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It is shown that in relativistic theory the partial wave amplitudes fz are analytic functions 
of the angular momentum l. The asymptotic behavior of the scattering amplitude as a func
tion of momentum transfer is determined by the nearest singularities of fz. An expression 
is obtained for the scattering amplitude for arbitrary momentum transfer in terms of the 
fz, which satisfies the Mandelstam equation relating the spectral functions and absorptive 
parts. The behavior of the scattering amplitude at high energies is discussed. 

1. INTRODUCTION 

IN a recent paper, Regge, [i] by introducing par
tial waves with complex orbital angular momenta, 
obtained an interesting result in nonrelativistic 
theory concerning the asymptotic behavior of scat
tering amplitudes and spectral functions in the 
nonphysical region of large momentum transfers. 

In a previous paper of this author [2] the asym
ptotic behavior was studied under these same con
ditions in relativistic theory in order to examine 
the possible types of asymptotic behavior of the 
scattering amplitude at high energies. In this an 
important part was played by the Mandelstam 
equation, obtained by analytic continuation of the 
usual unitarity condition. 

In the present paper we show that partial waves 
with complex orbital angular momenta l can also 
be introduced in a relativistic theory. Their ana
lytic properties are to some extent similar to 
those of the corresponding nonrelativistic quanti
ties. The introduction of complex values of l en
ables one to find the general solution of the Man
delstam equation and to obtain some information 
about the possible asymptotic behavior of ampli
tudes and spectral functions. 

2. PARTIAL WAVES WITH COMPLEX ORBITAL 
ANGULAR MOMENTA 

Let us consider the dispersion relation in the 
momentum transfer in the t channel (region III 
in Fig. 1 ): 

co 

A (s, t) = A (s0 , t) + * ~ ds' A1 (s', t) [ s'-=- 5 - s' ~ sJ 
4p.• 

+ -k r du' A2 (u', t) [u,-=- u- u' ~ uJ (1) 
4p.• 
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FIG. 1 

To be specific, we have written the equation for one 
subtraction; as will be clear later, the number of 
subtractions is unimportant. 

In addition we shall assume that the Mandelstam 
representation is valid. Then, assuming for sim
plicity that the particles all have the same mass /.L 

and are the lightest particles (for example, 1r me
sons), we find, following Mandelstam, that the 
spectral function p ( s, t) and the absorptive parts 
A1(s, t) and A2(u, t) must satisfy the equation 

p (s t) = V t - 4~t2 \ dzt dz2 

' t J Yz2 + z~ + z~- 2zz1z2 - 1 

x [A1 (sh t) A~ (s2, t) + A2 (ul> t) A; (u2, t)l; 

s = -f(t- 4tJ.2) (1- z), 

s1,2 =- ~ (t- 4tJ.2) (1- zd, 
u1.2 =- f(t- 4tJ.2) (1- zd, 

z > z1z2 + Y(z~- 1) (zi- 1), (2) 

for t below the threshold for inelastic processes. 
(For 7T mesons, t < 1611-2 ). 

Using (1), we calculate the amplitude for the 
wave with angular momentum l: 
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1 

fz (t) = ; ~ Pz (z) A (s, t) dz. 
-1 

For l =:: 1 
00 

lz (t) = ~ ~ Qz (z') A1 (s', t) dz' 
z, 

co 

+ (- 1)1 ~ ~ Q1 (z") A2 (u", t) dz", 
z, 

where 

1 r Pz (x') 
Qz(x) = 2 j x-x' dx', 

-1 

z' = l + _2_s'_ ...___ - l ·8fl' 
t- 4fl• """ Zo - + t- 4fl• > l, 

, l + 2u" ...___ 
z = t- 4fl' """Zo. 

(3) 

(4) 

(5) 

If the asymptotic behavior of A for large s re
quired not one but k subtractions, equation (4) 
would be valid for l =:: k. We write (4) in the form 

fz (t) = cp)I> (t) + (- l/cpj2> (t) 

and study the properties of, say, cpz1>(t). 
We consider the expression 

00 

cp/1> (t) = ~ ~ Q,(z') A1(z', t) dz' 
z, 

(6) 

(7) 

as the definition of cpz1> for nonintegral Z, where 
Qz ( z ) is the Legendre function of the second kind, 
and coincides with (5) for integer Z. Then under 
the condition that I A1(z, t)l < Cza, it follows from 
(7) that cpz1> is an analytic function of l in the half
plane Re l > a, since Qz ( z') is an analytic function 
of l and behaves like (z' )-<Z+O for z'- oo. 

For z-oo, 

z0 = ch a. (8)* 

Using the analytic properties and the asymptotic 
behavior (8), we can easily invert (7) and express 
A1(z', t) in terms of cp~0 (t). In order to do this, 
we use the following relation, which is proved in 
Appendix I: 

b+ioo 

2~ ~ dl (2! + l) Pz (zl) Qz (z2) = 6 (z2 - z1), 
b-ioo 

Integrating (7) over l for b =:: a, we get 
b+ioo 

A1 (z', t) =-£- ~ dl (2! + l) cp}l> (t) Pz (z'). 
b-ioo 

b > -1. 
(9) 

(10) 

We note that the right side of (10) is equal to zero 
for z < z0, since then the asymptotic behavior of 
cpz0 and Pz(z) for large l permits us to close the 
contour to the right for l - oo . The formula be
comes meaningless for z < 1. 

*ch =cosh. 

Formulas (7) and (10) are analogous to the di
rect and inverse Mellin transformations, but are 
more convenient than the latter for studying the 
unitary condition (2). 

We can write a similar relation for A2(z", t): 
b+ioo 

A2 (z", t) = f ~ dl(2l + 1) cp)2> (t) P1 (z"). (11) 
b-ioo 

Since p(s, t) = Im A1(s, t), 
b+ioo 

p (s, t) = ~ ~ dl (2! + 1) P1 (z) ~- Icp)1>- (cp)!>n. (12) 
b-ioo 

Now we can substitute (10), (11) and (12) into 
(2). As shown in Appendix II, Eq. (2) will be sat
isfied if 

+ [ cp)Il _ ( cp)P)*] = ! [ cp)ll ( cp)P)* + cp)2> ( cp);>)*]; 

(13) 

For real Z, (13) goes over into 

Im cp}i> = (qlw) [\ cp)Il \2 + \cp)2l \2J. (14) 

If together with Eq. (2), which is obtained by 
analytic continuation of the unitarity condition in 
the t channel into the region I, III of Fig. 1 
( s > 4t.t2 ), we also considered the relation between 
p ( u, t) and A1, A2 which follows from the analytic 
continuation of the same unitarity condition into 
the region II, III of Fig. 1 (u > 4t.t2 ), then as shown 
by Mandelstam we would get the equation 

p (u, t) = Im A2 (u, t) = _!I_\ dz1dz2 

w j Y z• + zi + zi- 2zz1zz -•1 

X [AI (Zl) A; (Z2) + A; (ZI) A2 (Z2) I (15) 

and, analogous to (12), 
b+ioo 

p (u, t) = ~ ~ dl (21 + l) P1 (z) ~ [cp)2l- {cpj;>)*J. (16) 
b-ioo 

Substitution of (10), (11) and (16) in (15) gives 

f lcp)2> _ (cp);>n = ! Icp)l> (cpW)* + (cpg>)* cp)2>J, 

where for real l, 

(17) 

Im cp)2l = (q/w) [cp)llcp)2l• + cpjl>*cp)2l). (18) 

If for integer l we multiply (18) by (- 1 )Z and add 
to (14), we get the usual unitarity condition: 

(19) 

Thus formulas (14) and (18) are the generaliza
tion of (19) to arbitrary real Z, while (13) and (17) 
generalize it to arbitrary complex Z. 

For the case of interaction of identical particles, 
cpz0 = cp?> = 'Pz· but since the integration in the 
original unitarity condition must be taken only over 
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half the sphere, the right sides of (1) and (15) con
tain an additional factor Y2, so that instead of (13) 
and (17) we get 

+ l1P1- (IPI•)*l = ! 1Pd1P1•r. fz = !1 + (- 1)1lqJz.(20) 

Thus we have shown that A1(s, t), A2(u, t), 
p(s,t) and p(u,t) have the form (10), (11), (12) 
and (16) and satisfy the unitarity condition if 
cp~0 and cpT satisfy (13) and (17). The functions 

cp~1>, cp~2 > are analytic in l, their behavior for 
la.rge l is given by (8), and for integral l > a they 
are related simply to the phases for the t channel 
(Eq. 6). 

It is also easy to get the expression for the 
amplitude A(z, t) in terms of cp~1>(t) and cp?>(t). 
This can be done either by using the dispersion 
relation (1) or by analytic continuation of the 
series 

00 

A (z, t) = 2J (2! + 1) fz (t) Pz (z), 
l=O 

in a way similar to that for the nonrelativistic 
theory, [i] but including both cuts. 

With some simple transformations we get 
n b+ioo 

A (z, t) = ~ (2! + 1) fr (t) P1 (z) + + ~ 
1=0 b-ioo 

X [!pjll (t) Pz (-z) + IP)2) (t) Pz (z) I, 

where k ::::: n :::::b. 

(21 + 1) dl 
sin In 

(21) 

If we resolve A(z, t) into parts which are sym
metric and antisymmetric with respect to the sub
stitution z - - z: 

A(.-:, t) = A+(z, t) + A-(z, t), 

then 
n 

A± (z, t) = + 2J (2! + 1) ft(t) [1 ± (-1)1] P1(z) 
1=0 

b+ioo 

++ ~ 
b-ioo 

where 

(21 + 1) dl tf=- !Pt( -z) ± P,(z) I, 
sin In 

satisfy the conditions 

i r± t+)· q r+ <t+)· 2 11 -(T* 1 =ro r ~* · 

(22) 

(23) 

Contrary to the situation for the nonrelativistic 
theory, we have not been able to show that cp~1 > and 
cp?> are a) meromorphic functions for Re l > - %. 
and b) have singularities only in the upper half
plane. We know of no reasons why the first prop
erty (meromorphy) should be retained in the ex
act theory even when t- 4tt2 « 4tt2, i.e., in the 

nonrelativistic region in the t channel. This is 
related to the fact that in analyzing the analytic 
properties of fz(t) it was necesary to assume that 
the potential at small distances is not too singular 
(which was necessary in the nonrelativistic theory, 
in order for a solution of the form rl to exist for 
small r ). 

It is easy to give examples of potentials for 
which this property does not hold. For a potential 
of the type - a/r2, the partial wave has branch 
points at l = - % + ...fCi, which for 01. > % repre
sent a collapse into the center. For a a-function 
potential, fz = 0 for all l ;r 0. 

As for the second property (singularities only 
in the upper half-plane), in nonrelativistic theory 
it is a consequence of the hermiticity of the Hamil
tonian and is closely related to the fact that the 
singularities of the amplitude as a function of the 
energy t, which correspond to unstable states, lie 
only on the second sheet of the t plane. 

It may well be that this distinction of the upper 
half-plane is retained in the relativistic theory, 
but we have simply been unable to prove it. 

In conclusion we consider the analytic proper
ties of cp~1 > ( t) as a function of t for arbitrary l 
where Re l > maxt a. These properties are easily 
understood, starting from formula (7). Since 
A1 ( s, t) is an analytic function of t, Eq. (7) is 
conveniently written in the form 

00 

IP)l) (t) = n (t _: 411.) ~ Q 1 ( 1 + t _:5
4!12 ) A1 (s, t) ds. 

41'-2 (24) 

For t > 4tt2, the singularities of cp~1 > ( t) corre
spond to singularities of A1 ( s, t). For t - 4tt2, 

Q ( 1 +-2s_)~(t-4f!.•)I+I 
I t- 4f!.• 2s ' 

consequently, 

IPP) (t) ~ q21 for q _. 0, 

which coincides with the usual relation for integer 
l, with the one difference that cp~1> for nonintegral 
l remains complex when t < 4tt2• 

As t decreases, singularities of cpy>(t) appear 
for two reasons: 1) Qz(z) has a singularity at 
z = - 1 and consequently cp~0 ( t) has a singularity 
at t = 0; 2) A1(s, t) has a singularity for 4tt2 - s 
- t = u = u0• 

It is also easy to write a dispersion relation for 
cp~O(t). We note that in nonrelativistic theory 
A1(s, t) has no singularities for t < 4tt2, and the 
left-hand cut for cp~0 ( t) comes only from the sin
gularity of Qz. 
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3. ASYMPTOTIC BEHAVIOR OF A 1(s, t) AS 
s-oo 

To investigate the asymptotic behavior of 
A1 ( s, t) for s - oo ( z - oo) it is convenient to 
use formula (10). Since when z-oo, Pz(z) ..... zl 
(for Re l >-% ), the asymptotic behavior of A1 
as z - oo is determined by the position of the 
nearest singularity on the right for the function 
rn<1> 
't' l . 

The simplest asymptotic behavior, of the form 
sf(t), which is discussed in C2J, corresponds to 
the case where qJ<.p has as its nearest singularity 
for arbitrary t a simple pole at l = 1. However, 
the unitarity condition (18) excludes the possibility 
that qJ<p goes to infinity for real l as we approach 
the first singular point on the right, since it fol
lows from the unitarity condition that (q/w )I qJ<,_t>l 
:s:l. 

In the nonrelativistic theory [i] the only singu
larities of qJt0 are poles in the upper half-plane 
and, consequently, the asymptotic behavior has 
the form 

AJ ~ f (t) sZ,<t>' (25) 

where l1 ( t) = a ( t) + i{J ( t) is necessarily complex. 
The same asymptotic behavior was assumed in rela
tivistic theory in the work of Chew and Frautschi.[3J 
Such behavior is possible, but it is important to un
derstand that it leads to an essentially nondiffrac
tive character of the scattering in the s channel for 
s- oo (cf. C4J). In fact, if we continue (25) into 
the region t < 4J.t2, then {J ( t) = 0 [the pole moves 
onto the real axis; for t < 4J.t2 we do not have the 
condition (18~ and we will have 

A1 ~ f (t) sa.U>, 

where a(t) ~ const (since the location of the pole 
of the function qJl1> ( t), which is analytic in t, is a 
function of t). The assertion of Chew and Fraut
schi that a is approximately constant in the inter
val -20m~ < t < 0 is, to say the least, not under
standable. 

For t = 0, as shown by Froissart, [SJ I A1 1 

:s: Cs ln2 s, and therefore a( 0) :s: 1. In order to 
get a constant total cross section, it is necessary 
that a ( 0) = 1. Then in the physical region of the 
s channel (region I in Fig. 1 ) , for small t 

AI~ sf (t) eYilns (26) 

falls off very rapidly with increasing - t for large 
s, so that the diffraction cone (the region of values 
of t for which do/ dt does not tend to zero ) is not 
independent of energy, but has a size t "' - 1/ln s. 
In particular this has the consequence that the 

elastic scattering cross section tends to zero at 
high energies. If with such a behavior for A1(s, t) 
we calculated the partial wave amplitudes az( s) 
in the channel s, then in contrast to the case of 
diffraction, in which az ( s ) ..... 1 for l ~ p/ J.t while 
the amplitudes drop rapidly for l > p/ J.t, we would 
find az(s)"' 1/ln s for l ~ PJ.t-1 ln1/.! s, while the 
amplitudes would fall off rapidly for l > PJ.t- 1 ln112 s. 
This means that as the energy increases the par
ticles ''swell'' and become more transparent. 

The asymptotic behavior At<s, t) = sB(~ )f(t) 
(where ~ = ln s ), which was discussed in [2] and 
corresponds to a decreasing cross section, occurs 
if qJT ( t) has a branch point for l = 1 (for arbi
trary t). The fact that by virtue of the unitarity 
condition qJt1> (t) remains finite as we approach 
the branch point, has the consequence that B( ~) 
falls off faster than 1/ ~. The appearance of such 
a branch point can be pictured classically, for ex
ample as follows. Suppose that the interaction in 
states with l values other than l = 0 has the char
acter - a/r2 with a= %. Then for l = 1 the func
tion ({Jt1> ( t) will have a branch point corresponding 
to collapse into the center, but qJt1> will still have 
a meaning. We note that in nonrelativistic theory 
among the interactions 1/rn for small r only the 
interaction 1/r2 has a real effect on the analytic 
properties of qJy>(t), since for n < 2 the function 
qJt1> is meromorphic for Re l > - %. while for 
n > 2 it does not exist in general. If qJt1> has a 
branch point, then B( ~) ..... 1/ ~ 3/2 for ~ - oo. 

c 
(l) 

·w, 
c 

0 I 
\ xz K 

z;(t} c 

c 

FIG. 2 

Let us discuss briefly the possibility of such 
an asymptotic behavior of A1(s, t) that, no matter 
how complicated the asymptotic form for t > 4J.t2 

(region I, III in Fig. 1 ), for t < 4J.t2 it is equal to 
sf( t). It is clear that if qJl1> is a merom orphic 
function, then as we go to t < 4J.t2 a pole cannot 
develop for l = 1 independently of t. But if there 
is a branch point l = l 0(t) on the real axis (Fig. 2), 
then it may turn out that qJy> has a pole for l = 1 
which lies on only one side of the cut. The pres
ence of such a pole does not contradict the unitar
ity condition. If, as t decreased, Z0(t) moved 
toward the left, and for t < 4J.t2 became less than 
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unity, leaving a pole on the right, the asymptotic 
behavior when t < 4~-t2 would be determined by the 
pole and would have the form sf(t). It is easy to 
see that in order for the pole to remain at the same 
place when t < 4~-t2 , it is necessary that it be located 
initially on the lower edge of the cut. 

One may also consider a possible behavior like 
Z0 ( t) in the region t > 4~-t2 • This problem contains 
several interesting points which we shall not dis
cuss here. We note only that, even though one can 
make no rigorous assertions, from studies of these 
possibilities one becomes convinced that a behavior 
like sf( t) in the region t > 4~-t2 is impossible to 
obtain if we restrict ourselves to only two-particle 
states in the unitarity condition for the t channel, 
and that even the inclusion of any finite number of 
states may not be enough. 

In conclusion I wish to thank I. T. Dyatlov, 
L. D. Landau, I. Ya. Pomeranchuk and K. A. Ter
Martirosyan for valuable discussions, and Chew, 
Frautschi and Froissart for sending me their 
preprints. 

APPENDIX I 

To prove formula (9), we consider the well
known relation 

00 

_i_ =~ ~ (21 + 1) P1 (21) Qz (22), 
Z2- Zl ! l=O 

(ALl) 

which is valid for 

and are entire functions of l for Re l > - 1, for 
z1 < z2 the integration contour on the right side of 
(AL3) can be deformed into the contour C'. The 
integral over the contour C' will converge for all 
complex z and for real values satisfying 1 < z 1 
< z2• We may therefore calculate the difference 
of the values with z 1 ±iE for the right and left 
sides. As a result we get, using (AI.4), 

a+ioo 

b (zz- 21) = :n ~ dl (2l + 1) P1 (21) Qz (zz), (AI.6) 
a-ioo 

QED. 
This formula can also be proved directly. In 

particular, the fact that the right side is equal to 
zero for z 1 < z2 follows immediately from the fact 
that in this case the contour of integration can be 
closed to the right. 

In order to show that the right side of (AI. 6) is 
equal to zero for z 1 > z2, it is convenient to take 
a = - %: then using the relations 

p -'1.-Y = p -'/,+Y' Q--'1,-y = Q-1/,+Y + tg (- lj~ + j) Jt p,f,+Y• 
(AI. 7) 

it is easy to show that 
ioo ioo 

~ ydyP -'!.+·: (z,) Q--'/2+y (z2) = ~ ydyP -'f,+y (z2) Q-''2+y (zl), 
·--ico -ico (AI. 8) 

from which it follows that the right side of (AI.6) 
is a symmetric function of z 1 and z2• 

I 21 + Y z~ - 1 1 < I 22 + V z~ - 1 I • (AL2) APPENDIX II 

We shall assume that z2 is real and larger than 
one, and write an expression for the right side of 
(AI.l) which is valid for arbitrary complex z1• To 
do this we use the Watson transformation: 

- 1 - =-!.. \ dl 2l I) pt (- zi) Q (z ). 
Zz- z1 2 .l ( + sin m 1 2 (AI.3) 

c 
The contour C is shown in Fig. 2. The integral 

converges if (AI.2) is satisfied. For z 1 > 1, the 
expression (AI.3) appears at first glance to be un
defined, since Pz(x) for integer l has a branch 
point at x = - 1. But since 

+ [Pt(-z- ie) -P1 (- z + ie)l =sin ln·Pt(z), 
(AI.4) 

the integral on the right side of (AI.3) vanishes for 
the difference of the values on the two sides of the 
cut. 

Since for large l and I z I > 1 
P1 (z) ~ (2n lsh £)-'l•e<t+'f,l'., Q1 (z) ~ (n/2/ sh £)"·e-<t+'',l~, 

z = ch £ (AL5)* 

*sh =sinh. 

To prove that the Mandelstam equation (2) is 
equivalent to Eq. (13), we may use the relation 

{} (z- z z - V (z2 -1) (z2 -1)) 
2n 2 1 2 1 2 , . [v 9 + 2 ' 2 ') 1 ] •2 z· z1 ,z2 -.:.zz1 z2 -. 

a+ioo 

= {r ~ (2l + 1) dlQ 1 (z1) Q1 (z2) Pt (z), 
a-ioo 

{ 1 x>O 
a > - 1' 1't (x) = 0 x < o ' (AILl) 

which can, for example, be proved as follows. 
Consider the expression for the absorptive part 

of the square diagram and carry out the angle in
tegration using (ALl); we then get 

l=O 

(AIL2) 

The left side of (AII.2) is easily calculated, and 
its imaginary part coincides with the left side of 
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(AII.1). The imaginary part of the right side of 
(AII.2) is calculated in exactly the same way as 
we used for obtaining formula (AI.6), and is equal 
to the right side of (AII.1). Substituting (AII.1) in 
Eq. (2) and using (10), (11) and (12), we easily ob
tain Eq. (13). 
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