
SOVIET PHYSICS JETP VOLUME 14, NUMBER 6 JUNE, 1962 

EFFECT OF MUTUAL ENTRAINMENT OF ELECTRONS AND PHONONS ON THE TRANS­

VERSE ELECTRICAL CONDUCTIVITY IN A STRONG MAGNETIC FIELD 

L. E. GUREVICH and A. L. EFROS 

Leningrad Physico-Technical Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 21, 1961 

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 1978-1985 (December, 1961) 

It is shown that the entrainment of phonons by electrons significantly changes the transverse 
electrical conductivity in a strong magnetic field at low temperatures ( T «e). The order 
of magnitude and the temperature dependence change in metals and semimetals. In semi­
conductors, the dependence on the magnetic field may also change. 

1. INTRODUCTION 

LET the magnetic field H in a crystal be directed 
along the z axis. We shall regard this field as 
strong in the sense that wT » 1, where w = eH/mc 
is the Larmor frequency ( m is the effective mass 
of the electron) and T is the relaxation time of the 
electrons. We shall be interested in the electric 
current along the x axis, due to the electric field 
acting in the same direction. The corresponding 
component of the electrical conductivity axx will 
therefore be denoted simply a. 

In the displacement of the electron along the x 
axis, the location of the center of the Landau os­
cillator x0 changes. Consequently, the y compo­
nent of the associated electron momentum also 
changes (x0 = cpy/eH). If the electrons are scat­
tered by the phonons, then their displacement along 
the x axis is associated with the transfer of the 
y component of the momentum to the phonon, which 
leads to the formation of a phonon flux along the 
y axis. If the phonons interacted only with the 
electrons, then the momentum in the stationary 
state, obtained by the phonons from the electrons, 
would be equal to the momentum given up by the 
electrons in the opposite process. This would 
produce an electron current along the x axis. In 
the opposite limiting case, when the phonons give 
up momentum to defects or to boundaries, or lose 
momentum as the result of transport processes 
more rapidly than they obtain it from the electrons, 
the phonons are virtually in an equilibrium state, 
and the usual relaxation of electrons takes place 
relative to the phonons. Here we are interested in 
the case in which the relaxation time of the pho­
nons relative to electrons, Tpe• is smaller than 
their nonelectronic relaxation time Tp· 

It is important to bear in mind that the current 

in the direction of the electric field can be caused 
by the transfer of the y component of the elec­
tronic momentum not only to the phonons, but also 
to different types of defects in the crystal. Of 
course, the effect studied by us is of importance 
only if that part of the electrical conductivity which 
we tentatively call the defect part ( ad) is much 
smaller than the phonon part (ad « ap ). 

The entrainment effect significantly decreases 
the transverse electrical conductivity and changes 
its dependence on the temperature and on the mag­
netic field. In particular, at sufficiently low tem­
peratures there is a dependence of the electrical 
conductivity on the dimensions of the specimen in 
the direction of the Hall current for semiconductors 
and semimetals. In semiconductors, the electrical 
conductivity in this temperature region is shown 
to be inversely proportional to the magnetic field 
intensity. For somewhat higher temperatures, the 
electrical conductivity can be shown to be exponen­
tially dependent on the temperature. In Sees. 3 
and 4 we consider the effect of entrainment in 
semimetals (and metals with a closed Fermi sur­
face) and in semiconductors for different phonon 
relaxation mechanisms. 

2. GENERAL THEORY OF THE EFFECT 

The quantitative expressions for the case of an 
arbitrary spectrum of the electrons can be ob­
tained from the equation for the density with the 
aid of a diagram technique [1]; however, inasmuch 
as the discussion is of a new physical effect, we 
shall, for the sake of a better understanding, limit 
ourselves in the present work to a very simple 
derivation for the case of an isotropic quadratic 
spectrum for the electrons. 

The kinetic equation for the phonons expresses 
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the fact that a change in the phonon distribution 
function per unit time (as a consequence of the 
emission and absorption of phonons by electrons), 
which brings about an electric current, is com­
pensated by a change in the distribution function 
as a result of the relaxation of the phonons rela­
tive to the electrons and other scatterers. We 
shall estimate the relaxation of the phonons in the 
"relaxation time approximation." As regards the 
term expressing their entrainment, which is asso­
ciated with the electrons, it can be easily obtained 
by starting out from the known formula for the 
electric current: [i, 2] 

jl = v~~~- 2: I J:,, 12 1 Cq 1
2 N qn,. (I - n0) 6 (wa~ + wq) Xna.eE. 

>:Oq (1) 

Here a and R are the aggregates of quantum 
numbers of the electron in the homogeneous mag­
netic field (with account of spin), na is the 
equilibrium Fermi function, Nq is the Planck 
function, w q is the phonon function, J13a is the 

matrix element of the operator eiq · r lh ( q is the 
momentum of the phonon), XBa = X/J -X~ is the 
shift in the center of the oscillator upon transition 
from the state a to the state {3, T is the temper­
ature in energy units, and V is the normalized 
volume; the quantity Cq characterizes the inter­
action of the electrons with the phonons; for 
acoustic phonons, it has the form 

Cq =EoJI qa3/MsV, 

where E0 is the deformation potential, M is the 
mass of the elementary cell, s is the sound ve­
locity, and a is the lattice constant. 

Let gq be the deviation of the phonon distribu­
tion function from its equilibrium value. Then the 
change in the distribution function as the result of 
emission and absorption of phonons by electrons 
is 

(2) 

The contribution to the current from the inter­
action of the electrons with phonons of momentum 
q can be treated as the difference between the 
number of absorbed and emitted phonons per unit 
time and per unit volume, multiplied by eXsa (the 
latter is independent of the indices (3 and a, as 
will be shown below). Then, from (1), 

( a!q t =- !=::. ~IJ0a.I 2 1Cqi 2 Nqna (I- nB) 6 
2,> 

(3) 

The relaxation time of the phonons relative to 

the equilibrium electrons is determined by the 
formula 

,;;;=- 2: ~I Cq 12 I Ja.(ll 2 (n"- n0) 6 (ea.- eB- nwq) 
o:,8 

(4) 

We now note that I J {3a 12 preserves the law of 
conservation of momentum for electron-phonon 
interactions: 

I Jo 12 - I J '12 6 + 6 + ~" - nn Py(l• Pya: Qy Pz[l• Pzo: Qz (5) 

(6) 

where CfJn( x - x0 ) are the normalized wave func­
tions of the oscillator. Then Xf3a does not depend 
on the indices a and 8: 

X[lo: = cq/eH. (7) 

Substituting (7) and (3) in (2), we get 

N (N · I)!}_ cqu - ~ .L !c!_ ,= 0 
q q T H T-r ' T I T ' 

pe pe p 
(8) 

whence 

(9) 

We now proceed to the calculation of the transverse 
electric current. It consists of the component (1), 

which is not connected with the entrainment, and a 
second component brought about by the absorption 
and emission of phonons, which forms (in its non­
equilibrium part) a current along the y axis, as 
has already been pointed out. The change in the 
momentum Py of the electron in such an interac­
tion also creates an additional current. 

The number of electron transitions from the 
state a to the state R, due to interaction with 
phonons of momentum q, is equal to 

- 2: I Cq 12 I J a[l 12 [no: ( 1 - n[l) (N q + gq + 1) 

- n(l (1 -no:) (Nq + gq)l6 (e"- e(l- nwq). (10) 

Since the number vanishes for equilibrium of the 
phonons, we have only terms with gq left, so that 
the number of transitions is: 

- 21i1'1 I Cq I2 1Jo:13l2 (no:- nfl) 6 (e, -efl -nwq)gq. 

Multiplying by eX13 a!V and summing over all a, 
{3, and q, we obtain the record part of the current: 

(11) 

Combining (11) and (1), we get the total current 
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j = jr + h = v~~~-~ il~a.\ 2 \Cq \2 Nqn,_ (1- n13) 
a.(3q 

X b (wa./3 + Wq} X,~a. ( eEXrla. + N q (:q + 1) gq), (12) 

which is identical with the result obtained in [i]. 

By using (3) and (9), one easily gets 
cz 'Q 

Op = HZTV LJ q!Nq (Nq + 1)/('tP + 't'pe). 
q 

(13) 

If the phonons interact only with the electrons, 
i.e., if Tp- oo, then the transverse current van­
ishes, in accord with the qualitative considerations 
given earlier. In the opposite limiting case, when 
the phonons are in equilibrium ( Tp « Tpe ), (13) 
transforms into (1). 

In the classical case (tiw « cp, where cp is the 
characteristic energy), Eq. (13) can be obtained by 
solution of the set of kinetic equations for phonons 
and electrons, when wT » 1. 

3. THE ENTRAINMENT EFFECT FOR THE CASE 
OF DEGENERATE ELECTRONS 

We limit ourselves to the case in which tiw « {;, 
where {; is the chemical potential. In this case, 
the collision integral of electrons with phonons 
does not depend on the magnetic field, and the 
classical expression can be used for Tpe: 

Here, since usually w > w0, where w0 is the fre­
quency of the transitions between states with op­
posite spin orientations, the sum over the spin 
indices is replaced by the factor 2. Carrying out 
the integration over the angles by means of the 6 
function, we get 

-1 1 !Cqi2Vm r 
't'pe =- n fi4q J p [n (ep) - n (ep- nwq)] dp, 

Pmin 

where Pmin = q/2 + ms. Proceeding to integration 
over the energy, and replacing n ( Ep) - n( Ep -hwq) 
by ( dn/dE )hwq. we easily obtain 

(15) 

We now consider the case in which the Fermi 
momentum of the electron is larger than the 
thermal momentum of the phonon. ( 2,; 2m{; > T/s ). 
Transforming in (13) from a sum over q to an 
integration, we get 

(16) 

Here the principal role in the integral is played by 

values of q on the order of the thermal momentum 
of the phonon (qT ~ T/s ). 

There are three fundamental mechanisms of 
non-electronic relaxation of the thermal phonons: 
1) relaxation on boundaries with the characteristic 
time TL ~ L/s, where L is the dimension of 
the specimen in the direction of the y axis, 
2) relaxation on defects [3] 

't'~~-~ ~g ( fi;q r [ x ~~ x, ( ~~~ r J . (17) 

where e = ti WD is the De bye temperature and X 

and xi are the relative concentrations of the im­
purity atoms and isotopes, respectively, and 
3) relaxation with the help of umklapp processes, 
with a relaxation time [3] 

(18) 

These mechanisms were shown in the order of 
their importance for an increase in temperature. 

In the low temperature region, where the first 
mechanism dominates the phonon relaxation, the 
conditions Tp ~ TL » Tpe leads to the inequality 

which is practically always satisfied. Substituting 
Tp = TL in Eq. (16) and neglecting Tpe• we get 

T 2 T ,~ e'2 s 
u ~(--\ (-1--

P ~ ""z · !iw · a8 L · 
(19) 

Thus the electrical conductivity is shown to be de­
pendent on the dimensions of the specimen in the y 
direction, perpendicular to the electric and mag­
netic fields. On the other hand, since 

(20) 

( n is the electron concentration, a~ is the elec­
trical conductivity produced by defects in the ab­
sence of a magnetic field, while 

(21) 

where .6 ~ a2 is the scattering cross section, v 
is the Fermi velocity of the electrons), we have 
the relation 

:;P . T 4 1 a 
-- ~ 111 (--) --3-.- -. 
:;d 8 (na ) ' Lx 

(22) 

In very pure semimetals at the low tempera­
tures which are necessary for the appearance of 
the effect of phonon scattering on boundaries, the 
relation (22) can be shown to be larger than unity, 
so that the entrainment effect can be measured. 

A still more important effect is seen in the 
case in which the phonons relax through the agency 
of umklapp processes at temperatures below the 
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Debye temperature. The ratio of the relaxation 
times is, according to (15) and (18), equal to 

Tp T . ' ' - ~· I o-2 -I £ '.'.'..'!.:_ \- '-l/>T 
1: pe 8 \ 0 fz2 ) e , 

which can be larger than unity. Here, we get for 
up: 

c; ~ 102__::_ ~(I_ '12 (_I_)2 e-H'aT (23) 
P an Ms 2 · .. tzro ms2 ' 

while, by (20)-(21), 

::;p ~ I Q3 _!'_(I_)' 3 e-e aT 1 
::;d Ms2 8 (na3 )' 'x 

In this case of not very contaminated materials, 
the latter ratio is also much larger than unity. It 
is interesting to note that Eq. (23) gives the expo­
nential temperature dependence of the electrical 
conductivity. 

A similar analysis can also be carried out for 
the case in which the phonons relax on defects of 
an atomic scale. The ratio of the relaxation times 
shows that even in this case, the entrainment of 
the phonons is quite considerable. 

However, if the phonons relax on impurities, 
then the phonon electrical conductivity is shown 
to be smaller than the impurity conductivity (or 
commensurate with it). In this case, one falls off 
along with the other upon decrease in the concen­
tration of impurities. If the phonons relax on iso­
topes, then, the phonon electrical conductivity can 
predominate over the impurity conductivity in low 
contamination materials with a large quantity of 
isotopes. Here up ~ T8, while, without account of 
entrainment, up ~ T5• 

Now let us consider the case in which -J 2mt 
< T/s. In this case, all the phonons that interact 
with the electrons are subthermal. The most ef­
fective relaxation mechanism of the subthermal 
phonons is the relaxation on normal phonons. In 
this case, the electrons entrain both the transverse 
and longitudinal phonons. 

For semiconductors and semimetals, the energy 
of interaction of the electrons with phonons can be 
written in the form ~Eikuik• where Uik is the 
tensor of the interaction constant. In the general 
case of such anisotropic interaction, the coupling 
of the electrons with transverse and longitudinal 
phonons is identical in order of magnitude. This 
is precisely the situation in such crystals as bis­
muth, germanium, silicon and, perhaps, in most 
real conductors with which experimenters deal. 

A different situation holds for crystals of the 
type InSb; here the electron spectrum is isotropic 
and, as a result of the cubic symmetry, the tensor 
Eik reduces to a scalar. In these crystals, the 
electrons interact with longitudinal phonons more 

strongly than with the transverse. However, keep­
ing in mind the very special situation and the es­
timated character of our entire investigation, we 
shall regard the coupling of the electrons with 
transverse and longitudinal phonons as comparable 
in magnitude, even though we took the isotropic 
character of the electron spectra into account. For 
order-of-magnitude estimates, this cannot lead to 
a contradiction. 

Thus, for not too low temperatures, one need 
take only the transverse phonons into account, in­
asmuch as they relax on thermal phonons more 
rapidly and, consequently, they make a larger con­
tribution to the electrical conductivity. The relax­
ation time of the subthermal transverse phonons 
is, according to Landau and Rumer,C3•4J 

t1_ = dJ- (aM! q) ((':l T)'. (24) 

According to (15) and (24), 

T _1_ / Tpe = ir. (8 / T) 4 (E 0ma2j li 2)2. 

For T < e, this ratio can be large. 
Substituting T l from (24) in (16), in place of 

T P' and neglecting Tpe• it is easy to calculate the 
electrical condt1ctivity. In this case, one must re­
place Nq and Nq + 1 by T/sq, and integrate over 
q up to qmax = 2-J 2mt. As a result, we get 

Thus Up ~ T5 while, without calculation of the en­
trainment, up ~ T. For crystals of a high degree 
of purity, ad < up· 

4. THE ENTRAINMENT EFFECT FOR NONDE­
GENERATE ELECTRONS 

We limit ourselves to the quantum case (tiw » T) 
(in the classical case, the effect is clearly absent). 

We begin by calculating Tpe· In this case, (3) 
can be put in the form 

_, !et ICq12 

Tpe='" fz2 ~~ 
q ' 

Here it is taken into account that tiw0 « T. For 
ti w0 » T, the factor 4 is replaced by 2. 

We transform from summation over Py and Pz 
to integration, and set n = n' = 0: 

4 I cq 12 • L l -1 1t \ y ~z 
'tpe =¥ N'7+1 Jdpydpzna.6 (w;,.,-Wq)llool2(2n1if • 

Integration over Py gives the factor Lxmw ( Lx. 
Ly, Lz are the linear dimensions of the normal­
ized volume V ): 
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-l 4n eH VIC q I' , r 1 I P2 )} 
Tpe =h c (Nq+1) (2nli)' ~dpzexp [r 1~'- z,:, [loo:2 

X 6 (ep2 +qz- Ep 2 - nwq), 

where 

~' = ~- nw 12 =TIn [n Y2nnn 2 1 m'',T' 'W], 

I loo [2 = exp (- q~ I q~), q3 = q; + q!, q~ = 2eHn I c. 

We shall now assume that 

q~ I q} = 2 (ms2 IT) (nwiT) ~ I, 

i.e., that the magnetic field is not "superpower­
ful."[5J Then Nq + 1 R:J T/sq and, after integration 
over Pz, we get 

(25) 

We set Tp = Aq-t and substitute this quantity, 
along with (25), in (16). We introduce cylindrical 
coordinates with the axis along qz and integrate 
over the angles. Moreover, since qH >-./ 8mT, 
we can assume q R:J ql· By introducing the dimen­
sionless variables ; = qz/-./ 8mT and 1) = ql/qH, 
we obtain 

- c' Tqt;f2 J!8riiT \ l]t+Id~dl] 
aP - 52 H2(2nli)3 A J 1 + C~l]t 2 exp (~2 +,f) ' (26) 

where C is the ratio of the coefficient of the ex­
ponential term in Tpe to Tp for ; = 1) = 1. If C is 
large ( C » 1 ), then the entrainment effect is ab­
sent [the unity term in the denominator of Eq. (26) 
can be neglected]. If C « 1, on the other hand, 
then the factor before the integral in (26) gives an 
order-of-magnitude estimate of the transverse 
electrical conductivity, while the integral depends 
logarithmically on C. 

For low temperatures, where the scattering of 
phonons on the boundary (A = L/ s and t = 0 ) plays 
an important role, we have 

1 e2 T ( T )'!, 
ap= 100 Lli lim ~. · 

For the quantity C, 

C-fT)2 s M 1 
- \ £;; wL m naa · 

(27) 

(28) 

It is seen from (28) that the entrainment effect in­
creases with increasing electron concentration and 
with decreasing temperature. In semiconductors, 
however, the scattering by ionized impurities in­
creases in this case. For estimates of the latter, 
one can make use of the usual formula [1] 

a 1 = 4::; z; [Ved[2 n0(1- n,.)6(waB) ll13a[ 2 eX~'"' (29) 
aBq 

where 

Wed 12 = 16n2e4Ji4JV2e2 (q2 + x2)2, 

N is the concentration of the impurities, K is the 
momentum corresponding to the Debye screening 
radius, and E is the dielectric constant. 

Assuming that qH » K, and summing (29) in the 
same fashion as was done above, one can obtain 
the following result by neglecting the logarithmic 
divergence that occurs in the integral: 

0'1 = nNe6l(mT)%w 2e2 • 

Then the ratio of (30) to (27) takes the form 

~ ~ 100 ( N 6) -~ L I q Ha .) 2 B 
cr p ~ e2 n a a2T2 a \----,-' T . 

(30) 

(31) 

Equations (28) and (31) show that the entrain­
ment effect can take place in magnetic fields of 
the order of tens of kilo-oersteds, at temperatures 
~ l0°K, and in concentrations of electrons and im­
purities N ~ n ~ 1014 cm-3• Here, in accord with 
(27), crp ,..., 1/H, while the transverse magnetore­
sistance Pxx R:J o/ a~y ~ H. The fact that the con­
current mechanism-scattering by ionized impuri­
ties-gives a weak (logarithmic) dependence 
Pxx< H) should make possible the experimental ob­
servation of this effect. 

It is an important conclusion of our theory that 
the ratio of the electrical conductivity, brought 
about by the ionized impurities, to the phonon elec­
trical conductivity (31) is proportional to the square 
of the concentration, while in the theory which does 
not take entrainment into account, the ratio is pro­
portional to the first power of the concentration. 
This means that for high concentrations (when 
C « 1 ), the transition from the phonon electrical 
conductivity to the impurity conductivity occurs at 
much higher temperatures than follows from the 
theory which does not take the entrainment into 
account. 
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