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One-dimensional waves moving perpendicularly to a magnetic field in a viscous heat- and 
electricity-conducting medium are considered. Exact solutions are obtained for the magnet
ohydrodynamic equations and terms linear and quadratic in the Mach number are retained. 
It is demonstrated that all results of ordinary hydrodynamics apply to the case under consid
eration. 

l. Kaplan and Stanyukovich[t] obtained an exact 
Riemann solution for one-dimensional traveling 
waves propagating transversely to a magnetic field 
in the absence of energy dissipation. This solution, 
however, becomes invalid as soon as discontinuities 
are formed in the wave. When dissipative terms 
are taken into account in the initial equations, the 
exact solutions are also suitable after the discon
tinuities are formed in the wave. Such solutions 
are known for several hydrodynamic problems [2-5]. 

In the present paper we obtain analogous solu
tions for magnetohydrodynamic problems, partic
ularly for a low intensity shock wave and for a 
wave radiated by a harmonically oscillating plane. 
These solutions enable us, first, to trace the tran
sition of the initially specified zero-width shock 
wave into a shock wave with stationary width and 
to estimate the time of this transition; second, we 
can analyze the subsequent deformation of a prop
agating velocity wave that is sinusoidal in a certain 
plane. 

2. The magnetohydrodynamic equations for our 
one-dimensional case have, under the customary 
assumptions, the following form (see the book by 
Landau and Lifshitz[G]) 

aH a (vH) c2 a'H 
Tt = - ---a;- + 4:rt:> iJx 2 ' 

p = p (p, s). 

(1) 

(2) 

(3) 

(4) 

(5) 

We retain the Landau and Lifshitz notation and use 
v = ( v, 0, 0 ) and H = ( 0, H, 0 ) . 

We retain in the basic equations the terms 
linear and quadratic in the amplitudes and only the 
linear terms with dissipative coefficients, i.e., we 
assume the linear dissipative terms to be of 
second order of smallness. It can be shown that 
this corresponds to Reynolds numbers of the order 
of unity. In this approximation we can rewrite 
Eqs. (1)- (5) in the Lagrange variables a and t: 

poda = pdx, (6) 

(7) 

'!!!_ + pH i!!'_ _ ~ a•h _ 0 
at Po da 4:rtc; aa2 - ' 

(8) 

(9) 

I 2 1 1 (a•p) 1 2 (ap) I 

p = UoO + 2 ap2 s p + as P S • (10) 

Here u5 = ( 8p/ ap) s and H = H0 + h; the subscript 
0 denotes the constant equilibrium values of the 
quantities, while h, p', p', and s' are the small 
changes that these quantities experience in the 
wave. 

Since we disregard third-order terms, we can 
transform the second-order terms by using "the 
equations of the linear theory of isotropic wave 
motion[G] 

H 
h= uv, T l _ (ar) , 2 - ap s p Uo, 

a a 
Tt=-Uaa; 

I H2 
u = I I u2 + - 0-. V 0 4:rtpo 

(11) 

We transform h and p' into functions of v and p' 
and their derivatives by means of (8) - (11) and 
substitute in (7), obtaining an equation in v and p', 
which is reduced by the relations 
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v = iJz!iJt, p' = -poiJz!iJa + po (iJz/iJa) 2 , 

(z is the displacement) to the form 

4 ( 1 1 u~ c~H~ b-- X --- _ _j_ __ _ 
- 3 'fJ + \; + c0 cP ) u• 1 16n2cru2 ' 

(12) 

When H0 = 0 Eq. (12) has the same form but 
the coefficients u, b, and E are replaced by their 
values u0, b0, and Eo for H0 = 0. Therefore all the 
results obtained for hydrodynamic waves in this 
approximation (see [SJ for details) can be gen
eralized to our case by replacing in the final for
mulas the coefficients u0, b0, and E 0 by u, b, and 
u5E/u 2 respectively.* 

3. We specify a wave with 

iJz (a, 0)/iJa = iJzo (a)/iJa (13) 

at the instant t = 0. Rewriting (12) in the dimen
sionless variables ( see [ 3] ) 

f = f/T, 

where T = b/2p 0u2, we obtain 

(14) 

We estimate the terms of (14) by using the ex
pression for a low-amplitude damped wave, since 
the nonlinear and dissipative terms in (12), which 
distort the waveform, are in our case of the same 
order of magnitude. As a result we obtain 

z ~ eu~ ~ ~ ~ I aa~t ~ (-kr )2 z, a?' - .l z 
u2 u r ' a; k . 

Neglecting in (14) terms of order (y /k )4 we obtain 
for the quantity v = - azjafthe expression 

aiV a'V ~ a'V 
a~ = al + v af · 

The substitution (see [B ,9] ) 

v = -2iJ IncP/a'[ 

reduces (15) to the well known heat-conduction 
equation. 

(15) 

We thus obtain a solution that satisfies (15) and 

(13) +oo o ~ ~ 2 

; ('[. l) = - 2 :fIn { ~ exp ~ [- ~ :f d~- (£~a) ] da}. 
-oo a. (16) 

*We note that from the linearlized equation (12) we can ob
tain in the usual manner the known expression for the absorp
tion coefficient of a low-amplitude wave. (see[7l), 
y = bc,N2p0U 5 • 

In the case of a shock wave with a pressure distri
bution specified at the instant t = 0 

, {const = Pr p = 
0 

(a< 0), 

(a> 0), 
(17) 

expression (16) assumes after suitable transforma
tion the form 

p' (y, t) = P u2 ~ _o_v 
E 

= Pr [1 + exp (e:: Y) 

Here 

00 

(' ( z2p0 ) .l exp - 2bt dz 
-a.t-y 

00 

(' ( z2p0 ) ~ exp -'fbt dz 
-a.t+y 

a = epr!2pou, y = a- (u + a) t. 

-] 

(18) 

When y = 0 we get p' = p1/2. This means that 
the point of the wave profile with p' = p1/2 propa
gates with constant velocity u + a, which is simul
taneously the velocity of propagation of the shock 
wave. The velocities of the other parts of the pro
file depend on y and t, so that the wave profile 
becomes deformed. As t __.. 00 , however, the ratio 
of the integrals in (18) tends to unity for any finite 
y and the wave assumes the stationary form 

p' (y, t) = lf(l - th t). (19)* 

where 6 = 2bu/Ep1 is called the width of the shock 
wave. t The time required to establish an essen
tially stationary waveform (ttl can be estimated 
from the relation [see (18) ] 

air - 6 :::::::; V2bt11p0 , 

which yields t1 R; 46/a. 
The figure shows the distribution of p'/p1 along 

the shock wave at the instants O.Olt1, O.lt1, and t 1 

(curves 1 - 3, respectively). The values of p'/p1 

at the instant t 1 differ from the stationary values 
for I y I < 6 by less than 5%. It can be shown that 
when .ft/t1 « 1 we have at the point y = 0 

d (p' fp.) = _1:_ I /?J 
d (y /6) 5 v t . 

4. We now consider a wave with a velocity field 
specified in the plane a = 0: 

az (0, t)liJt = iJzo (t)!iJt. 

We introduce the dimensionless variables 

a= a!Ua, 'T = t!Ut- a, z = z!Uz; 

Ua = b/2p0U 0 , Ut = Ua/U0 , Vz = Vale. 

*th =tanh 

(20) 

tSirotina and Syrovat-skii [7] obtained this value of 8 by a 
different method. 
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Estimating as before and neglecting terms of order 
(y /k)4 in (12) we obtain for the quantity 

v = -a'Z;aT = -a'i;a'T 
the following equation 

aU' ~ a'V a•-:v 
--= + v ---= = -=:i. aa a-r a .. 

(21) 

Equation (21) and the boundary condition (20) 
are similar in form to (15) and to the initial condi
tion (13). Therefore if we replace f by T' and t 
by a in the right half of (16) we obtain a function 
v(T', a) that satisfies Eq. (21) and condition (20). 
At the particular boundary condition 

V 0 (t) = z0w sin wt 

integration and use of the formula 
00 

ezcoscp = fo (z) + 2 ~ !,. (z) cos ncp 
n=l 

result in a solution of the form 

(22) 

a [ 00 I (R) · x _}n I + 2 '\.l (- I 'in _n_ e-n'ya cos nw It - !!:_.)] at LJ I (R) \ u · 
~=1 0 (23) 

Here R = Ez0p0u0/bu. 
At large values of R away from the radiating 

plane this solution can be represented in simpler 
form. At large R 

eR [ 4n2 - 1 ( 1 \] 
In (R) = V2nR l- ----sR + 0 R•) . 

Therefore at distances 

a~ l/2Ry 

we can write approximately 

Loo ln(R) ( a) (-1)"--e-n'yacosnw t --
10 (R) u 

n=l 

(24) 

(25) 

(26) 

where q = exp ( -ya - 1/2R). Actually, if (25) 
holds true the main contribution to the sum (26) is 
made by the n1 first terms, for which 

In (R)/1 0 (R) :::::; e-n'/2!/., 

for when nt ~ 2R or more the factor 

causes the remainder of the sum to vanish even 
when a > a0 = 2/Ry. We note that a 0/4 is the dis
tance over which a discontinuity is accumulated in 
an initially sinusoidal wave in a lossless medium. 

Transforming (23) further by means of the 
known formula for the fourth J. -function [ 1o] 

co 

'fr4 (z, q) = l + 2 ~ (-1)" q"' cos 2nz, 
n=l 

we obtain 
v(a t) = bwu ~ sinnw(t-aju) 

' p u2 8 LJ sh n ('ra + 1!2R) • 
o o n=l 

(27)* 

A result corresponding to (27) was obtained for H 
= 0 by Fay[2] as an exact periodic solution of (12) 
without any initial or boundary conditions. 

-z z 
!!N 

When R is large we have for a certain integer 
n' sh n'ya:::::: n'ya, 

and (27) coincides, accurate to the n'-th harmonic, 
with the Fourier expansion of a sawtooth curve. 
At distances a > 2/y we can confine ourselves in 
the sum (27) to the first terms only. Thus, an 
initially sinusoidal wave is converted at distances 
on the order of a 0 into a sawtooth wave, which then 
goes over into a damped sinusoidal wave as it 
propagates. 

1 S. I. Kaplan and K. P. Stanyukovich, DAN SSSR 
95, 769 (1954). 

2 R .. D. Fay, J. Acoust. Soc. Amer. 3, 222 (1931). 
3 J. S. Mendousse, J. Acoust. Soc. Amer. 25, 51 

(1953). 
4 M. J. Lighthill, Surveys in Mechanics, Cam

bridge University Press, 1956. 
5 Z. A. Gol'dberg, Dissertation, Acoustics Insti

tute, Moscow (1958). 
6 L. D. Landau and E. M. Lifshitz, Elektro

dinamika sploshnykh sred (Electrodynamics of 
Continuous Media), Gostekhizdat, 1957. 

7 E. P. Sirotina and S. I. Syrovat-skii, JETP 39, 
746 (1960), Soviet Phys. JETP 12, 521 (1961). 

8 E. Hopf, Commun. Pure Appl. Math. 3, 201 
(1950). 

9J. D. Cole, Quart. of Appl. Math. 9, 225 (1951). 
10 E. T. Whittaker and G. N. Watson, A Course of 

Modern Analysis, vol. 2, Cambridge Univ. Press, 
1940. 

Translated by J. G. Adashko 
38 

*sh =sinh 


