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The question of the ambiguity in the definition of the interpolating field is considered; this 
ambiguity is shown to be connected with that in the definition of the T-product for a given 
S matrix, and also with the ambiguity in the determination of the S matrix outside the en
ergy surface. The possibility of going over from one of these interpretations to the other 
is discussed. 

1. INTRODUCTION 

ONE type of axiomatic approach to the construc
tion of quantum field theory has been expounded in 
a series of papers by Lehmann, Symanzik, and 
Zimmermann. [1] This approach uses as its fun
damental quantities two complete sets of field op
erators* Ain(x) and Aout(x), which satisfy the 
conditions 

(Ox -m2) Atn, out (x) = KxAtn, out (x) = 0, (1) 

[Atn, out (x), Atn, out (y)] = 0 for X~ y, (2) 

Atn, out (x) = A£!;, out (x). (3) 

The operators Aout ( x) and A in ( x) are connected 
with each other by means of a unitary operator S: 

Aout (x) = S+ Atn (x) S, (4) 

which is identified with the S matrix. [2] 

Besides the fields Ain and Aout one introduces 
a so-called interpolating field A(x ), which is sub
jected to the following asymptotic condition: 

lim (<I>, Af (t) 'I') = (<I>, Ain, out (t) '1'). (5) 
t-+±00 

Here "IJf and <I> are arbitrary state amplitudes, and 

AI (t) = i ~ dx (A (x) a~;:) - f (x) a~;:)) 
x•=t 

= i ~ [A (x) a~ f(x)]dx 
x"=t 

where f(x) is an arbitrary normalized positive
frequency solution of the Klein-Gordon equation. 
Afn, out is analogously defined and does not de
pend on t. 

It must be noted that an expression very often 
used as a definition of the interpolating field is 

(6) 

*We confine ourselves to the case of a neutral scalar field. 

A(x)=Atn, out (x) + ~Dadu, ret (x- y) j (y) dy, (7) 

understood in the sense of weak convergence. It 
must be emphasized, however, that the field A ( x) 
defined by Eq. (7) satisfies the condition (5) only 
when definite requirements are imposed on j(x). 
For example, we can state that a sufficient condi
tion on j(x) is the convergence of an integral of 
the type 

00 

~ dy0 (<I>,~ dy f (y) j (y) 'f). 
-oo 

All treatments ordinarily implicitly make this as
sumption or an analogous assumption. 

Furthermore, it is said that a field A(x) cor
responds to a given S matrix if the fields Aout ( x) 
and A in ( x) which it interpolates are connected by 
the formula (4). 

One of the basic postulates of local field theory 
is that of microscopic causality. In the approach 
under consideration [1] this postulate is formulated 
as follows: an S matrix is called causal if to it 
there corresponds at least one interpolating field 
satisfying the locality condition in the form 

[A (x), A (y) 1 = 0 for x ~ y. (8) 

A paper by Borchers [a] gives proofs of anum
ber of mathematical theorems from which it fol
lows that the local interpolating field is not unam
biguously determined by the conditions enumer
ated above. In particular, if a field A'(x) corre
sponds to a given causal S matrix, then a field of 
the form 

B (x) =A (x) + Q (Ox) j (x), (9) 

where 
K A (x) =- j (x), (10) 

and Q( Dx) is a polynomial in Dx with real con-
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stant coefficients, also corresponds to this S ma- Mf1· · · kv1 is a c-number function which differs 
trix. from zero only for x1 = . . . = xv 1. 

The problem of the ambiguity of the various It may seem that if the S matrix is prescribed 
quantities that form the apparatus of present quan- in the entire momentum space, and not merely on 
tum field theory is not encountered here for the the energy surface, then the arbitrariness in the 
first time; in particular, it has been discussed definition of the T product is entirely eliminated. 
extensivelyinthe bookof BogolyubovandShirkov.C4J Actually, however, this is not true. All that fol-
From this mathematical point of view these ambi- lows from the general arguments [4] is the formula 
guities are a result of the fact that in the definitions 
of the quantities we need we are forced to use ex
pressions containing products of generalized func
tions, which in the general case are not unambigu
ously defined. Therefore it is quite clear that the 
ambiguity that Borchers [S] has pointed out in the 
determination of the interpolating field must have 
the same origin. 

The purpose of the present paper is to bring 
out the connections between the arbitrariness in 
the definition of the interpolating field, on one hand 
with the ambiguity in the definition of the T-prod
uct, and on the other, with the possibilities of dif
ferent definitions of the S matrix off the energy 
surface. 

2. THE CHRONOLOGICAL PRODUCT 

The problem of an arbitrariness in the T
product arises when one constructs the S matrix 
by going from order to order in perturbation the
ory, on the basis of a number of general assump
tions, as is done in [4]. We are actually concerned 
there with a T-product of nonlinear operators, of 
the form T (: <Pk1(x1): ... : <Pkn(xn): ), and there 
is an arbitrariness in the definition of this quan
tity when some of its arguments are equal. In 
order to write out this arbitrariness in explicit 
form, it is convenient to introduce a T' -product, 
by which we mean a chronological product which 
is defined for equal arguments in some arbitary 
but fixed way, so that the T'-product is an inte
grable generalized function of all its arguments. 

Then the most general form for the T-product 
is 

X T' (Ak•···kv, (XI . . Xv,) ... A .. kn ( •• Xn)). (11) 

where m is the number of factors in the T' -prod
uct, and P is the symmetrization operator intro
duced in [4]. Here 

k,+ ... +k., 
Ak, ... k., (x1 ... x.,) = ~ M:•···k••(x1 , ••• x.,) : qi(x1): , 

l=O 

A k; ( ) • mki (x) . Xt =. T I ., (12) 

S = T' exp {ig~L0 (x) dx}. (13) 

where 

L0 (x) = 2 (x) + ~ :I gn-l ~L~ (x, X1 ••• Xn-I) dxl ... dXn-l• 
n=2 (14) 

Here 2 (x) is the bare Lagrangian, and L~ are the 
quasi-local operators introduced in [4]. 

It is not hard to verify that without changing the 
value of the S matrix one can go over in Eq. (13) 
from the T'-product to the T-product defined by 
Eq. (11), by changing the effective Lagrangian in 
a suitable way. In fact, let 

S = T exp {ig~L (x) dx}. (15) 

where L(x) is given by a formula analogous to 
Eq. (14). To establish the connection between 
L(x) and L0(x), let us first consider a T-prod
uct of quasi-local operators Ln. Then using 
Eq. (11) we have 

T (L1'-,(x~ ••• x~,) ... L~'-k ( ... x!) 

= T' (L~'-, (x~ ... x~,) ... L~'-k ( ... x~)) 
k-1 1 

+ ~ iiii P ((X1J.lt) · · • (x•'fl•.) I· . ·I · .. (XkJ.lk)) T' (R~'-•···1'-v, 
m=2 

x (x1 ••• x"') ... R···~>-k ( ... xk)) + R~'-•···1'-k (x1 .•• xk), 

(16) 

where, for example, x1 denotes the set (xi, ... , x~1 ). 
In Eq. (16) we have introduced instead of the quasi
local operators A(x1 ••• Xi) quasi-local operators 
R(x1 ... Xi) which are more convenient in the pres
ent case and which are certain combinations of the 
A ( x1 ... xi ) , since in general the operators 
Ln ( x1 ... xn) are sums of expressions of the form 

: <Pki (Xi): with different values of ki. The formula 
(16) can be regarded as a definition of R(x1 ... Xi). 
Expanding Eqs. (13) and (15) in power series in g, 
equating terms with equal powers of g, and using 
Eq. (16), we get 

n ·k 

iLn (x1 ••• Xn) = iL~ (x1 , •• Xn) - ~ ~I P (x1 ••• xk) 
k=2 

x ~ R~'-•···~>-k (x1 •• • xk), (17) 
U.i 
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where P ( x1 ••• xk) is the operator of complete 
symmetrization, and the summation goes over val
ues of 11-i• ••• , IJ.k that obey the condition l:!J.i = n. 

Equation (17) is a recurrence formula which 
enables us to express the operators Ln in terms 
of the operators L~ and A. If, on the other hand, 
we use instead of Eq. (16) the transformation from 
the T' -product to the T-product, we can also get 
a formula which directly expresses the operators 
Ln in terms of L~ and A. 

Thus starting from a number of general propo
sitions we can conclude that there are two possible 
interpretations of the arbitrariness that arises in 
the construction of the S matrix by perturbation 
theory. Namely, this arbitrariness can be re
garded as caused either by the ambiguity in the 
Lagrangian for a fixed definition of the T-product, 
or by the ambiguity of the T-product itself for a 
given Lagrangian. Both of these possibilities have 
been noted already by Bogolyubov and Shirkov. [4] 

In practice, however, they have used only the first 
possibility, although the second appears preferable. 
An example of the use of the second possibility in 
the construction of the S matrix can be found in 
the situation [5] that occurs in theories with deriv
ative couplings (or with vector fields), in which 
the S matrix can be expressed in terms of either 
the Lagrangian or the Hamiltonian, depending on 
the use of one or another definition of the T-prod
uct. We shall also use this same possibility here 
to express the indefiniteness in the interpolating 
field in terms of the ambiguity in the definition 
of the T-product. 

It must only be pointed out that actually one 
can use for the derivation of a finite S matrix a 
much narrower definition of the T-product than 
that of Eq. (11). Namely, since the problem of 
deriving a finite S matrix reduces essentially to 
the problem of defining chronological contractions 
and their products for coinciding arguments, we 
can simplify the formula (12) by introducing dif
ferent M' · · ki · · · only for different types of prod
ucts of chronological contractions in the T' -prod
uct. We shall not carry out this simplification for 
the general case, but shall do so in the next sec
tion for the special case we need here. 

3. THE INTERPOLATING FIELD AND THE AM
BIGUITY IN THE DEFINITION OF THE T
PRODUCT 

In order to establish the connection between the 
arbitrariness in the definition of the interpolating 
field noted by Borchers [a] and the ambiguity in the 
definition of the T-product for a given S matrix, 

we shall use the following expression for the in
terpolating field: 

A (x) = s+T (A;n(x) S). (18) 

Here we can understand the expression T(Ain(x)S) 
if we represent the S matrix in the form 

S = ~ ~ !Jlt (yl . . . Yt) : Atn (yl) •.. Atn (y,) : dy1 ... dy,. 
i=O (19) 

Then 

T (A;n(x) S) = ~ ~!Jlt (yl ... Yt) T 
i=O 

X (Atn (x) : Atn {yl)· .. Atn (y;) :) dyl ... dy;. 

In order to convince ourselves that the field de
fined by Eq. (18) satisfies the asymptotic condition 
(5), let us substitute Eq. (18) in Eq. (5), for exam
ple for t - - co : 

lim (<P, Af (t)'l') 
1-->-00 

= lim i ~ dx (<P, (S+T (A;n(x) S)l a~ f (x) 'I') 
t-+-oo x•=t 

= i lim ~ ~ dy1 ... dy;!Jl;(yl ... y,) 
1-..-co l=O 

X ~ dx(<P,(S+T(Atn(X) :A,n(yl) ... Atn(Y;):)], 
X 0=t 

a 
x axo f (x) 'I'). (20) 

In accordance with the comment made in Sec. 1 we 
shall assume that the coefficient functions of the S 
matrix are such that in the right member of Eq. 
(20) we can take the process lim inside the sign 

t--oo 
of integration over Yk· Then 

lim (<P, Af(t) 'I') = i ~ ~ dy1 ... dyt!Jlt (y1 •• • y,) lim 
t--+-00 , ' f-+-CO •=O 

x ~ dx (<I>, [S+: Atn (yl) .. . A,n (y;): Atn(x)l 
x•=t 

X !of (x) 'I') = lim i ( <P, s+s ~ dxAtn (x} a~ f (x) 'I') 
t-+-oo xo=t 

(21) 

We emphasize that these arguments do not make 
use of the specific properties of the T-product, 
which in principle can be just as general as in the 
definition (11). Of course, we have here a special 
case, with all the ki equal to 1. Besides this, we 
are here using the previously indicated possibility 
of simplifying the T-product defined in Eq. (11), 
and shaH introduce M· · · ki · · · only for different 
types of products of chronological contractions in 
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the T'-product. Since in the given case we en
counter only one contraction, we have 

T (qJ (x) : qJ (yt) . • . 'P (Yn) : ) 

= T' (qJ (x) : qJ (yl) ... qJ (Yn) : ) 

+ P (y1 I y2 ... Yn) M2 (x, y1) : 'P (y2) ... 'P (Yn):, (22) 

where we have introduced a new notation M 2(x, y) 
= M 11 (x, y ). 

Substituting Eq. (22) in Eq. (18) we get the fol
lowing expression for the interpolating field: 

1 • 
A (x) = A 1n (x) + T ~ Dr•t (x - y) S<I>(y) 

-t- ~ M2 (x, y) S<1>(y). (23) 

Here and in what follows we use the abbreviated 
notation 

Obviously the field A(x) is Hermitian if M 2(x, y) 
is pure imaginary. The following assertion can be 
made about the field defined by the formula (23). 

If the S matrix satisfies the causality condi
tionC6J 

6uS<t> (x) = 0 for x ~ y, 

then a field A(x) of the form (23) satisfies the 
locality condition (8). 

In fact, 

(A (x), A (y)l = IAtn (x), Atn (y)l 

(24) 

+ ~ ~ (Dret (y- z) + iM2 (y, z)l (A 1n (x), S<ll (z)] dz 

+ + ~ (Dret (x-u) + iM2 (x, u)JIS<ll (u), Atn (y)] du 

- ~ (Dret (x-u) + iM2 (x, u)l (Dret (y- z) 

+ iM2 (y, z)l [S<1> (u), S(l) (z)] dudz. (25) 

Let us use the obvious formulas 

[S<I) (u), S<ll (z)J ""' 6zS<O (u) - 6uS<1> (z), (26) 

[A111 (x),S(ll(z)] =+~D (x-u)6uS<1>(z)du. (27) 

Then we get 

(A (x), A (y)] = IAtn (x), Atn (y)] + ~ (Dret (y- z) 

+ iM 2 (y, z)J (Dadv (x-u)+ iM 2 (x, u)] 6uS<1> (z) du dz 

- ~ (Dret (x-u) + iM2 (x, u)l (Dadv (y- z) 

+ iM 2 (y, z)l6zS<1> (u) dudz. (28) 

It is clear that in virtue of the locality of Ain ( x), 
the causality condition (24), and the properties of 

the functions Dret( X- y), Dadv (X - y), and 
M2(x,y) each term in Eq. (28) vanishes for X"'Y· 

We note that, starting from Eqs. (18) and (11), 
we can also get for the local interpolating field 
the more general expression 

A (x) = Atn (x) + + ~Dret (x- y) S<Il (y) dy 

+ ~ -1r ~ Mk+l (x, y1, ..• Yk) S<k> (Yl ... Yk) dy1 ... dyk, 
k~ ~~ 

if we assume that in Eq. (12) 

AL .. l (Xl, ... Xv,.) = Mv,(Xl ... x.,,). 

The local character of this field is proved in an 
analogous way, but more cumbersome calculations 
are required. 

Let us consider as an example the case in which 
M 2(x, y) is a polynomial of finite degree in a/ax 
applied to o functions, with constant pure imagi
nary coefficients. Then when the requirements of 
relativistic invariance are taken into account A(x) 
takes the form 

A (x) = Atn (x) + ~Dret (x- y) j (y) dy 

+ ~ Q (Ox) 6 (x- y) j (y) dy, 

or 

A (x) =A (x) + Q (Ox) j (x), 

where 

A (x) = Atn (x) + ~Drel)(x- y) j (y) dy, 

and[6] 

j (x) = - iS<t> (x). 

(30) 

(31) 

(32) 

(33) 

Equation (31) is identical with Eq. (9). Thus the 
ambiguity in the definition of the interpolating field 
pointed out in Borchers' paper [3] has been shown 
to be capable of being expressed in terms of the 
ambiguity in the definition of the T-product with 
a given S matrix. 

4. THE INTERPOLATING FIELD AND THE AM
BIGUITY IN THE DEFINITION OF THE S 
MATRIX 

In this section we approach our problem from 
a somewhat more general standpoint and show that 
any ambiguity in the definition of the interpolating 
field can be interpreted as an ambiguity in the 
definition of the S matrix off the energy surface. 

First let us give some attention to the problem 
of the definition of the S matrix off the energy 
surface. As is well known, the S matrix can be 



ON THE AMBIGUITY IN THE DEFINITION OF THE INTERPOLATING FIELD 1383 

represented [1] in the form 

s = ~ ~ ~ dkl . . . dk,.{) (kl + . . . + k,.) 
!1=0 

x h,. (k1 • • • k,.) f> (ki - m2) 

••• f> (k~ - m2) :A,,. (k1) ••• A,,. (k,.) :. (34) 

It can be seen from the expression (34) that the S 
matrix depends only on the values of hn ( k1 .•• kn) 
on the energy surface, i.e., for ki = ... = k~ = m 2• 

This, however, is not sufficient for a complete 
formulation of the theory, and in particular for the 
formulation of the causality condition. We also 
need to know the Fourier transforms hn(x1 ••• Xn), 
and consequently it is necessary to define in some 
way hn(k1 ••• kn) off the energy surface. We shall 
suppose that the S matrix is defined off the energy 
surface if the hn ( k1 ••• kn) are prescribed in the 
entire momentum space. In this case we can de
fine the variational derivative of the S matrix in 
the form 

1 1 
·f>xS= ~ (n-1)! (2n)'/z 

!1=1 

X ~ eik,xb (k1 + ... + k,.) {> (k~ - m2) ••• f> (k~- m2) 

X h,. (k1 ... k,.) : A,,. (k2) ... A;,. (k,.) : dk1 ... dk,.. 
(35) 

It can be seen from Eq. (35) that the value of oxS 
depends in an essential way on the definition of 
hn ( k1 ••. kn) off the energy surface. It is clear, 
however, that an expression of the form 
jf(x)oxSdx, where f(x) is an arbitrary solution 
of the Klein-Gordon equation, depends only on the 
values of hn(k1 ••• kn) on the energy surface. It 
follows from this that the values ( OxS )1 and ( oxS )2 

which correspond to two different definitions of 
hn ( k1 ••• kn) off the energy surface can differ only 
by a function Q(x) which satisfies the condition 

~ f (x) Q (x) dx - 0. (36) 

It is also not hard to verify the converse, namely: 
if (oxS) 1 is defined by Eq. (35) with certain fixed 
functions h~u ( k1 ••• kn ) , and 

(37) 

where Q(x) satisfies Eq. (36), then (oxS)2 can be 
represented in the form (35) with certain other 
functions hg>(k1 ••• kn) which differ from 
h~1)(k1 ••• kn) only off the energy surface. 

From these arguments we can conclude that the 
possibility of different definitions of hn ( k1 ••• kn) 
off the energy surface reduces to the possibility 

of an arbitrariness in the current defined by Eq. 
(33), of the form 

j (x) = jo (x) + J (x), (38) 

where j(x) corresponds to some definite choice of 
hn ( k1 ••• kn ) off the energy surface and J ( x ) is 
some operator satisfying the equation 

~ f (x) J (x) dx = 0. (39) 

In order not to make additional complications we 
shall assume that J(x) satisfies the requirements 
of Hermiticity and of translational and relativistic 
invariance, and also, if the theory is causal, the 
causality condition. 

Let us now consider the question to what extent 
the asymptotic condition (5) fixes the definition of 
the interpolating field. For this purpose let us 
write down the difference between the expressions 
for the asymptotic condition for t- +co and 
t- -co. We have 

= (<I>, ~ !Aaut (x)- A,,. (x)] !o f (x) dx '1'). (40) 

It follows from Eq. (4) that 

Aaut (x) -A,,. (x) = ~D (x- y) j (y) dy. (41) 

Substituting Eq. (41) in Eq. (40) and making some 
transformations, we get 

~ f (x) KxA (x) dx = - ~ f (x) j (x) dx. (42) 

It follows from this that 

KxA (x) = - j (x) - h (x), (43) 

where 

~ f (x) h (x) dx = 0. 

Using the fact that the definition of j(x) itself con
tains an arbitrariness [cf. Eq. (38)], we can put 
Eq. (43) in the form 

KxA (x) = - j (x). (44) 

Thus the asymptotic condition (5), which is fun
damental in this approach, [t] leads to a formula 
(44) for the determination of the interpolating field 
which shows that all of the ambiguity in the defini
tion of this field is due to the ambiguity in j(x ), 
i.e., to the ambiguity in the definition of the S 
matrix off the energy surface. 
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5. DISCUSSION 

We now draw some conclusions. It was shown 
in Sec. 4 that all of the ambiguity in the interpo
lating field can be regarded as an ambiguity in the 
definition of the S matrix off the energy surface. 
On the other hand, in Sec. 3 it was indicated that 
there is a possible ambiguity in the definition of 
the interpolating field associated with the ambi
guity in the definition of the T-product with a 
prescribed S matrix. Therefore it is interesting 
to see whether we can establish a connection be
tween these two approaches to the problem. 

In Sec. 3 the ambiguity in the interpolating field 
was actually determined in terms of the ambiguity 
of the expression T(Ain(x)S), which can be writ
ten out explicitly as follows: 

T (A in (x) S) = ~ ~ dy1 ..• dytP (Yt I Y2 • • • Y;) <j!t (Yt · · · Y;) 
i=O 

X (+Dc (x- y1) + M2 (x, Yt)): A;n (y2). · · A;n (y;):. 

(45) 

Since M2 ( x, y ) can be represented in the form 
i-1Q(Dy)o(x-y), Eq. (45) can be written in the 
form 

T (A;n (x) S) = ~ ~ dy1 ... dy,P (Yt I Y2 · · · Y;) <p;{yl · · • Y;) 
i=O 

X i(Dc (x- Yt)- Q (Ou,) 

X K.u.Dc (x - y1)) : A;n (y2) .•• A;n (yJ):. (46) 

Let us integrate Eq. (46) by parts, assuming 
that when the limits are substituted the expression 
in question vanishes, in accordance with the re
mark made in Sec. 1. Then we get 

T (Atn (x) S) 

= ~ ~ dy1 . . . dy,P (Yt I Y2 . . . y,) + Dc (x - Yt) 
i=O 

X [<p; (Yt ... y;) - Q (Ou,) K.u, <p; (yl • · · Y;)l : 

X A;n (y2) •• • A;n (y;) : = T' (A;n (x) S), (47) 

where 

s = ~ ~dyl ... dy; [<p; (yl ... y;) 
i=O 

-Q (Ou,) K.u,<j!i (yl ... Y;)] : A;n (Yt) · · · Atn (y;) :. (48) 

It is clear from the structure of the expression (48) 

that the matrix S differs from the S matrix only 
off the energy surface. 

Thus we see that the ambiguity in the definition 
of the interpolating field associated with the am
biguity in the definition of the T-product with a 
given S matrix can be reformulated in such a way 
that it turns out to be connected with the ambiguity 
in the definition of the S matrix off the energy 
surface with a fixed definition of the T-product. 

A very curious situation arises. It turns out 
that not only is there quite a variety of interpo
lating fields corresponding to an S matrix defined 
off the energy surface in a prescribed way, but 
also conversely there are several expressions for 
the S matrix off the energy surface corresponding 
to a single interpolating field. We now recall that 
the definition of the S matrix off the energy sur
face is closely connected with the definition of the 
Dyson matrix S(a1, a 2 ) which connects state vec
tors prescribed on two arbitrary spacelike sur
faces. In this connection it becomes very inter
esting to find out how the ambiguity noted here 
affects the definition of the Dyson matrix, and we 
intend to continue with the study of this question. 

In conclusion we express our deep gratitude to 
B. v. Medvedev for suggesting the topic and for 
his constant interest in the work. We also ex
press our gratitude to M. K. Polivanov for a dis-
cussion. 
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