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The three-particle unitarity condition for the simplest class of diagrams is analytically con­
tinued with respect to the momentum transfer t. It involves an analytic function of t which 
possesses singularities only on the real axis, in accordance with the Mandelstam representa­
tion. The spectral function p( s, t) is written in the form of a Feynman integral in which the 
denominators are replaced by o functions. The integration over variables not fixed by the o 
functions is carried out in a complex region. The shape of this region for the given class of 
diagrams is determined. 

1. INTRODUCTION 

TaE view has frequently been taken in recent 
years that it is possible to use the analyticity and 
unitarity conditions to construct a theory in which 
the explicit introduction of an interaction Hamil­
tonian is not required [Gell-Mann (1956), Landau 
(1959)]. The first important step in this direction 
was taken by Mandelstam, [t] who succeeded in 
continuing analytically the contribution of the two­
particle intermediate state in the unitarity condi­
tion and thus obtained equations for the scattering 
amplitude in the two-particle approximation. It is 
clear that it is necessary for the further develop­
ment of the theory to take account of the contribu­
tion of all intermediate states in the unitarity con­
dition. The difficulties in carrying out this pro­
gram are connected with the complicated structure 
of the contribution of the many-particle states as 
well as with the involved analytic properties of the 
amplitudes appearing in the intermediate states. 
Recently, Cutkosky [2] pointed out a certain way of 
dealing with the many-particle states by construc­
ting spectral functions with the help of Feynman 
diagrams in which certain lines represent o func­
tions. Since the spectral functions differ from 
zero only in the nonphysical region of the variables, 
they will in general involve integrals over complex 
values of the virtual momenta. If all compon~nts 
of the virtual momenta are uniquely determined by 
the o functions, as in the case of square diagrams, 
the fact that the momenta are complex is inconse­
quential. If this is not the case (and this will be 
the situation wh~never we are dealing with many­
particle states), the region of integration is unde­
fined and the integrals are meaningless. 

Up to the present time we know of no other pos­
sibility of defining the region of integration than 
by analytic continuation of the unitarity condition 
away from the physical region. In the present 
paper we carry out the analytic continuation of the 
three-particle unitarity condition for the simplest 
class of diagrams. We shall show that the analytic 
properties of the absorptive part are in agreement 
with the Mandelstam representation and that the 
spectral functions are given by Feynman integrals 
containing o functions. The regions of integration 
found are complex not only in the momentum com­
ponents, but also in the invariants. 

In a future publication we shall generalize these 
results for a more general class of diagrams. Al­
though the method of the present paper for finding 
the spectral functions is mathematically quite 
natural and definite, it can hardly be applied to the 
investigation of the higher intermediate states in 
view of the complicated structure of the unitarity 
conditions. The formulation of a theory based on 
the analyticity and unitarity condition will there­
fore only become possible when simpler and more 
general principles for setting up the equations will 
have been found. Unfortunately, the results of this 
paper show that the character of the regions of in­
tegration in the expressions for the spectral func­
tions depends critically on the details of the analy­
tic properties of the amplitudes. This, of course, 
makes it difficult to give a general recipe. 

2. TWO- AND THREE-PARTICLE UNITARITY 
CONDITIONS 

In this section we write down the unitarity con­
dition in terms of integrals over invariant vari-
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abies, which will be convenient for the subsequent 
discussion. 

The unitarity condition for the transformation 
of two particles with momenta Pi and p2 into 
particles with momenta p3 and p4 (Fig. 1) with 
account of the two- and three-particle intermedi­
ate states has the form 

Im A = Ai2> + Ai3>; 

Al2> (pt, p2; pa, P4) 

= 2 (~n)' ~ d4psd4peA(pt, p2; p;, pe) A*(ps, pe; pa, p4) 

X o (p!- m~) o (p~- m~) o<4> (p1 + p2- p; - ps), (1) 

Al3> (pt, p2; pa, P4) 

1 \' ,= 2 (2n)• J d4psd4ped4p1A(p1, p2; po, ps, p1) 

X A • (po, pe, p1; pa, P4) 'fr (pso) 0 (p~- m~) 'fr (pso) 

X o (p~- m~) 'fr (p1o) o (p~- m~) 

X o<4> (pt + p2- ps- ps- P7), 

where the normalization of the invariant ampli­
tudes A is determined by the condition 

(2) 

s = 1 + i (2rc)4 o(~p,- ~Pr)A [g (2e), g (2e),r1•. (3) 

FIG. 1 

All amplitudes A are functions of the invariants 
(pi+ Pk) 2• The quantities Af2> and A13) are func­
tions of s =(pi+ p2 ) 2 and t =(pi- Pa )2. The 
amplitudes A ( Pi• P2; Ps. Ps) and A ( P5• Ps; Pa• P4 ), 
which enter in (1), are functions of si 2 = (Pi + P2 )2, 
tis= (pi- Ps)2 and s34 = (pa +p4)2, tas = (pa- Ps) 2, 
respectively. Owing to conservation laws we have 
si 2 = s 34 = s. As the two integration variables re­
maining in (1) after elimination of the 6 functions 
one usually chooses the polar angles J. and cp of 
the momentum p5 or p6 of one of the intermediate 
particles in the center of mass system (c.m.s. ). 
Instead of these, it is convenient to choose zi5 
= cos ePiPs and z35 = cos Bp3p5. In these variables 
we have 

dcos 'fr d<p = dztsdzas I Y- K (zta, Z1s, Z35) • 

- K (Ztk) = 1 + 2ZiaZ15Z35 + Z~3 - z~5 - z~5 = I ;1s zt ::: I 
zxs Zss 1 

(4) 

where zi3 = cos Bp1p3. The variables zia• zis• and 

z35 are connected linearly with the invariants 
t = tia• tis• and t 35 : 

t;k = (p; - Pk)2 = m7 + mk - 2PtoPko + 2p;pkZtk· (5) 

In these variables Eq. (1) takes the form 

Ai2) (s, t) = 161 2 :/~ \' V dzt•dza• A (s, tl5) A* (s, las).(6) 
n r s .l - K (z, Zts. Zas) 

Pi = I Pi I is the momentum of the i-th particle in 
the c.m.s. It is simply related to s and the mass. 
The integration in (5) ~oes over the region where 
-K ( z, zis• za5) =::: 0. A13) ( s, t) can be written in 
an analogous form. After integration over p7 and 
the lengths of the three dimensional vectors p5 and 
p6 the phase volume appearing in (2) takes, in the 
c.m.s., the form 

~ I ps IIPsJdpso dpeo dop, dop,O [ (p1 + p2 - ps - pe )2 - m~). 

The integration over the invariants can be car­
ried out in various ways. In place of the variables 
p50 and p60 it is natural to introduce the variables 
s67 = ( p6 + p7 )2 and s57 = ( p5 + p7 )2, respectively: 

s + m~- Ss7 

Poo= 2fs 
s +m~-Ss? 

Pso = 2 Vs 
Instead of the polar angles of the vector p5 we 
introduce the cosines of the angles relative to the 
vectors Pi and p3: zi5 and z 35. Then 

dop, = dzts dzas/ V- K (zta, Z1s, zas). 

The angles of the vector p6 are replaced by the 
cosines of the angles relative to p 2 and p4: 

dop, = dz2e dz4al V- K (Z24, Z2a, Z4s). 

In these variables 

0 [(pt + p2- ps- pe)2 - m~] = 0 [2J Psi·! PG I (Zss- Z~a)l. 

where 

zg6 = [m~ + m~ + 2psopeo + s 

- 2Vs (pso + peo)l/21 Psi·! Pel. (7) 

and z56 = cos 8p5p6, being the cosine of an angle 
between two vectors whose directions are given 
relative to the fixed vectors Pi = -p2 and Pa = -p4, 
is expressed in terms of zis• z 35, z 26 = -zis• 
z46 = -z36, and z = zia = z 24. The relation between 
z56 and the other Zik mentioned above is given by 
the condition that the determinant 

Zts Zxs -z28 
Zts 1 Zas -z46 

0 (Ztk) = Zxs Zss 1 Zss (8) 

-z•s -z46 Zos 

vanish. This is equivalent to the requirement that 
all four vectors Pi• p3, p5, and p6 lie in a three­
dimensional space. 
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It follows from (8) that 

Z;s = (1 - zi3t 1 [- Zlo (Z26 - Zl3Z4s) - Z35 (Z4a - Z13Z2s) 

± YK (Zla, ZI&, Za;;) K (Z24,Z26, Z4s). (9) 

It is easily seen that, using (8) and (9), the three­
particle unitarity condition can be written in the 
form 

A ia> (s, t) = 64 ( 2~-r)' 5 ~ dso1 dss1 dz1o dza5 dZ26 dz4sO [ 0 (Z;k)] 

X A (s, S57, Ss7, flo, i2s) A* (s, S57, Ss7, tao, f4s)]. (10) 

where the tik are related to the Zik by (5). 
We note that K ( Zik) is analogous to 0 ( Zik) in 

the sense that the condition K ( Zik) = 0 is the re­
quirement that three vectors lie in a two-dimen­
sional space. If the Zik in K ( Zik) and 0 ( Zik) 
are expressed in terms of the invariant tik and 
s, s 57, s 67, the vanishing of (4) and (8) implies that 
the four-dimensional vectors Pi + P2• Pi• P3• P5 or 
Pi + p2, Pi• p3, p5, p6 lie in a three- or four-di­
mensional space, respectively. It is easy to show 
that the expressions for K and 0 in terms of the 
invariants are unchanged under the replacement 
of any of the defining vectors by an arbitrary 
linear combination of the same, e.g., 

K (Z15, Zos, Z2s) ,_, K (p1, p2, p5, ps) = K (p1, p5, ps, P7). 

3. ANALYTIC CONTINUATION OF THE TWO­
PARTICLE UNITARITY CONDITION 

The two-particle unitarity condition (6) has 
been continued analytically by Mandelstam [i] by 
way of an explicit computation of the integral over 
zi5 and z35 with the help of the dispersion rela­
tions in the momentum transfer for the amplitudes 
A ( s, ti5) and A*( s, t 35 ). A method based on the 
explicit evaluation of the integrals in the unitarity 
condition cannot be carried over to the investiga­
tion of the contribution of the three-particle inter­
mediate state. We therefore indicate a method 
which makes use of the same analytic properties 
of the amplitudes A and A*, but which does not 
require an explicit computation of the integral. 
This will at the same time serve as an introduc­
tion to the study of the three-particle state. A 
reading of this section is not essential for the un­
derstanding of the rest of the paper. 

Let us rewrite formula (6), omitting for sim­
plicity all nonessential factors and writing z15 
= Zt, Z35 = z3: 

where 

+1 

Ai2> {z) = ~ dz1 f (z, Z1) A (z1), 
-1 

1 \ dzsA* (za) f (z, z1) = - 2 · 
f -K (z, Z1, Za) c, 

(11) 

(12) 

The integration between the two roots of K in 
(6) has been replaced by the closed contour C3 
shown in Fig. 2. 

The roots of K are 

z~±J = zz1 ± V(l - z2) (1 - zi)· 

The points z~1), (2) determine the beginning of the 
cuts or the poles of the functions A*( z3) 
(I z~O, (2) I > 1 ). The function f ( z, z1) clearly has 
no singularities at the points z = ± 1, at which 
z~±) become complex, since we can always deform 
the contour C3 (dotted line). The passage through 
the boundary of the physical region shows up only 
in the fact that the region of integration in the 
unitarity condition becomes complex. 

Let us consider f ( z, z1) as a function of Zt for 
fixed real z with I z I > 1. It has a singularity only 
at those values of z1 for which z~±) lie on the cuts 
of A*( z3) (to the right of z~1) or to the left of 
z~2 ) ), i.e., at the points 

zi.tl = zz3 ± Y(z2 - 1) (z;- 1), (13) 

(1) (2) where z3 > z3 or z3 < z3 . 
Let us now turn to the integral (11) and consider 

the complex plane of z1 (Fig. 3), where zi±) are 
the singular points of the function f ( z, Zt) [Eq. 
(13)], which for definiteness have been placed to 
the right of + 1 ( zz3 > 0 ), and z~1) and zP> are 
the ends of the cuts of the function A ( zi ). We 
study the motion of the singular points z~±) as z 
is varied. If zz3 > 0, the point z~±) is always to 
the right of + 1 and moves to the right without 

z(2) 
----' 

(I} 
ZJ 

~ 
~ 

c' 3 

{z,; 

FIG. 3 

(-) 
z3 (ztte) 

FIG. 2 
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touching the integration contour as I z I > 1 is in­
creased. At the same time z~-) moves first to the 
left, reaches the point z1 = + 1 for z = z3 and then 
turns back toward the right. At this moment the 
contour of integration is "caught" (see, e.g., [4J). 
For I z I > I z3l the integration contour is deformed 
in the analytic continuation and assumes the shape 
shown in Fig. 3 (contour c1 ). 

The point z = z3 is not a singular point of the 
function A~2 ) ( z ), since the two possibilities of 
going around the point +1 with the singularity z~- > 
(corresponding to z ± i£) lead to the same result. 
A singularity of Ap> ( z ) comes about when the 

. t (-) h" h h th . . pom z1 , w w pus es e mtegratwn contour 
along with it, coalesces with z~t) (the points z~±) 
do not coalesce for finite z ). If we had considered 
the analytic continuation for zz3 < 0, we would 
have found that the singularity z~ + > "catches" the 
contour in the neighborhood of the point zl = -1 
and that AP> ( z) has a singularity for zf+> = z~ 2 >. 
Thus the function A~ 2 > (z) has singularities, i.e., 
becomes complex at values of z for which z~-) 
;::: z~0 ( zz3 > 0) or zi+) :s zf2> ( zz3 < 0 ), which is 
equivalent to the conditions 

(14) 

where z1 and z3 are points lying on the cuts of the 
functions A ( zt> and A* ( z3 ), respectively. 

Formula (14) implies, in particular, that, if 
A ( Zt) and A*( z3) have no singularities for com­
plex z1 or z3, then A~ 2 ) ( z) also has no singular­
ities for complex z. In order to determine the 
imaginary part of AP> ( z ), i.e., the Mandelstam 
function p, we must compute the difference of the 
integrals along the contour C1 on the two branches 
of the cuts of the functions A ( z1 ). For example, 
considering the contribution from the region z1 
> z~0 and z3 > z~i) for z > 0, we can write 

= ~ f (z, Zt) -ii [A(zt + ie)- A (zt- ie)l dz1 

c, 

•i- )(z) 

~ dztAa(zt) [f (z, z1 + ie)- f (z, z1 - ie)l. 

·il) 

We have used the notation A3 ( z1) = [A ( z1 + i£) 
- A ( z1 - i£ )]/2i. Furthermore 

f (z, Z1 + ie)- f (z, z1 - ie) 

z~-) 

2 \ dza 1 . . 
= J ~~. y[A*(z3 +ze)-A*{z3-ze)], 

(I) r /( (z, Zt, Za) 1 

2a (15a) 

where ,fK > 0. Writing Af( z3) = [A*( z3 + i£) 
- A*( z; - i£ )]/2i, we obtain 

p<2> (S, z) 

~• dz1 dzsAs (Zt) A; (za) -.1 2 = 2 V %(z-Z1Z3- Y (z1-J) (z~-J)). 
K (z, Zt. za) 

(15b) 
If we add to (15b) the contribution from the re­

gions z1z3 < 0, Zt < 0, z.a < 0, we obtain the known 
formula of Mandelstam. Li] 

Formula (15) is easily proved. It is only neces­
sary to investigate the behavior of the contour c3 
and the integral (12) as one comes to values of z 
and Zt for which the integration in (11) is carried 
out after the "pinching" of the contour for z1. 
Then f ( z, Zt + i£) - f ( z, z1 - i£) is given by an 
integral along the contour c; (Fig. 2), and we ob­
tain (15a) and (15b). 

In conclusion we note that since all the integra­
tion contours lie in finite regions of the z1 and z3 
planes if z is finite, the behavior of A( z1) and 
A( z3) at infinity has no bearing whatever on our 
results. 

The use of this procedure for continuing the 
three-particle unitarity condition (10) requires the 
knowledge of the analytic properties of the ampli­
tudes A and A* of reactions involving five parti­
cles. It was just the knowledge of these properties 
for four-point diagrams which enabled one to 
continue the two-particle unitarity condition in its 
general form. 

The analytic properties of five-point diagrams 
have not been considered at all in the general case. 
Let us therefore study first the simplest diagram 
for a three-particle state. This will give us an 
understanding of certain general properties of the 
three-particle intermediate state under conditions 
where the five-point amplitudes A and A* have 
the simplest analytic properties. In a later publi­
cation we shall discuss the effect of more compli­
cated analytic properties of A and A*. 

4. ANALYTIC CONTINUATION OF THE THREE­
PARTICLE UNITARITY CONDITION FOR THE 
SIMPLEST DIAGRAMS 

Let us consider the contribution to the unitarity 
condition from the diagram shown in Fig. 4. In 
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P, P5 PJ 

m,J P? 

Pa 
Pz 

FIG. 4 

this case the quantities A and A* entering in (11) 
have the form 

1 1 1 
A = ---2 = 2p p ---o • 

tt5- mls I s Zts- zls 

1 

(16) 

All of the following discussion will be valid for 
arbitrary diagrams for which A and A* in for­
mula (10) depend only on t15 and t46 . The resulting 
formulas are all finally integrated over mrs and 

2 m4s· 
We integrate over z35, using the fact that in 

o(D) we have D = (1- z~s)(z35 - z~;>)(z 35 - z~5)) 
and 

(1 - z~6) (z~t>- z~~ >) = 2 V K (z, Z2s, Z4s) K (z1s, z~6 , Z1s), 

and find 

(17) 

where a factor [ 64 ( 27r) 3s] -t has been omitted. 
The integration goes over a region where each 

-K ( zik) > 0. The boundaries of the region of in­
tegration over s 57 and s 67 are automatically given 
by the condition I z~6 I ::::: 1. The explicit form of 
this condition is given in the Appendix I [formula 
(AI. 7)]. Formula (17) could have been obtained 
directly from (2) by introducing the integration 
variables z15, z 26, z46 , and z56. 

The analytic properties of A~3 ) ( s, t) [formula 
(17)] as a function of t, i.e., z, could be investi­
gated in the same way as in Sec. 2 without ever 
carrying out a single integration in (17). However, 
in order not to overburden the discussion with in­
essential complications, we integrate over z15 and 
z46, since this can be readily done. As a result 
we obtain 

The first step in the analytic continuation of 
(18) is evidently the study of the integral over z26 . 
The integrand has the following singularities in 
the complex z 26 plane: 

z~fl = zz~s ± V(z2 -1) [(z~6) 2 -l], 
'., 0 0 v 0 2 0 

Z2s = Z1sZss ± [(Zss) -lj [ (Z1s)2-l]. 

These are shown in Fig. 5. 

(zz5) 
(+) 

Zz5 , 

' 2z5 
I • 
I 

-I (! --e) 

L ___ 

+I --l 
I 
I 
I • •r-J 

, 
2zs 226 

FIG. 5 

(19a) 

(19b) 

Since I zg6 I ::::: 1 and z~5 > 1 in the region of in­
tegration, z;s" always lie in the complex plane 
except when I zg6 1 = 1, which corresponds to the 
boundary of the region of integration over s 56 and 
s 67 . The singularities z~t> lie in the complex 
plane if z lies in the physical region, I z I < 1 
( z26 > 1 ). If z = ± 1, they fall on the real axis at 
the point z26 -= ± z26. Since, in so doing, they do 
not touch the integration contour ( z26 > 1 ), the 
points z = ± 1 are not singular. 

First we shall continue (18) along the real axis 
in z, and then show that A~ 3 ) ( s, t) has no singu­
larities for complex z ( t ). As we continue (18) 

into the region z > 1, the singularity z~6) moves 
to the right along the real axis of z 26 , and z~6) 
moves to the left, reaching the point + 1 for z = z26, 
after which it turns back to the right, taking along 
the contour of integration exactly as in the case of 
the two-particle state (Sec. 3). 

Since z ~6) and z~;) do not coincide for finite 
z, the integral will have a singularity only if 

(-) 1 'th I II F 1 th' z26 coa esces w1 z 26 or z 26 . or rea z, IS 

can occur only if s57 and s 67 lie on the boundary 
of the region of integration [ ( z~6 ) 2 = 1 ] . Under 
these conditions the point of coalescence need not 
be a singular point of the whole function Af3> ( s, t ), 
but is a "pinching point" of the contour of integra­
tion for one of the variables s 57 and s 67. The 
second step in the analytic continuation of (18) will 
therefore consist in a more detailed investigation 
of the integration over one of these variables, for 
example, s 67. 
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Let us rewrite the integral (18) in the form 

We have used the fact that z~6 is independent 
of s 67 . The integral (21) can be evaluated, since 
4pfp~K ( z~s. z~6 , -z 26 ) is a quadratic trinomial in 
the variable s 67 (see Appendix I). This can be 
done particularly easily, if we integrate (17) first 
over s 67 and then over z1s. However, we shall not 
carry out these integrations, since the analysis of 
the more complicated diagrams is more conven­
iently based on a study of f ( ss7, z 26 ) in the form 
(21). 

Let us consider f ( ss7, z 26 ) as a function of 
z 26 and find the value of z for which the singulari­
ties of f ( ss7, z 26 ) coincide with z~6) ( z) [formula 
(19a)]. If such a coincidence is possible with 
(ms + m7)2 < ss7 < (,{8- m6)2, the singularity of 
Af3l ( s, z) can be found without investigating the 
integral over ss7. If this coincidence occurs only 
for limiting values of ss7, the properties of the 
integral over ss7 also have to be examined. For 
real z 26 the roots of K ( z~s· z~6 , -z26) never fall 
inside the region of integration over s 67, since, 

h . ( 0 )2 1 . . according to (19b), t e pomts zs6 < giVe nse 
to complex values of z 26 • However, they may co­
incide with the boundary of the region of integra­
tion at ( z~6 )2 = 1. 

Let us consider the complex s 67 plane (Fig. 6), 
where sg>•<2l are the end points of the integration 
contour, and s~;>are the roots of 4ptp~K ( z~s• z~6• 
-z 26 ). We have 

+ (m2 - f2s)2l-1 {s [t2s (t2a- m2 - Ss7) 

+ (m~6 - m2) (m2 - Ss7- f2s)l 

+ mio [S~7- Ss7f26 + m2 (/2s - m2)] 

+ m2 [s~7 - 4m2s67 + (i2s- m2) (t2a- 3m2)] 

V ) (2) ' " +2m s (t2s- ~~~) (t2s- f2s) (i2s- i2s) (t2s- i2s)}; 

tW· <2> = m2 + m~5Ss7/2m2 

± V Ss7 (ss7 - 4m2) m~6 (m~6 - 4m2) 12m2 , 

(f2s- t;6) (t2s- t;6) = 4p;p~ (z~s- 1). 

(22) 

(23) 

From this point on we use the variable t 26 rather 
than z 26 , since all formulas have a simpler form 

, (+) 
sGl 

T 
I 
I 

I I sUJ 
I I 57 /2) 
L-- ----lij:~-::-::::-:::----3-:::;-~~!._ ______ _:::.,67 
~~-I 

I 
I 
I 
I 
1 r 
I 
·(-) 
SG? 

FIG. 6 

in the former variable. The connection between 
z 26 and t 26 is given by (5). Furthermore, we shall, 
for simplicity, write all complicated formulas in 
the main body of the paper for the case in which 
all masses mi (Fig. 4), but not m1s and m46• are 
equal to m. The consideration of unequal masses 
leads to rather more complicated expressions 
without introducing any essential new features. 
The formulas for the case of arbitrary masses are 
given in Appendix I. 

If t 26 lies in the physical region ( I z26! < 1 ), 
s~;> lie in the complex plane. For z 26 = 1 they 
fall on the real axis to the left of the contour of 
integration for s 67 and then separate along the 

( +) (1) real axis. For some t26 (or z 26 ) s 67 reaches s67 
and then returns as t 26 is increased, taking along 
the integration contour. f ( ss7, t26) can have a 
singularity only for such values of t 26 at which 
s< + > coalesces with s~7 >. * It is seen from (22) 

67 . t th . t t t(i),( 2) that th1s occurs a e pom s 26 = 26 · ( ( 
In the region of integration over ss7 the t4), 2) 

and the corresponding z~),( 2 ) are real if mrs> 
( m + ms )2• Therefore z 2Jl•( 2) may coalesce with 
z~6) ( t ), which is real for real t, if ( ms + m7 )2 

:S Ss7 :S (,{8- m6 )2, provided that mrs> ( mi + ms) 2. 
For mrs < ( m1 + ms )2 this coincidence can occur 
only if ss7 :S ( m5 + m 7 )2, i.e., at the boundary of 
the region of integration. 

a) Let us consider first the case m{5 > ( m1 
+ ms )2• The singular curves for the integrand of 
(20) in the t 26, s51 plane are shown in Fig. 7. 

The curve LMN is the boundary of the physical 
region of the variables ss7 and t 28 , over which we 
integrated originally in (18) ( z~6 :S 1 or t26 :::; t2s 
:S t'26 ). The curves AtiBti correspond to Eq. (19a) 
( z~6 l regarded as an expression in t 26 and ss7 for 
different values of t = ti ). They all touch the 
curve LMN in the points Bti ( Bti- M forti- oo). 

*The singularity of f(s 5., t,6 ) corresponding to the vanishing 
of the denominator in (22) (curve PQ of Fig. 7) will be dis• 
cussed later, as it does not play any role in the determination 
of the Karplus curve for the diagram of Fig. 4. 
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FIG. 7 

In the new variables expression (19a) takes on 
the form 

2m v' . 2 ' " ± - 4-2 - (t + s- 4m) (s57 - s57) (s57 - s57), s- m s 

'," 2 I 2 /2 2 , . v ( 4 2) 2 ( 2 4 2)/2 2 s57 = m , m46s m r s s - m m46 m46 - m m . 
(24) 

The curve CED is the singular curve of the func­
tion f(t 26, t 57 ) (t~~),( 2 )). The "catching" of the 
contour in the z 26 plane implies in the s 57, t 26 
plane that, for a given t = ti, the integration goes 
~om the curve LM to the curve MN above the 
tangent point Bti and to the curve Ati Bti below 

the tangent point. A singularity of Al3)( s, t) oc­
curs at a value of t = t ( s ) for which the curve 
AuBti touches the curve CE at some point k. In­
deed, for t > t ( s ), the region of integration in t26 
and s 57 includes part of the region behind the 
curve CE (Fig. 7), but for these values of t 26 and 
s 51 the function f ( s57, t 26 ) is already complex, i.e., 
AP) has an imaginary part. The singularities t( s) 
correspond to the Karplus curve for the graph of 
Fig. 4 with the asymptotes 

t = (m1s + m1 + m4s)2 , s = (ma + m1 + ms)2 

[ t = ( m15 + m46 + m )2 and s = 9m2 for equal 
masses]. It is seen from (23) and (24) that in our 
case [ mi5 > ( m1 + m5 )2] the curves t~~), (2) and 
t 26 can intersect only for real t, i.e., A~3 ) ( s, t) 
has no complex singularities. 

From this analysis we can easily obtain a 
formula for p<a) ( s, t) = Im Af3> ( s, t) for real t. 

For this purpose we note that we have after the 
"catching" of the contour in t 26 : 

Aia) (s, t) = 2s \ dss,dlzsf (ss,, tzs) + 45 ~ ds57dt26 f (s57 , / 26) , 

L1v Y K (t, '••· s;,) N Bt At V K (t, t 2a, s5,) 

(25) 
1( (t, f2s, Sa7) = 4s 4p!p~p~l( (z, Z2s, ~6) 

= s (s-4m2) (t2s-t~t i (t)) (t2s- t~~> (t)). (26) 

t~i) ( t) are given by (24). According to the pre­
ceding discussion, the integration in (25) goes over 
the area bounded by the curves LMN and NBtAt 
(Fig. 7), where BtAt is the curve t~6) ( t) for given 
t. Then 

~.. dss;dlzs Im f (s.,, lzs) p (s, t) = 4s \ 
V K (t, /zs, Ss7) 

CtKDt 

(27) 

To evaluate Im f ( s 57, t 26 ) we turn to the complex 
s 67 plane (Fig. 6). 

As already mentioned, Im f ( s 57, t 26 ) arises as 
a result of the coincidence of the singularities 
s~~>. It is equal to [f(s57, t26 + i£)- f(s57• t26 
- i£ )]/2i and hence, evidiently, to the integral 
along the contour y of Fig. 6. Thus we have for p 

(28) 

Up to this point we have proved (28) for the 
case where the point Dt lies on the curve CE. If 
the point Dt lies on the curve DE (the curve t~) 
intersects the curve t~~\ the region of integration 
will include values of t 26 for which s~~) meet one 
another for a second time on the real axis to the 
right of sW. 

It is easily shown by observing that the square 
root in ( 22) changes sign as one goes from t 26 

(1) (2) ( . < t26 to t26 > t 26 , that Im f s 57, t 26 ) vamshes to 
the right of the curve ED. Hence formula (28) 
remains valid also for points Dt lying on the 
curve ED. 

In our investigation of the singularities of the 
function f ( s 57, t 26 ) we have, up to now, not paid 
any attention to the fact that the denominator in 
(22) vanishes for ti6 = ( ~ ± m1) 2, in which case 
one of the roots s~7 > goes to infinity. If this is the 
root s~7 >, which does not affect the integration 
contour, the analytic properties of the function 
f ( s 57, t 26 ) will not be changed. This is the case 
for 

V- ( 2 2 2 (ms+ m1)<, Ss1 < m1o- m1- mo 

+ V (m~6 - m~- m;)2 - 4m~ (m; - m~) )f2mi; 

VSs; <, (m~5 - 2m2)/m for m1 = m. (29) 

In the opposite case, for t 26 = t 26, where 

l2s = (Vss7 + m1)2, (30) 

the root s~7) goes to infinity. This root "pinches" 
the contour of integration, which gives rise to an 
additional singularity for a given value of t 26 . 

This singularity corresponds to the segment 
PQ in Fig. 7. It is easily shown that the point P 
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(the point of coincidence of t 26 and t~) ) lies al­
ways above the tangent point k which determines 
the singularity of AP' ( s, t ), and therefore does 
not affect the equation for the Karplus curve. One 
might think that each of the singularities of the 
functions f ( s 57, t 26 ), t~~),( 2 ); t 26 should lead to a 
singularity of A~ 2) ( s, t ). However, this is not the 
case. Only the singularity t~~>, which is the first 
to give rise to a complex Ai3) ( s, t ), leads to a 
singularity of Ai3> ( s, t ). We shall discuss this 
question in detail when we analyze more compli­
cated diagrams. The existence of the singularities 
t~~) and t 26 leads to a change of the region of inte­
gration in the integral for p [ the point Ct in (28) 
may lie on PQ]. We note that for sufficiently large 
m{5, such that the right hand side of (29) is larger 
than (.[8- m6)2 [mf5 > m (.[8 + m) for mi = m], 
the curve PQ lies completely inside the region of 
integration and does not have any effect at all. 

b) Let us now turn to the discussion of the case 
m{5 < ( m1 + m5 )2. For such values of m{5 the 
curve CED changes from a hyperbola to an ellipse, 
and the singularities are now located as shown in 
Fig. 8 (the curve PQ in Fig. 8 corresponds to 
t 26 = t 26 ) . In this case the curve t~6) ( t) ( Ati Bti) 
does not meet t~P·( 2) (DEC) in the region of inte­
gration for s 57. However, the curve CED touches 
the lower boundary of the region of integration in 
the point E [ s 57 = ( m5 + m 7 )2, t 26 = m{ + ( m5 + m7 )x 
( mf5 - mf + m5m7 )/m5]. Therefore the integration 
contour for s57 is caught as the curve t2s ( t) 
passes through the point E. As a consequence, we 
obtain the additional region of integration DtAtE. 
As t is increased, the points of intersection of 
t~>(t) and t~i),( 2 ) (DEC), Ct and Dt, approach 
each other and coalesce for a certain t = t ( s ) for 
which the curve AtBt touches CDE. As t is fur­
ther increased, the intersection points become 
complex. As we shall see, Af3> ( s, t) is singular 
for t=t(s). 

Q 

In order to see this and to calculate p( s, t ), we 
shall assume that we have carried out all integra­
tions in (18) except the one over s 57, and consider 
the analytic properties of the resulting integrand 
F ( s 57, t, s) in the complex sf7 plane (Fig. 9). The 
singularities s~;) ( t) and s~7 ( t) of F ( s 57, t, s) 
are determined by the equations t~6 '< s 57 , t, s) 
= t~~) ( s57, s) and t~;> ( s 57, t, s) = ti~) ( s57, s ), re­
spectively. s~;>(ti) and s~7'<ti) are equal to the 
ordinates of the points Di and Ci in Fig. 8. As 
t is increased, the singularity s~;> reaches the 
boundary of the integration contour (the point Di 
coincides with the point E) and "catches" it. 

f 
FIG. 9 

For t = t ( s ), s~;> and s~7) coincide and recede 
into the complex plane for t > t ( s ). It is evident 
that A~3 ) ( s, t) has a singularity for t = t ( s) and 
its imaginary part p ( s, t) for t > t ( s) is the in­
tegral along the contour 'Y'. As is shown in Ap­
pendix II, p ( s, t) can in this case be written in 
the form 

si~) (s, I) t~;) (s,t,s.,) 

p (s, t) = ~ ~ ds67 ~ dlz• 

s~;) (s, I) ~~~) (s.,) 

(31) 

It is easily seen that the region of integration in 
(31) is obtained by analytic continuation of the re­
gion of integration in (28), which can also be 
written in a form analogous to (31). 

The integral (31) can be written in a more 
symmetric form by interchaning the order of in­
tegration over t 26 and s 67. Then (31) becomes 

s~;) (s, I) s~i) (s,l,s.,) 

p (s, t) = ~s ~ ds51 ~ ds61 
s~; l (s, f) s~;) (s,t ,s.,) 

(32) 

The integral over t26 goes from one of the roots 
' of K ( ss7• s 57, t26 , s) to one of the roots of 
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K ( s 57, t 26 , s, t ). The limits of the integral over s 67 APPENDIX I 
are 

It will be shown in the investigation of more com­
plicated diagrams that, taking into account the 
singularity t 26 = t26 = ( ...JS;; + m1 )2, the complex 
contour of integration for s 57 in (31) and (32) must 
be placed to the right of the value of s57 given by 
the ordinate of the point Pti in Fig. 8. 

5. CONCLUSION 

A general discussion of our results will be pre­
sented in a subsequent article, where we discuss 
diagrams of a more complicated type. Here we 
only note that our formulas for p( s, t) correspond 
to Cutkosky's [2] representation of p( s, t) for an 
arbitrary diagram in the form of a Feynman inte­
gral in which some of the internal lines are repre­
sented by 6 functions of qi - mi, where qi is the 
momentum of the i-th line. However, our discussion 
shows that if the number of integrations in the 
diagram exceeds the number of 6 functions, as is 
the case for almost all diagrams, this representa­
tion must be supplemented by the specification of 
the region of integration for the remaining vari­
ables. This region is solely determined by the 
analytic continuation of the unitarity condition and 
has a very complicated shape, including integra­
tion along complex contours. Without specification 
of this region the representation of p( s, t) in the 
form of an integral over 6 functions is meaning­
less. 

The three-particle unitarity condition has also 
been considered in a paper by Lardner. [4] There 
it is asserted that the existence of the Mandelstam 
representation can be proved if the analytic prop­
erties of five-point diagrams in only one variable 
( t15 and t46 in our notation) are known. Substitut­
ing, following Lardner, in the unitarity condition 
representations in these variables, we obtain the 
graph considered by us, integrated over dm~5 and 
dm~6 . Lardner asserts that the analytic properties 
of A~3 ) ( s, t ), written in the form of the integral 
(18), can be determined without considering inte­
grations over the variables s 57 and s 67, and that 
these variables can be regarded as constant para­
meters (like m~5 and m~6 ) in the analytic con­
tinuation. Our discussion shows that this is not 
the case. If we did not integrate over s 57 and s67, 
the function Af3l ( s, t) would have complex singu­
larities, which actually do not exist owing to the 
change in the contours for s 57 and s67 in the ana­
lytic continuation. 

If the masses are different, the expressions 
used in the main body of the paper take the form 

4s· 4p~p~p:K(z;'5, z~6 , -Z2s) = [t~a - 2 (Ss7 + m~) l26 

+ (so7 -m~)2 l (Ss7- siT>) (ss7- s~-;->), (AI.l) 

s~fl = [t~6 - 2 (s57 + m~) l2s + (ss7 - mi)2 ]-1 {s;7 (mio + m~) 
+ s57 [- st26 + f2s (2mi- m;- m;- m~5) 

+ s (m~ - m~5) + m~m: - m~m~ - mim: 

- ~(mi + m; + m~)- 2mis (mi + m~- 2m~)l 

+ slia + m;t~a - sl2s (mio + mi + m; - 2m;) 

- 126 [(m; + m~) (mi + m:) + (m~ - m~) m! - m~mi5J 

+ m~s (mi5 + m~ - 2m~) 

- mi [m~ (mi5 + m! - 2m~) - mi (m~ + m;) 

- m~ (m!- m~)l 

V (1) (2) . , H ± 2ml s (l2s - t26) (t2s - t2e) (126 - f2s) (t2s - f2s)}, 

~~~>.<2 > =(!/2m!) {(2m; (mi+s57) 

+(mis- mi- m!) (ss7 + m;- m~) 

± ([s57 - (ms + m1)2l [s57 - (ms- m1)2 l 

X [mio- (m1 + ms)2 l [mis- (mt- m;)"l/1'}, 

t~~ = (112s) {2s (m~ + m~) 

+ (s57 - s - m:) (s + m~ - mi) 

± ([s~ (m1 + m2)2 l [s- (m1- m2)2 l 

X [s- (h + m6) 2 l [s- CV Ss7- m6)2 1)''•}· 

(AI.2) 

(AI.3) 

(AI.4) 

The expressions for 4!'·{2) and t;( are equal 
to the two roots of the Landau determinants [5] for 
the triangular diagrams of Figs. 10, a and b, re­
spectively. 

Furthermore, 

4s·4P;P!P~K (z, Z26• ~6) = [s- (ma + m4) 2 ] 

x [s - (ma - m4)2l [126 - t~: > (t)] lt2s - t~; > (t)], 

MJ (I)=- (l/2s) [s2 - s (mi + mi + m: + s57) 

+ (m;- m~) (m~- Ss7)l 

(AI. 5) 

X 
[2st + s•-s (mi + m; + mi + m!l + (m~-mi) (m!- m;)J 

2s [s- (ma + mc)2 ] [s- (ma- me)•] 

2m. (s (t- t<tl (s)) (t- t<2> (s))(s57 - s~7 ) (s67 - s;7)]'1• 
± [s- (ma + me)•] [s- (ma- mc)2] 

(AI. 6) 
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t(1 ), (2 l ( s ) and s~7" are again the roots of the 
Landau determinants for the triangular diagrams 
of Figs. 10, c and d, respectively. They are ob­
tained from (AI.3) and (AI.4) by a simple change 
of indices. 

Finally, we quote the formula for the boundary 
of the region of integration for s67 and s 57, i.e., 
the condition I z~6 I :s 1. It follows from the ex­
pression 

4p~p~ (lo6 - 1) = s-1 {s [sssm~ + Ss1m~ + ss1m:- 2m:m: 

- 2m~m;- 2m:m~) + mi~sss + m~m;ss1 

sse + ss1 + s57 = s + m~ + m~ + m~. (AI. 7) 

APPENDIX II 

We indicate the derivation of (31). We have 

p (s, t) = [A~31 (s, t + ie) - Ai31 (s, t - ie) )/2i. (AII.1) 

For the discontinuity we only need consider the 
region of integration for t26 and s 57 :s ( m5 + m7 )2 

(region EDtiAti in Fig. 8). The integral over this 
region before the coincidence of s,;) (t) and 
s~~) ( t) [ t < t ( s )] can be written in the form 

(m,+m7) 2 

4s ~ ds57 {F (t, s, s57 - ie)- F (t, s, s.7 + ie)}. 

s~; l (tl (All. 2) 

F ( s 57 ± i£) are the values of the function F on 
different branches of the cut belonging to the sing­
ularity s~; l ( t ). Furthermore, 

FIG. 10 

F (t, s, S57 - ie)- F (t, s, S57 + ie) 

t<- l(s.,.t) 

\ dt.. {f (t . ) .) V K (t t s ) 26 - te, Ss7 

t(ll(s,) ' 26 ' 57 

- f (t26 + ie, s57)}. (AII.3) 

In order to obtain the value of the difference 
f ( t26 - i£, s 57 ) - f ( t 26 + iE, s 57 ) in the region 
EDtiAti• it is easiest to consider the analytic con­
tinuation of (21) into the region s 57 < ( m5 + m7 )2. 
We continue the resulting function in the form of 
a contour integral to values t26 > t~P ( s57 ), cir­
cumventing the singularities in such a way as to 
make the difference vanish up to values t26 
= t~~) ( s 57 ). As a result we obtain 

(.!-) 
567 

f (t26 - ie) - f (tz6 + ie) = - 2 ~ -~ _d_s,_, __ 
<-) V K (so,, i2o, s5,) 

567 

( -/K > 0 ). Substituting (All. 2) and (AII.3) in 
(AII.1 ), we obtain (31 ). 
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