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Gravitational radiation from a charged relativistic particle moving in a magnetic field is cal
culated. The gravitational waves are due not only to the mass tensor of the particle itself, 
but also to the electromagnetic stresses caused by the charge, the contributions from which 
to the radiation are of the same order as that of the mass. The small additions to the metric 
tensor correspond to two processes of gravitational wave -formation: to the usual type of 
charge and mass emission, and to resonance emission of gravitational waves by the electro
magnetic field in the presence of a constant external magnetic field. The latter effect is con
sidered by one of the authors elsewhere.[ 9] It is shown that in the ultrarelativistic case the 
energy dependence of the intensity of gravitational wave radiation is the same as that of an 
electromagnetic field. 

IN view of the discussions of the existence of 
gravitational waves,C 1, 2•3J, it is of interest to 
examine a gravitational analog of the problem of 
the radiating electron, which can be solved rigor
ously. 

The right-hand half of (1) contains the sum of 
the energy-momentum tensors of the particle and 
of the field, where 

We consider a charged relativistic particle 
moving on some curved trajectory, which we as
sume to be specified. The trajectory of the particle 
is completely determined by the electromagnetic 
interaction, since the gravitational interaction is 
much smaller. We determine in the present paper 
the energy of the gravitational radiation, for which 
purpose we calculate the gravitational field in the 
"wave zone" and use the linearized Einstein 
equations. 

1. GRAVITATIONAL FIELD IN THE "WAVE ZONE" 

In the case of a weak field the metric tensor 
gik differs little from the Galilean tensor oik, 

that is, gik = oik + l/Jik- 1/2oiklJ!~, where /lJ! 1 « 1. 
A weak gravitational field is described by wave 
equations 

0 \jlik = - 16nxc-4 (T~k + T~k), 
8\jlikf8xk = 0, 

a (T~k + T~k)!axk = o. 

(1) 

(la) 

(1b) 

Here K - gravitational constant; the Latin 
indices i, k, l, and s take on the values 1, 2, 3, 0; 
the Greek indices a and {3 take on the values 1, 2, 
and 3; x0 = x0 = ict. 

is the energy-momentum tensor of the particles 
moving along the curves a (t) with 4-velocities 

(2) 

uk (summation is over all particles, {3 = v/c ), and 

(3) 

is the energy-momentum tensor of the electromag
netic field, which has two components, the particle 
field Fbk and the external field Fbk, i.e., 

We shall consider from now on the motion of 
one mass M with charge e in a magnetic field 
(the analog of the problem of the radiating elec
tron, see [s ,s] ) . 

We choose the origin at the center of inertia, 
which coincides with the center of rotation; then 

(4) 

the energy-momentum tensor of the particle (2) has 
the form 

T~k = Mc2 (1 - ~2 )-'f,qlk (t) ~ (r- a (t)), 

where 

qtk (t) = (1 - ~2) u' (t) uk (t). 

We now consider the electromagnetic field 
tensor T}k, which is quadratic in the field and, 
consequently, 

(5) 

(6) 

T~k~F0 ·F0 +2F0 ·Fp+Fp·Fp. (7) 
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The first term in (7) can be immediately dis
carded, since it is independent of the time and 
therefore does not contribute to the radiation. The 
last term describes the electromagnetic self energy 
of the particle, which is infinite in classical elec
trodynamics, but the infinity can be excluded by 
mass renormalization and we must take M to 
mean the experimental value of the mass. Thus, 
we need consider only the second term of (7), which, 
as can be readily seen,[4J has the form 

I Hs 0 - Ht - i£2 ~ 
tk _ H<0> 0 Hs - H2 i£1 

T P - 4;t - Ht -Hz - Hs 0 • 

! - i£2 iEt 0 - Hs 

(8) 

where H <O> is directed along the z axis, and H1, 

H2, H3, E1, and E2 are the projections of the mag
netic and electric fields on the x, y, and z axes 
respectively .C4J 

It is easy to verify that the energy-momentum 
tensor of the particle and the retained terms of the 
energy-momentum tensor of the field (8) satisfy 
relation (1b). 

In order to find the fields (8), we must solve the 
electrodynamics equations 

0 A (t, r) = - 4n j {t, r), 
c 

(9) 

where A ( t, r) is the vector potential and j ( t, r) 
= ev (t)o (r- a (t)) is the current. We shall 
solve (2) and (9) by the Fourier method, expanding 
all the functions in accordance with the general 
formula 

+oo 
f (t, r) = ~ e-imw,tf (w, r) 

m=-co 

+oo 
= ~ e-loof (2~)3 ~ f(m) (w, k) e-ikr d3 k, 

m=-oo 

(10) 

where k is the wave vector, and we do not assume 
that k = wn/c (n == r/r) (w0 = w/m -angular 
velocity of rotation). 

The terms of formula (10) with index m = ±1 
describe dipole radiation, which does not exist for 
gravitational waves.C4J The vanishing of the term 
with m = ±1 is automatic, by virtue of the law of 
motion of the center of gravity. If there are sev
eral moving particles and only one is relativistic, 
then we can show that the dipole term vanishes, 
and the terms with m ?: 2 are hardly changed by 
an account of the motion of the nonrelativistic par
ticles. 

We note that the problem can be solved directly, 
for example, by using retarded potentials. How
ever, if we consider the motion of one particle, the 

dipole term cannot be eliminated in the direct cal
culation. Direct calculation of the radiation of the 
field T}k with the aid of retarded potentials is 
much more complicated than calculation with the 
aid of spectral expansion, because it is necessary 
to know Tik and the electromagnetic field in the 
near zone. However, if we solve the problem by 
the Fourier method, the intermediate results ob
tained become physically more understandable, 
and this is precisely why we choose this method. 

Substituting the expansion (10) for ljlik (t, r) 
and the field sources in (1) we get 

ik ik 
•hik ( k) _ 16n:x T P (ro, k) + Tf (ro, k) 
't'(m) w, - c4 k•- ro2/c2 • 

If we substitute the value of ljl~~) ( w, k) in the 

Fourier inversion formula we obtain 

ik ik 
ohik ( ) - 2x I Tp (ro, k) + r, (ro, k) -ikrd3k 
't'(m) ro, r - n•c4 J k•- w•;c• e . 

(11) 

(12) 

The last integral can be transformed so as to 
eliminate integration over the components of the 
vector k which are perpendicular to r. This can 
be done with the aid of the stationary-phase method 
(see [ 7] ), i.e., we can show that the integral (12) 
assumes as r-oo the value (R = r- a) 

. +oorik (ro kn) + rtk (ro kn) 
.,hik ( k) = _ 4xt I p ' f ' -ikRkdk (13) 
't'(m) w, nc•R j k2 - ro2/c2 e ' 

-oo 

where the integration is only over the absolute 
value of the vector k. We note that (13) is valid 
also for the case of multiple poles, when the func
tions Tik (w, kn) themselves have poles at the 
point k = w/c. 

Let e be the polar angle of the vector R to the 
z axis, and let cp be the azimuthal angle measured 
in the xy plane; it then follows from (5) and (10) 
that 

ik ( k Mc2 'k T P w, n) = V ei <~-rt/2) m I~ (w, kn), 
1-[3• 

(14) 

where the nonvanishing components of Ihk ( w, kn) 
are [s] 

I11 (ro, kn) = ~2 (1m(s)cos2 <p 

- i ~ ( ~ 1m m)sin2<p + 1~ (!;)cos 2<p ). 

/~1 (ro, kn) = ~2 (1m(s)cos<psin<p 

+ i d~ ( ~ 1m(S))cos2<p+1~ (s)sin2<p), 

/~1 (ro, kn) = ~ (1~ (s) sin<p + i~ 1m (s) cos<p ). 

I0:(w, kn) =-1m(£), (15) 

and the components I~2 and I~l are obtained from 



118 V. I. PUSTOVOIT and M. E. GERTSENSHTEIN 

Ib1 and It1 by making the substitutions cos cp 
- sincp and sincp-- coscp. Here Jm (~) is the 
Bessel function and ~ = \m sin8. It is easy to ob
tain an expression for Tt ( w, kn) in the same 
manner. 

From (9) we can determine the Fourier compo
nent of the vector potential, and thus determine 
the intensities of the electric and magnetic fields: 

4ni {;ffi • ck• • } 
E (w,kn) = c(k2 - ffiz;cz) c J (w, kn) - 00 n(n, J (w, kn)) , 

H (w, kn) = c (k• ~~•;c•) k [n, j (w, kn)] (16)* 

where the Fourier components of the current are 

jl (w, kn) = iev exp {i (cp -n/2)m} /~1 (w, kn), 

j 2 (w, kn) = iev exp { i (cp - n/2) m} l~z (w, kn). (1 7) 

We now determine 1/J{~) ( w, kn). For this pur

pose we substitute (14) in (13), transform the inte
gral, and obtain directly by residues t 

'k 
'¢(m) (w, kn) 

4xM {·( n ffi0R) }ik( k) = ·exp t cp---- m I w n 
c2R Jft- {3 2 2 c ' ' 

(18) 

where 

/k (w, kn) = l~k (w, kn) + l}k (w, kn) (19) 

and the Iik ( w, kn) are in turn equal to 

=+cosO ( ! J m (S) + ! J", (S}- iffi;R 1;, (6) ), 

31 {3 ( ·1 ' it =ycos6 -~nlm(s)coscp 

- l J", (£) cos cp + iJ;; (£) sin cp 
m 

+ iffi~R J;, (£) cos cp + : c~; 6rp J,;. (s)), 

nl = if (- ! J", (£) cos cp + i cos2 a J;, (s) sin cp 

ic sin rp (1.+ sin2 6) J (!:) + iffi0R i (!:)cos 
a ffi Sin 8 m "' c m "' cp 

+ R sin ~ cos• 8 J (t)) (20) 
a Sin 8 · m "' ' 

and the components Jl2 and :q2 being obtained from 
Ir and I~1 by means of the same substitution as 
used above. We employed here the relation H<O> 
= Mc2w5/ev' 1 - {32, and in this case ~ = mf3 sine 
throughout. 

* [ n,j] = n x j. 
tThe residue is taken only at the pole k = w/ c, which 

corresponds to the outgoing wave, 

We can verify by direct calculation that the 
field components (18) satisfy condition (1a), i.e., 

kz'¢i~> (w, kn) = 0 (ko = iw/c). 

The integral of Tik (w, kn) has a double pole, 
and in taking the residue the integrand (13) must 
therefore be differentiated with respect to k, 
which gives rise to a factor that increases with 
increasing R. We shall show below that this cor
responds to a secondary effect, namely to resonant 
excitation of gravitational waves by the electromag
netic field.[s] 

Expressions (15), (18), (19), and (20) determine 
the gravitational field of a relativistically moving 
mass M with charge e at a given distance R in 
the "wave zone." 

2. ENERGY FLUX IN THE 11WAVE ZONE" 

In the "wave zone" the field represents a plane 
traveling wave, the energy carried by which per 
unit time is (see [ 10]) 

d; = c ~ (f~ncx) r 2 sin 6 d6 dcp, (21) 

(22) 

- the energy momentum tensor of the gravitational 
field (the brackets in (21) denote averaging over 
the time of revolution of the particle). 

Equation (22) contains the longitudinal field 
components 1jJ00 and 1jJ 001 , which, as is well known, 
do not correspond to radiation. The longitudinal 
components of the field can be eliminated by coor
dinate and field transformations (see Fock's 
book[t1] ). There is no need for such a transfor
mation, however, since the final expression for the 
energy flux is the same. 

Expressions (15), (18), (19), and (20) determine 
the components 1/J* ( t, r) of the Fourier expansion 
in the time. Therefore, if we substitute (10) in 
(21) and (22) and integrate over the time of revolu
tion of the particle, we obtain 

(,l,ik )2 1 (-.. )2 + '( ~ ss ')2} 
- 't'(m) - 2 '\)J(m) 2 '\)J(m) • (23) 

where 
.... ik 1 ik ik 
'\)J(m)- -d'I)J(m)- '¢<-m))• (24) 

Let us substitute (18) in (23); then 

+oo 
dQ; 2xM2{3 2c \' . ~ 2 (m) 

- di = a• (1 - [3•) j Sill OdO Li m <1> (0), 
m=2 

(25) 
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with 

and furthermore 

+ (s~ ~ 4) J~ m J m (6) 
m 1 

+ (~2 ~is~ - -~:) J;; (£) (26) 

<P}m> (6) = ;~2 (sin2 6 cos2 6 1;; (6) + ~2 sin4 6 J~ (s)) 

+ R~' (co:: 6 rm (6) + :~ sin2 6J;; (S) ), (27) 

<P);;'> (6) =- +(~ (1 + ~) sin 6 + ~ (1 :ns~n· 6)) ! J:, (s) J m (s) 

+ ~2 cos2 6 J;; (S)-+ ~2 ( 1 - ~2) sin2 6/~ (S) J m (£). (28) 

In (27) and (28) we left out the terms that are 
small in the ultrarelativistic case. It is seen from 
(27) and (28) that there are no terms proportional 
to the first power of R. 

We now use the relations (see Watson's book[s]) 

+oo 
~ m2J~ (mx) = x2 (4 + x2

) 

m=l 16 (1- x2)'!,' 

+oo 
~ mJ:,(mx)lm(mx) = x , (I xl < 1). (29) 

m=!J- 4 (1- x2) ;, 

The sum is taken over m :::: 2 in (25) and over m 
:::: 1 in (29). In the ultrarelativistic case, however, 
the term with m = 1 is small compared with the 
entire sum, and there is no need for eliminating it, 
since the maximum of the spectral density of the 
radiation occurs in the region of frequencies for 
which 

m ,_ (@/@o)'/~ 

With the aid of (29) and the equation for the 
Bessel functions it is easy to obtain for the ultra
relativistic case 

" 00 

~ sin9d9 ~ m2<P~m> (6) = 1
6
1 (: y, (30) 

o m=l o 

" 00 

I sin 6d8 ~ m2<P~m> (6) = _.!_(..!..)2 + _!_ ~(...!.)3 (31) 
~ m=l 16 lifo 3 a• lifo ' 

" 00 

~sin 0d6 ~ m2<Pj~> (6) = 1~ ( ~ f, (32) 
o m=l 

where fff.o = Mc2 is the self energy of the particle. 

Substituting (30) - (32) (without the term pro
portional to R2 ) in (25) we obtain a formula for 
the total radiation of gravitational waves from the 
system: 

_ dlif = ~ xM•c (..!..)4 
dt 8 a2 lif0 ' 

(33) 

which is equivalent to the gravitational force of the 
radiation friction 

_ dlif = ~ xM• (...!.)4 
dx Sa2 lifo. 

(34) 

In the ultrarelativistic case, as is well known 
radiation has a local character and the particle ' 
radiates predominantly forward. By virtue of the 
local character of the radiation, the value of a in 
(33) and (34) is equal to the instantaneous value of 
the radius of curvature. 

The forward directivity of the radiation enables 
us to interpret illustratively, although not rigor
ously, the dependence of the radiation intensity on 
the particle energy for different fields. For the 
radiation of a scalar field with a three-dimensional 
source density independent of the velocity, the sum 
of the Bessel functions in the formal summation 
over the harmonics yields a factor proportional to 
(@/@0 ) 6, i.e., the radiation of such a scalar field in
creases with energy as (@(@0 ) 6 • 

The transverse electromagnetic field, the source 
of which is the current, is likewise independent of 
the velocity in the ultrarelativistic case, and there
fore the summation over their harmonics leads to a 
factor (@/@o) 4 • The reduction in the degree is due 
to the transverse character of the electromagnetic 
field, which makes forward radiation difficult. The 
amplitude of the wave is proportional to the matrix 
element <j, A> and for forward radiation, when 
k is parallel to j, the matrix element vanishes by 
virtue of the transverse nature of the field. 

The gravitational waves are transverse-trans
verse,Cto] and by virtue of the "double" transver
sality the summation over the harmonics yields 
only ( @/@0) 2 , but since the source of the gravita
tional field itself, namely the energy-momentum 
tensor of the matter, is proportional to @/@0 , the 
radiation energy turns therefore out to be propor
tional to (@/@o) 4 , i.e., the dependence on the energy 
is the same as for the electromagnetic field. 

The ratio of the gravitational losses to the elec
tric losses is independent of the energy in the ultra
relativistic case: 

( dlif ) / (dlif) 13 xM• 
dt grav dt .el = T ~· (35) 

Formulas (34) and (35) differ from the results of 
Havas [i2] only in a coefficient. Our coefficient is 
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approximately 30 percent greater, because the 
problem considered by Havas,C 12] that of radia
tional gravitational friction of an isolated mass 
with specified motion, is incorrectly formulated. 
A weak gravitational field satisfies the wave equa
tion (1) only subject to the additional condition (1a), 
from which follows the condition (1b) on the field 
sources, a condition valid only for closed systems. 
What radiates is not only the accelerated mass, 
but also the stresses that cause the acceleration. 
In Havas' paperC12J these stresses are omitted and 
only the radiation of the mass is taken into account, 
a fact corresponding to formula (30). The coeffi
cient offormula (33) is expected to change somewhat 
when an ultrarelativistic particle moves in a field 
of a different structure. 

We note that at low energies the bulk of the 
gravitational radiation is due to the tensor Tbk, 
and the radiation of the gravitational waves by the 
electromagnetic stresses T}k is much smaller. 

We now consider the term proportional to R 2• 

The total radiation intensity corresponding to this 
term is 

_ 2 xM~R 2 ( <! ) 6 
_ xR• H<0>2 

Pgrav- 3 -a.- <!o -~-Pel, (36) 

where Pel is the electromagnetic power radiated 
by the particle and R is the distance from the 
center of the orbit to the point of observation, or 
the path of electromagnetic radiation of the particle. 
The part of gravitational radiation considered here 
is the result of the interaction between the field of 
the electromagnetic wave, which is detached from 
the particle, and the fixed field H<O> (for more de
tails see [ 9] ) • The coefficient of Pel in (36) shows 
what part of the electromagnetic power radiated by 
the particle is converted into gravitational radiation 
if the electromagnetic wave traverses a distance R 
in the field H<O>. In this case the energy of the 
gravitational radiation is taken from the energy of 
the electromagnetic radiation, and consequently 
the expression for the radiation force is not changed 
by inclusion of this term. 

The gravitational radiation fluxes of the particle 
and of the stresses do not interfere with the gravi
tational flux due to the electromagnetic wave prop-

agating in the field H<Ol. This can be seen directly 
from (27) and (28), where there are no interference 
terms (proportional to the first power of R). 

We see from (36) that the radiated power is 
proportional to the square R 2 of the distance tra
versed in the magnetic field H<Ol, and consequently 
the amplitude of this gravitational wave is propor
tional to the distance R. This is valid only for a 
homogeneous magnetic field. In the case of a ran
dom magnetic field the gravitational waves excited 
in different sections will be incoherent, and thus 
the power rather than the amplitude is additive. 
In this case R 2 in formula (36) must be replaced 
by RR0, where R0 is the correlation radius of the 
"fixed'.' field (see [ 9] ). 

The authors are grateful to Prof. V. L. Ginz
burg for guidance and to Prof. L. E. Gurevich for 
valuable remarks. 
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