustrates clearly the ad­
vantages and shortcomings of the proposed model 
in the description of the photoproduction spectra. 
In addition, a detailed calculation of the partial 
cross sections has been carried out for Ca40, 

something not yet available for other nuclei. [3] 

With the aid of the function (18) we calculated 
the widths of the decay of the dipole state of the 
nucleus Ca40 ( Edip = 19.4) over the different 
proton and neutron channels (Table II). As can 
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be seen from Table II, there are two pronounced 
groups in the photoproton spectrum: Ep "' 11 MeV 
and "'4 MeV. This conclusion agrees with experi­
ment and with the results of the "Exact calcula­
tion.'' However, the intensity ratio of these two 
groups is approximately the inverse of what is 
obtained in experiment: in accordance with the 
general tendency indicated in Sec. 3, the decay 
to the excited state K 39 with J = % +, correspond­
ing to the "weak transition" 2s - 2p, turns out 
to be somewhat suppressed in this calculation. 

According to Table II, the neutrons group 
around an energy 3.5 MeV, which approximately 
agrees with the results of the "Exact calcula­
tion.'' [3] There are no published experimental 
data on the spectrum of photoneutrons from Ca 40• 

We note that the proposed model enables us to 
estimate the intensity ratios of different photodis­
integration branches. Experiment has shown that 
the photoproton yield from Ca 40 is approximately 
seven times greater than the photoneutron yield. 
In this calculation, as can be seen from Table II, 
u(y,p)/u(y,n) = 3.5. 

Table II 

K39 and Ca39 levels 

3j2+ I •;,+ I •;,+ 

EP 11.1 4.9 3.1 
Kao+ p rp 1000 380 2 

En 3.7 - -
caao+ n rn 400 - -

6. CONCLUSIONS 

1. The proposed model, based on the simple 
procedure (2), enables us to calculate the position 
of the giant resonance and the total photoabsorp­
tion cross sections, and gives a qualitative ex­
planation of the relationships between different 
photodisintegration branches and the character 
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of the energy spectra of the photoproducts. 
2. The main conclusions of the model are iden­

tical with the results of diagonalization calcula­
tions made for the magic nuclei. The simplicity 
of the model makes it useful in the calculation 
of photodisintegration of non-magic nuclei, and 
also for account of correlation in ground states, 
corrections for phonon excitations, etc. 

3. Generalizing the results of the recent de­
tailed shell calculations of nuclear photodisinte­
gration, and taking into account the considerations 
and calculations given above, we can state that the 
collective and shell descriptions of nuclear dipole 
excitations are not mutually exclusive. 

The collective character of the dipole excita­
tion is successfully explained by means of a shell 
model that takes into account the residual inter­
action between nucleons in the nucleus. 

The author is grateful to V. G. Neudachin, 
V. G. Shevchenko, and N. P. Yudin for discussions. 
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