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The magnetic susceptibility of molecular chains of a certain type is discussed. Arguments 
are given to show that the susceptibility of a chain which is not too long, and in which the in
teraction is antiferromagnetic, increases exponentially with increase in the number of links. 
Chains of spins may be considered to form a certain type of paramagnetic "fluid." When the 
interaction is antiferromagnetic, the susceptibility of such a "fluid" is weakly dependent on 
the temperature T, providing that T ~J/k (J is the energy of the exchange interaction be
tween adjacent links; the number of spins is assumed to be large). 

THE magnetic properties of chains of spins have 
been a topic of interest for a long time, primarily 
because of the relative simplicity of this case in 
comparison with two- and three-dimensional sys
tems. In addition, a chain of spins may serve in a 
certain approximation as a model for long mole
cules (molecular chains). The interest in such 
molecules is continuing to grow at present, both as 
a result of the development of polymer physics and 
because of extremely important applications in 
biology (especially as regards the nucleic acids). 

One of the most interesting problems dealing with 
the magnetic properties of chains is that of deter
mining their dependence on the chain length. In 
particular, it is important to establish whether it 
is possible for a molecular chain consisting of dia
magnetic links (monomers) to exhibit a large 
paramagnetic susceptibility. The present authors 
have discussed this problem [i,2] in connection with 
[a] and [4], but we shall discuss it here on a some
what different level. 

Naturally, the problem of the nature of the varia
tion in the susceptibility of a chain as the number 
of links increases is closely related to the magnetic 
properties of an infinitely long chain of spins. For 
interactions more complex than in the Ising model, 
the latter problem has not yet been solved rigor
ously and is very difficult. We shall therefore con
sider only some approximate calculations and the 
qualitative aspect of the subject. 

In studying the magnetic properties of chains 
and certain other objects, it is convenient to use 

the concept of "paramagnetic fluids," or systems 
of spins interacting rather strongly, but not in a 
"solid" or ordered state, i.e., not ferro- or anti
ferromagnetic.[2] Of course, the paramagnetic 
fluids include all ferro- and antiferromagnetic 
materials at temperatures T above but comparable 
with the Curie temperature ®. In this region, to a 
certain approximation, the susceptibility 
x = const/ ( T ± ® ), whereas for a paramagnetic 
"gas" x = const/T. If we limit our consideration 
to the magnetic "states of aggregation" existing 
within a single phase in the ordinary sense (i.e., 
we rule out atomic rearrangements), we are con
cerned with continuous transitions between para
magnetic "fluids" and "gases." 

Paramagnetic fluids of the second type comprise 
the degenerate ideal Fermi gas and the real systems 
(liquid He3 and electrons in metals) which behave 
analogously (Fermi fluids). In this case, 
x = const over the temperature range from T = 0 
to a temperature determined by the degeneracy 
energy and the exchange interaction between the 
spins.CSJ 

The third type of paramagnetic fluids, in which 
we shall be solely interested here, comprises the 
systems for which the Curie temperature ® is 
anomalously low or zero for some reason or 
another. This type, in particular, comprises the 
chains, as well as planar and finely-dispersed 
structures.[ 2] For sufficiently large three
dimensional systems, ® ~ ®o ~ J/k, where J is the 
exchange-intf')raction energy of the spins. However, 
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for infinite chains, ® = 0, while in certain other 
cases, ® « ®0• Throughout the interval ® ::::: T ""' ®0 

such spin systems are "fluid."* 
1. Let us consider a large molecule (or poly

mer) consisting of N links (monomers), in which 
each link has an even number of valence electrons 
and a singlet ground state (of energy E1 ). In the 
simplest case, the first excited state of the mono
mer is a triplet state with energy E3, with E3 - E1 

""' J 0, where J 0 is the exchange-interaction energy 
for the monomer. When J 0 » kT, the monomer will 
be diamagnetic. However, we shall be interested in 
the relation of the magnetic susceptibility x of the 
polymer to N and T. Obviously, x may become 
positive and large only when the triplet levels of the 
system (or other levels having non-zero magnetic 
moment) fall considerably and their statistical 
weight increases sufficiently as the number of 
links increases. 

Such a lowering of the levels as N increases is 
not only possible in principle, but is precisely a 
characteristic peculiarity of spin systems having 
the exchange interaction 

:ftex = -} ~ 2ltm SzSm (1) 
I, m 

(where sz is the spin operator in units of li; Jzm 
is the exchange integral with sign chosen such that 
Jzm > 0 in the antiferromagnetic case). 

If the system is large and in the antiferromag
netic state, its lower excited levels, as we know 
well from the spin-wave theory, will be separated 
from the ground state by a distance AEmin ""'J/N 
(neglecting the anisotropy energy). Besides, in 
chains it is precisely the lower levels which deter
mine the value of X· Hence, the susceptibility of 
an antiferromagnetic chain which is not too long 
should, roughly speaking, have the form 

x~(!J.2/kT)exp(- ~JjkTN), ~~ 1 

[cf. Eq. (4) in [ 1] with substitution of ;J/2N for 
He]. 

(2) 

However, lo~g-range order cannot exist in an 
infinite chain at T ¢ 0. That is, such a chain can
not be antiferromagnetic in the ordinary sense of 
the word. Thus, we also cannot use the ordinary 
spin-wave approximation. For a finite but long 
chain, we can no longer strictly speak of long-

*The term "paramagnetic fluid" may not be the best, 
of course. However, in applying the term "fluid," we con
sider it useful to emphasize the distinction between the 
properties of disordered spin systems having strong and 
weak interactions. The fact that this difference is or
dinarily only quantitative is also true to a considerable 
degree of the difference between real gases and liquids. 

range order, and the assumption that there exists 
a certain quasi-antiferromagnetic state maintained 
by the anisotropy field (see [ 1]) is not inconsis
tent. Nevertheless, such an assumption is clearly 
artificial and ungrounded (in any case, as applied 
to molecular chains). Thus the possibility noted 
in [ 1] may be criticized. The fundamental moment, 
as we wish to emphasize here (see also the last 
footnote in [ 1] ), arises from the fact that we need 
not assume antiferromagnetic ordering of the ordi
nary type in deriving a formula such as Eq. (2). 
The point is that the validity of the law AEmin 
....., J /N (or the more general relation A Em in 
-0 as N- 00 ) does not necessarily depend on 
the existence of antiferromagnetic order, such 
that the mean spins of the sublattices <s~1> > and 
<s~~> differ from zero. Such a conclusion is 
favored, first, by the fact that the chain energy is 
insensitive to the degree of long-range order (for 
details see [s] and [ 7] ) • Second, approximate cal
culations of the susceptibility of an infinite chain 
(see below), as well as certain more general con
siderations, indicate the existence of levels having 
non-zero spin which may approach arbitrarily 
closely to the spinless ground state. Third, the 
simplest and most convincing argument arises 
from a numerical calculation of Orbach [B] for a 
chain described by a very simple Hamiltonian 
similar to Eq. (1), that is, 

N 

::ffex = 21 ~ (szSt+l-i-), 
1=1 

1 
Stz = ±z- • (3) 

Namely, this calculation gave a law AEmin ""'J/N. 
Actually, in the antiferromagnetic case (i.e., when 
J > 0), the energy difference between the ground 
state and the first excited state (with spins of zero 
and unity, respectively), for chains of 4, 6, 8, and 
10 spins is 

!::.Emin = const ·J jN. 

The Hamiltonian of Eq. (3) and the more general 
Hamiltonian 

N N 

(4) 

:ft = 21 (1- a)~ StSI+1 + 2Ja ~ SlzSt+I.z (5) 
1=1 1=1 

commute with the projection of the total spin of the 
system Sz = 2:szz. Hence, if we know the levels 
E (n, Sz) of the system [i.e., the eigenvalues of 
the operator (5) ], we can find directly the mean 
magnetic moment in a field H in the direction of 
the z axis: 

~ !J.S,exp {- (£ (n, S,) -fl.S,H)jkT} 

JW __ n_,S~z~-------------------------
z- ~ exp{-(E(n,S,)-!J.S,H)/kT}, 

eli 
!1 = --;nc· 

(6) 
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FIG. 1. The susceptibility of an antiferro
magnetic chain as a function of the temperature 
for the case a = 0. Curve 1: N = 4; curve 2: 
N = 6; curve 3: N = 8; curve 4: N = oo (Bethe 
method). 
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FIG. 2. Values for a = 1 (the Ising model). 
Curve 1: N = 4; curve 2: N = 6; curve 3: N = 8; 
curve 4: N = 10; curve 5: N = oo (exact solution). 
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Hence, as the field H- 0, 

gSz = ~ exp {-E{ n, Sz)lkT}. (7) 
n 

Of course, we must also include in the denominator 
here the ground state with Sz = 0. 

The results of a numerical calculation* of the 
values of x (T)/xo = 2Jx (T)/~-t 2N for antiferro
magnetic chains for various values of N, for a 
= 0 and a = 1 (the Ising model) are given in 
Figs. 1 and 2 (the levels calculated by Orbach[s] 
are used for a = 0; the results discussed below 
for N- oo are also given in the diagrams). 

We may see from the calculations for a = 0, 
and directly from Eqs. (4) and (7), that an expres
sion for x similar to Eq. (2) _is valid when the 
interaction is antiferromagnetic. When N « J /kT, 
the paramagnetic susceptibility x is very small, 

*These calculations were performed in the computa
tion department of the Radiophysics Institute, Gor'kii 
State University, under the direction of G. M. Zhislin. 

but increases exponentially as N increases. When 
N,.... J/kT, it attains a value of 

'X ,.._. IJ.WIJ. (8) 

When N > J/kT, the higher levels begin to partici
pate, and x ceases to increase further with in
creasing N or decreasing T [owing to the coeffi
cient IL 2/kT of the exponential term in Eq. (2) ]. 
The latter is obvious from the results for an in
finite chain having an antiferromagnetic interaction 
(see Fig. 1). We note that an exact solution for 
x (T, H) is known for N- oo and a= 1, namely[ 9] 

'X (T, H = 0) = (IJ.2N(4kT) exp (- J(kT). (9) 

In this case, x ,.... IL 2N/J only at ,.... kT. This is due 
to the fact that, in distinction from the exchange 
model with an Ising interaction, 6-Emin = 2j, and 
is independent of N. 

2. Taking into account all that has been said, 
let us assume, for a chain having an antiferromag
netic interaction and a « 1, that formulas of the 
type of Eqs. (2), (4), and (8) are indeed valid over 
a broad range of values of N. Then the problem 
still arises of the relation between the properties 
of a simple chain of spins (Fig. 3a) and the be-
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havior of real molecular chains. On this level, we 
must note first of all that, within a certain range of 
values of the parameters J 0 and J 00 , the qualitative 
picture characteristic of a simple chain should be 
maintained in the more complex chains, such as are 
schematically portrayed in Figs. 3b and c. Thus, in 
the spin-wave approximation, as was stated in ref
erence 1, we may derive the same result by using 
the Hamiltonian of Eq. (1) for such chains as for 
the chains in Fig. 3a, but we must replace J by 
Jeff= -./J~oo: or when J 00 < 0 (ferromagnetic in
teraction), we then replace J by 

Jeff = V J o · I J oo I V J ol (J o + I J oo J). 

In the qualitative sense, it is also obvious that 
when J oo ;e J 0, the spins may undergo gradual rota
tion; this involves the lowering of the levels as N 
increases and the broadening of the Bloch transition 
layers.* 

Chains of mixed type, obviously, are more 
closely related to polymers (with an exchange in
teraction J 00 between monomers, and J 0 within the 
bounds of one monomer unit). As for the use of the 
Hamiltonian of Eq. (1) to find the energy levels of 
the polymer, this is a well-known method insofar 
as only homopolar bonds are taken into account. 
It was recently shown[iO] that the Hamiltonian of 
Eq. (1) may indeed be applied within certain limits 
even in the case in which the polar states play an 
essential role (here J ik in Eq. (1) is no longer an 
exchange integral but a different sort of quantity 
which can be either positive or negative). 

Thus, we have grounds for assuming that, in a 
linear molecular chain with an interaction of the 

*On the other hand, there are no numerical results for 
complex chains. Also, as ]00 -> 0, the chain practically 
disintegrates, and the lowering of the levels with increas
ing N cannot, of course, take place. Thus it is clear that 
the case ]00 f. Jo (especially when J00 « J0 ) shows quali
tative peculiarities, and the problem of whether relations 
ot; the type of Eq. ( 4) are valid for complex chains un
doubtedly requires especial study. We shall proceed here 
on the assumption that in a certain range of values of J0 

and ]00 , the spacing 1\E.run = fQ0 ,J00)/N, or at least that 
1\E.run -> 0 as N ... oo, 

exchange type (in the sense that the Hamiltonian 
of Eq. (1) may be used), the excited levels (with 
non-zero spin) will be lowered as the number N 
of links increases. Hence, and also in view of the 
nature of the distribution of levels in a linear sys
tern, within a certain range of values of N, the 
paramagnetic susceptibility of a chain of this type 
will increase exponentially as the chain is length
ened, up to a value x "'"'p, 2N/J eff· As N increases 
further, the susceptibility will vary rather slowly; 
for a given N, it will reach a gentle maximum at 
T ,.., J /kN, and will then decrease with increasing 
T (for T » J /kN, x "'"' 1/T). For a paramagnetic 
"gas," the susceptibility becomes field-dependent 
only when p,H"'"' kT. However, in a chain of strongly
interacting spins (and in general among paramag
netic fluids), there are other energy parameters 
characterizing the energy spectrum of the system 
in the absence of a field. Under such conditions, 
x can depend on the field even when p, H « kT. For 
example, if x is due to a single lower excited 
level E3 "'"' J /N, x will be independent of H only 
when p,H « J/N. 

When J » kT, the paramagnetic effect discussed 
here will appear only at relatively large values of 
N. Let us consider the other case, in which the 
molecular levels shift appreciably even when the 
number of links is small, so that polar states 
arise. This is just what takes place in the forma
tion of the so-called charge-transfer complexes.C4J 
The formation of such complexes may be due to a 
classical Coulombic interaction. The cases in 
which we take into account only the Coulomb 
interaction or only the generalized exchange 
interaction obviously are limiting cases of the 
more general problem in which we must take into 
account both types of interaction. Hence it is pos
sible to observe experimentally highly differing de
pendences on N, in addition to those of the types 
of Eqs. (2) and (4). 

We should also note that above we have basic
ally considered the case of chains having an anti
ferromagnetic interaction, since this is the case of 
interest in discussing the relation of x to N in 
molecular chains. For chains having a ferromag
netic interaction (which form paramagnetic fluids 
of the ferromagnetic type), a lowering of the 
lowest excited level with increasing N also occurs 
(in this case, D.E,.., J/N2), and has been rigorously 
demonstrated for states having a single reversible 
spin. 

3. For an arbitrary finite chain, or in general 
for a finite aggregate of spins, we can hardly ob
tain quantitative results by any method other than 
numerical calculation. Hence, let us consider an 
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infinite chain of spins, i.e., for practical purposes, 
the case of quite large values of N. We have al
ready pointed out the single known rigorous solu
tion for this case (for the Ising interaction). 

Let us consider now some approximate results. 
The self-consistent spin-wave theory which we 

have developed[ 2J makes it possible to study the 
properties of ferro- and antiferromagnetic mate
rials over the entire temperature range from T 
= 0 to the Curie point e. For an infinite chain, 
e = 0, but we can obtain the value x (®) = x (0) 
even in this case from the formulas derived in 
reference 2 by limiting approximation as e- 0. 
Besides, here we need not even carry out any cal
culations, since the value of x (®) in [ 2] [ see 
Eq. (45)] is actually independent of e, and for a 
linear antiferromagnetic chain without anisotropy, 

'X (0) = 'X (E>) = flW f8J. (10) 

By using the self-consistent method of Bethe,[S,t1] 
we can exactly take into account the interaction of 
a given spin with its nearest neighbors, while the 
role of more distant spins may be taken into ac
count by introducing some sort of effective field. 
For a chain with the Hamiltonian of Eq. (5), the 
corresponding calculations have been performed 
by one of the present authors.[i2] For a « 1 for 
the chain in Fig. 3a, 

X (0) = (flW/18/) (1 -+a), x(T~Jik)=fl2N/4kT. (11) 

The variation of x (T) throughout the temperature 
range (for the case a = 0) is clear from Fig. 1. 

However, if (1 -a) « 1, 

X. (0) = fl2 (1 - a)2 N/4J, X. (T ~ J lk) = fl2N/4kT. (12) 

For the Ising case (a = 1 ), the corresponding 
function x ( T) obtained by the Bethe method is 
shown in Fig. 4. This diagram shows clearly how 
close the approximate solution is to the exact 
solution. 
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For the chain of Fig. 3b, for ( 1 - a ) « 1, we 
have 

X. (0) = fl2 (1 - a)2 JgJ~ N/2 (Jg + Jgo), 

X (T~Jik) = fl2N/4kT. (13) 

The very important qualitative result, as is clear 
from Eqs. (10) - (13), is that X (0) ¢0 when 
a < 1. As regards the Ising case, x (0) = 0, owing 
to the absence of excited levels with energy E 
< 2J. However, if a < 1, such levels exist, for 
otherwise the susceptibility x at T = 0 would be 
zero. The numerical calculations also demonstrate 
that the maximum of the x curve approaches the 
axis of ordinates as the number N of links in
creases. According to the Nernst theorem, dx /dT 
= 0 at T = 0, but the value x (0) ¢ 0 is permis
sible, of course [X ( 0) ¢ 0 for Fermi fluids as 
well]. We note that the Bethe method gives a value 
(dx/dT)T=O ¢ 0 for the antiferromagnetic case 
with a < 1. Of course, this shows that the region 
of applicability of the Bethe method is limited. 
However, as we suppose, this does not affect the 
conclusion that x (O) ¢ 0. 

Thus, we can assume that a paramagnetic fluid 
of the chain type having an antiferromagnetic inter
action exhibits a non-zero susceptibility at T = 0. 
From that point on, x varies weakly, but begins to 
decline according to a law approximately as 
1/ (T + ®0 ) for T > e 0 ,.., J/k. Analogous behavior 
is shown also by a polycrystalline antiferromag
netic material[ta] having x = Yax 11 + %x1 • since 
XII (0) = 0, and Xl (0) = 1J. 2N/24J. 

For a ferromagnetic interaction in the Ising 
case, Eq. (9) is valid for J < 0. In this case, 
x ( 0) = oo. A calculation by the Bethe method 
(with a = 0) gives the function x (T) shown in 
Fig. 5 (the Nernst theorem cannot be directly 
applied in this case, owing to the presence of de
generacy). It is clear from Fig. 5 that paramag-

FIG. 4. The susceptibility of an antiferro
magnetic chain as a function of the temperature 
for the case a = 1. Curve 1: N = 10; curve 2: 
N = oo (Bethe method); curve 3: N = oo (exact 
solution), 
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FIG. 5. The susceptibility given by the Bethe method 
for a= 0, N = oo, Xo = IL2N/2JJJ. Curve 1: the ferromag
netic case; curve 2: the antiferromagnetic case. 

netic fluids of the molecular-chain type with ferro
and antiferromagnetic interactions are essentially 
different in their magnetic properties in the tern
perature range T < J /k. 

In conclusion, the authors wish to thank G. A. 
Semenov for drawing the diagrams. 
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