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The problem of obtaining the interaction Hamiltonian in quantum field theory is considered. 
An analysis is made of the expression for the Hamiltonian that follows from the Bogolyubov 
method, in particular for theories with derivative couplings. It is shown that this expression 
satisfies the condition for integrability of the Tomonaga-Schwinger equation for any renor
malized theory. It is also shown how in this method one can accomplish the removal from 
the S matrix of the nonphysical dependence on the shape of the intermediate surfaces and 
achieve gauge invariance of the S matrix for scalar electrodynamics in the Klein-Gordon 
formalism. All of the results are obtained without taking "surface divergences" into ac
count, and the problem of these divergences remains an open one. 

1. INTRODUCTION 

A step of great importance in the development of 
quantum field theory was the introduction of the 
interaction representation and the transition to the 
covariant Tomonaga-Schwinger equation [t,2] 

ib<t> (a)/ba (x) = Hint (x: a) <t> (a), (1) 

where 
. . bS (~) 

Hint (x, a) = t b~ (x) S+ (a) ( 2) 

is the interaction Hamiltonian density in the inter
action representation, expressed in terms of the 
matrix S( a), which is the solution of (1) with the 
initial condition S( - oo ) = 1. 

Since it is usually the problem of the theory to 
obtain S( a) for a known Hint( x; a), and not con
versely, Eq. (2) does not give us a concrete expres
sion for Hint( x; a), and we have to determine it 
from other considerations. Historically, the first 
way of obtaining Hint( x; a) was through various 
attempts [a,4] based on the use of considerations of 
correspondence with the Hamiltonian of the ordi
nary Schrodinger equation. This approach, however, 
encountered a number of difficulties in theories in 
which the interaction Lagrangian includes couplings 
with derivatives (or vector fields), since the 
Hint( x; a) so obtained did not satisfy the condition 
of integrability of the Tomonaga-Schwinger equation 
in the form 

bHint (x; c;) . bHini (y; ~) [ ( ( ) ] 0 
{i~ (y) - t ~-tb (x) + Hint x: a), Hhll y; a. = 

for X~ !J Or X c= !J. (3) 

The appearance of these difficulties when cor
respondence arguments are applied directly is due 
to the fact that in the ordinary Schrodinger equa
tion the quantity that has physical meaning is only 
the Hamiltonian 

cc 
(" I 

H (t) = j H (x) !xLcl dx, 
-o..: 

and not the Hamiltonian density, which, according 
to the usual canonical formalism, is written in the 
form 

'V DL auk H (x) = / , - - L (x) . 
......., a (Duk / Dx0) axo 
k 

(4) 

At the same time, what appears in the Tomonaga
Schwinger equation is a Hamiltonian density 
Hint( x; a) which itself has physical meaning, and 
accordingly must be a covariant function of the 
field operators and satisfy the condition (3). Nat
urally when one uses for the Hint( x; a) of Eq. (1) 
the quantity without physical meaning given by Eq. 
(4) the difficulties we have mentioned arise in 
cases in which Hint(x; a)~ -L(x).* 

Ways of solving the problem were found by 
Matthews [5] and by Kanesawa and Koba, [s] who 
proposed two different covariant ways of obtaining 
Hint( x; a) when one has a known Lagrangian. 

The idea of the Matthews method is that in going 
from the ordinary Schrodinger equation to the 
Tomonaga-Schwinger equation it is not enough 
merely to go over from state amplitudes <I>( t) to 

*In cases in which the Lagrangian contains a vector field 
an analogous situation arises in taking the supplementary 
condition into account. 
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state amplitudes 4>( a) and formally go over from 
the Hamiltonian to the Hamiltonian density; it is 
necessary to generalize the canonical formalism 
in a suitable way to the case of arbitrary spacelike 
surfaces. Then instead of the expression (4) there 
appears [7] the physically meaningful covariant ex
pression 

"' ,· oL ' r ouk, 
lf(x;v)==7\na, a. )ln!l-c)-L(x), (5) -;, a (ou"'ox ) 1 \ ox·' .. 

where na is the timelike unit vector normal to the 
arbitrary spacelike surface passing through x, 
and ( na )2 = 1, no > 0. 

It must be emphasized that Eq. (5) establishes 
a connection between the total Lagrangian and the 
total Hamiltonian, and in general cannot be applied 
as a connection between the interaction Lagrangian 
and the interaction Hamiltonian. 

Therefore Matthews [5] has proposed the follow
ing way of obtaining Hint< x; a), starting from Eq. 
(5). One must first obtain Htot< x; a) in the Heisen
berg representation by Eq. (5), then separate off 
from it Hint<x; a), and after this go over to the 
interaction representation. In this way one gets in 
any theory an Hint< x; a) which satisfies the con
dition (3). For example, for scalar electrodynamics, 
for which 

Lint (x) = ie : ( cp' (x) a~··- O(jl: <:p (x) I A a. (x) : 
·, ox ox ' 

+e2 : cp' (x) .If (x) A~ (x) : , (6) 

one finds that 

Hint (x; a) = - Lint (x) + ~2 : cp* (x) cp (x) [na.Aa, (x) ]2 :. (7) 

As can be seen from Eq. (7), in cases in which the 
interaction Lagrangian contains a coupling with 
derivatives (or vector fields) Hint< x; a) contains 
terms which have quadratic dependence on the 
normal to the spacelike surface a passing through 
x, and thus is not only a function of x, but also a 
functional of the surface a. The method of Yang 
and Feldman [sJ is also one of the variations on the 
Matthews method. 

A different method for obtaining Hint ( x; a ) 
directly in the interaction representation has been 
proposed by Kanesawa and Koba, [s] who took as 
the starting point Lint< x) and proposed to look 
for Hint< x; a) in the form 

Hint (X; a) = -Lint (x) +A (x; a), (8) 

where A( x; a) is a function of the field operators 
and a functional of the surface a, and is chosen so 
that the condition (3) is satisfied for Hint< x; a). 

If one attentively analyzes the expressions for 

Hint< x; a) obtained by the two methods described 
above, one can perceive the following connection 
which holds [as Eq. (5) does not] between the in
teraction Lagrangian and the interaction Hamilton
ian in the interaction representation: 

1 " ( oLint ' 1 oLint ) 
Hint (x; o) = 2 '7; n~ a (oqJ~f ox") ) \ n;, a (oqJk I ox'') 

- Lint(X). (9) 

Neither in the Matthews method nor in the Kane
sawa-Koba method, however, does this connection 
appear in a natural way in the course of the calcu
lations. Therefore one would like to have a method 
for obtaining Hint< x; a) [which we shall hereafter 
call simply H( x, a)] in which a connection of the 
form (9) arises legitimately. 

A general feature of the methods expounded here 
for obtaining H( x, a) is that one starts originally 
from the bare classical interaction Lagrangian. 
Therefore in the derivation of the S matrix [9] by 
the solution of Eq. (1) two problems arise. First, 
both the expression 

0 

S(o) = TexP{ -i ~ H(x; o)dx }. (10) 
-00 

and the expression for S( co) obtained from it in 
the limit a- co are divergent expressions and 
require the use of a regularization procedure. 
Second, for the case of a coupling with derivatives 
H(x, a) contains terms quadratically dependent 
on the normals, which in S( a) are [to] the normals 
to a family of intermediate surfaces used in the 
solution of Eq. (1) by the method of successive ap
proximations. Thus S( a) turns out to depend on 
the particular choice of such a family of surfaces, 
and this is of course physically meaningless. 

As is well known, it has not yet been possible 
to get an expression for S(a) which is free from 
divergences. If we reason formally and treat S( a) 
as an intermediate quantity, this indeed is not a 
serious trouble, since after going from S( a) to 
S (co) we can remove the divergences by perform
ing a suitable regularization. If, however, we do 
not remove from S( a) the nonphysical dependence 
on the shape of the intermediate surfaces, it is 
still present after the passage to the limit S( co). 
A procedure for the removal of this dependence 
was also first proposed by Matthews, [5] who showed 
by extremely cumbersome calculations and far 
from obvious operations with singular functions 
that in the calculation of S( a ) to second order one 
can bring to light a term which cancels the terms 
in the Hamiltonian that contains the normals. 
Since, however, this calculation is not mathemat-
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ically clear, one would like to know a deeper rea
son for the results Matthews obtained. 

In this paper we shall follow the method for 
obtaining the scattering matrix and the interaction 
Hamiltonian proposed by Bogolyubov and Shirkovc1q 
in this method one starts at the beginning with an 
effective interaction Lagrangian in the interaction 
representation 

L( . )-L()_j_"'V__i_ X, g- X I ,, I "--' n. 

co 

X \ An (x, xl ... Xn-1) g (xl) ... g (Xn-l) dxl ... dXn-1> 
.:co (11) 

which assures the finiteness of the S matrix for 
the proper choice of the T-product. 

We shall consider the possibility of obtaining in 
the Bogolyubov method an interaction Hamiltonian 
which will satisfy the condition of integrability of 
the Tomonaga-Schwinger equation for any renor
malizable theory and will have a natural connec
tion of the form (9) with the effective interaction 
·Lagrangian. We shall first examine how to solve 
in this method the problem of eliminating from the 
S matrix the nonphysical dependence on the shape 
of the intermediate surfaces in theories with de
rivative couplings. At the end we shall consider 
some features of the structure of the S matrix in 
scalar electrodynamics. 

2. THE INTERACTION HAMILTONIAN IN THE 
BOGOL YUBOV METHOD 

The fundamental quantity in the Bogolyubov 
method [11] is the matrix S( g), which is a functional 
of sufficiently smooth functions g( x ). The appar
atus of the matrix S( g) is, however, insufficient 
for the solution of all the problems confronting the 
theory, and it is necessary to introduce the appar
atus of the Schrodinger equation. The proposed 
variational analog of this equation, for sufficiently 
smooth functions g( x ), is 

i6<D (g) I og (x) =~ H (x; g) <D (g), (12) 

where 
H (x· rr) = i ~~s (g) s+ (g·) 

''"' bg (x) 
(13) 

is the generalized interaction Hamiltonian density. 
The conditions of relativistic covariance, uni

tarity, and causality for the matrix S( g) must 
completely determine an expression for H( x; g) 
which satisfies the conditions of relativistic co
variance, Hermiticity, locality, and integrability. 
That the first two conditions for H( x; g) are sat-

isfied is obvious. The locality condition of the 
form 

oH (x; g) I 6g (y) = 0 for y G; X (14) 

also follows directly from the condition of causality 
for S( g). As for the integrability condition, it is 
also satisfied, as we shall discuss in more detail 
in Sec. 4. Thus no new problems arise in connec
tion with the generalized Hamiltonian H( x; g). 

The problem arises when we want to go from 
Eq. (12) to Eq. (1) by going to the limit g- ea 
- e( Ta- x0 ), i.e., when we want to obtain in this 
way an expression for the Hamiltonian H( x; a), 
which, unlike the generalized Hamiltonian H(x; g), 
has physical meaning and must have local charac
ter in the ordinary sense-that is, must depend on 
the state of the fields only in an infinitely small 
neighborhood of the point x. As has been shown 
( cf. [U] ), the condition (14) is sufficient to assure 
the local character of H( x; a) when we go to the 
limit g- ea. In practice, however, a number of 
difficulties arose in carrying out this passage to 
the limit, in particular the problem of ''surface 
divergences." 

First of all it must be emphasized that the ex
pression for H( x; a) is not equal to the limit of 
H( x; g), as one might have thought, but must be 
written in the form 

00 

H (x; cr) = lim 
g--+8a 

~ H (x; g) g' (Ta- xo) {[,.;o, (15) 
-oo 

where the passage to the limit is made after the 
integration. 

Furthermore, in [1!] use was made of the for
mula 

00 

~ H" (x, x1 •.• x")g (x 1) ••• g (x,) dxL . .. dxn 
-00 

00 

~ A11+1 (x, x, ... x") g (xJ) ... g (x") dx, ... dx", 
·--co (16) 

where An+1 are the same quasi-local operators as 
in Eq. (11). Equation (16) is obtained on the as
sumption that at first the regularization masses 
occurring in An+1 remain fixed while g- ecr At 
the same time it must be admitted that a different 
order in the passages to limits seems more rea
sonable, namely that of first letting all Mf- co, 

and then g - e a (private communication. from 
D. A. Slavnov). But even for the terms in H( x; g) 
that are linear in the contractions, for which the 
question of the order of the limits does not arise 
at all, the analysis made in Sec. 4 shows that when 
there are derivatives in the Lagrangian there must 
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be some additional terms in the right member of 
Eq. (16). 

The final expression for H( x; a) obtained in [it] 
by the use of (16) is of the form 

cc 

H (x; :i) ~-C lim {- L (x)- ~ --,&- \ AnH (x, x1 ... Xn) 
g----+Acr . • t' ll=l -::x:J 

>( g (xi) ... i.!, (xn) dx1 • .• dxn} . (17) 

Since in the general case the quasi-local operators 
An+1 contain derivatives of 6 functions and the 
differentiations can get transferred to the functions 
g( x ), the limit process g- Ba can lead, as is 
shown in [1l], to the appearance of additional nonin
tegrable expressions of the type of products of 6 
functions of equal arguments. A more careful 
analysis, based on passage to the limit by the for
mula (15) and proper attention to the symmetry 
properties of the quasi-local operators, shows 
that, first, the main term in the expression ob
tained for H(x; a) is -L(x; 1 ), and second, the 
class of diagrams leading to "surface divergences" 
is much narrower than it seemed at first glance. 
In particular, there is no such problem in the 
vacuum diagrams of any theory, and in the linearly 
divergent diagrams. In this case also, however, 
there is still a problem of "surface divergences" 
for the quadratically divergent diagrams,* which 
is essentially a reflection of the additional diffi
culties which arise in the construction of a finite 
S( a) from a finite S(g), and which are due to the 
fact that in going over from smooth functions g( x) 
to e functions it is in general necessary to rede
fine the coefficient functions of S( a) as integrable 
generalized functions. It must be noted that the 
problem of "surface divergences" in S( a) is not 
a peculiarity of the Bogolyubov method, but is 
present implicitly also in the Dyson method, as 
has also been remarked by Stueckelberg.C1~ 

Thus although the way of constructing H(x; a) 
in the Bogolyubov method seems to be the most 
natural one, it cannot be carried through at present 
because of the problem of "surface divergences." 
In this connection it must be emphasized that the 
operator structure of the "surface diverging" 
terms that appear in the Bogolyubov method has 
nothing in common with the operator structure of 
the terms depending quadratically on the normals 
which appear in the Hamiltonians of theories that 
contain derivative couplings (cf. e. g., [7] ). These 
terms are in principle of a different nature. 
Whereas the "surface diverging" terms depend 

*A more detailed communication on this problem will be 
published later. 

on the form of the passage to the limit g- Ba 
for arbitrary a, the ordinary surface terms de
pend on the shape of the surface a itself after the 
passage to the limit. 

Accordingly, while leaving to one side the prob
lem of "surface divergences," we wish to examine 
the question as to whether both H( x; g) and the 
H( x; a) obtained from it in the limit satisfy the 
conditions of integrability of the corresponding 
equations for theories with derivatives in their 
bare Lagrangians, since it would seem that the 
formula (17) does not contain the terms necessary 
for this. Actually the situation is even more ser
ious, since even when there are no derivatives in 
the bare Lagrangian the counterterms of all ef
fective Lagrangians, except that of Hurst and 
Thirring, contain terms with derivatives, which 
according to Eq. (9) must lead to additional terms 
in the Hamiltonian. For example, for the second
order boson self-energy diagram we in fact have 
L'(x) = ae2: ( Bcp/&xOI. )2:. Therefore the corre
sponding H' ( x; a) must be of the form 

r a \2 
H' (x; a) = - L' (x) + + a 2e4 : \ na. ax~ ) : . 

Thus the problem of satisfying the integrability 
conditions of the Tomonaga-Schwinger equation in 
the Bogolyubov method is exceptionally significant, 
since it requires the appearance in H( x; a) of a 
large number of terms with quadratic dependence 
on the normals. We shall return to this problem 
in Sec. 4. 

3. THE S MATRIX IN THEORIES WITH DERIVA
TIVE COUPLINGS 

Since in the Bogolyubov method the Hamiltonian 
is found from a known S matrix, we must first 
elucidate some features of the derivation of the S 
matrix in theories with derivative couplings. We 
may ask the question: how is it possible in the 
methods of Dyson and Bogolyubov to get identical 
expressions for the S matrix in these theories, 
although the two methods formally apply the same 
operation (the T-product) to different original ex
pressions? 

As is well known, in deriving the S matrix in 
such theories by the Dyson method we are forced 
at first to include in the Hamiltonian terms 
quadratically dependent on the normals, starting 
from the condition (3), and then to eliminate these 
terms from the S matrix by a rather complicated 
procedure. Naturally this inclusion and subsequent 
elimination of certain terms is not due to the 
physics of the problem, but to peculiarities of the 
mathematical apparatus employed. In fact, in the 



ON THE INTERACTION HAMILTONIAN IN QUANTUM FIELD THEORY 1365 

Bogolyubov method one is able to avoid these steps 
and construct the S matrix directly from the 
Lagrangian, on the basis of a number of general 
arguments. 

A point of primary importance here is that the 
causality condition in second order (in both its 
differential [11] and its integral [t3] forms) leads to 
the compatibility condition in the form 

[L(x), L(y)]=O for x~y(x=f=y), (18) 

which is valid for any renormalizable theory and 
in the Bogolyubov method replaces the stronger 
condition (3). 

Next the difference between the actual methods 
of constructing the S matrix comes into play. In 
the Bogolyubov method we arrive at once at T
products of Lagrangians. Here, if the Lagrangian 
contains derivatives, there arises in general the 
problem of a finite arbitrariness in the definition 
of the second derivative of Dc ( x - y ), if the defi
nition of Dc( x - y) for coincident arguments is 
fixed. In fact, knowing that [11] 

De (x - y) = 8 (xO - y0) D- (x - y) 

+ 1 \ ik<x-y)dk 
- 8 (- xo + yo) D (x - y) = (2n)• j m2- k2- ie , (19) 

we can define a2Dc(x- y)/Bxaayf3 = D~f3(X- y) 
either in the form 

t5~f3 (x - y) = 8 (x0 - y0) D~ (x - y) 

-8 (-xO+if)15~13(x-y) 

1 (-ka.kl3)ik(x-y)dk 
- na.n136 (x - y) = (2 )• I 2 k2 • , (20) 

1t ,) m - -te 

or in the form 

15~13 (x - y) = 8 (xO - y0) 15;13 (x - y) 

-8 (-x0+y0)15~f3(x-y), (21) 

or in any other form which differs from the ex
pressions (20) and (21) by a quasi-local covariant 
operator. 

Since, however, the S-matrix apparatus is 
adapted to the momentum representation, from the 
point of view of this apparatus the simplest and 
most physically reasonable definition is Eq. (20), 
and this is the one adopted in [11]. With this defini
tion of D~f3( x - y) one gets for the S matrix in a 
theory with derivative coupling the expression 

00 

S ( oo) = T exp { i ~ L (x) dx} , (22) 
-oo 

which is free from any nonphysical dependence on 
the shapes of the intermediate surfaces. 

In Dyson's method, on the other hand, in solving 
the Tomonaga-Schwinger equation we first arrive 
at advanced products of repeated commutators of 
Hamiltonians, and only subsequently, on regroup
ing them, do we come to the corresponding T
products. In doing so one uses, for example, the 
formula 

Dadv (x - y) = De (x - y) -D- (x - y), (23) 

where DC(x- y) is of the form (19) and 

Dadv (x- y) = -8 (- xO + y0 ) D (x- y). (24) 

If we now formally differentiate both sides of Eq. 
(23) twice, we still have equality of the two sides 
if on both the right side and the left side we simul
taneously either do or do not differentiate the e 
functions. The actual situation is different, how
ever. In solving the Tomonaga-Schwinger equation 
we arrive, for example, at an expression 
e ( -x0 + y0 ) [ H(x; a), H(y; a)], and when we cal
culate this out in a theory with derivative coupling 
we get among other quantities a term 

(25) 

which from the point of view of the apparatus of 
the Tomonaga-Schwinger equation it is most nat
ural to take as the definition of D~~v ('X - y ), be
cause in solving this equation the situation in 
which one would differentiate the e function in the 
expression (24) never arises. 

Thus for the most reasonable definitions of 
D'&(3< x - y ) and D~~v ( x - y ) the contraction of 
the type (23) does not occur and is replaced by the 
formula 

i5~iv (x - y) = 15~!l (x - y) -D;f3 (x - y) 

+ na.ni>{J (x- y). (26) 

This makes understandable a second point of 
difference of the two methods for constructing the 
S matrix in the case of a derivative coupling. 
Solving the Tomonaga-Schwinger equation, we at 
first arrive at the expression [ f5ad13v ( x. - v) 
~ a . ""c 

+ DQ,(3(x- y)]; we can call this quantity Da{3(x- y) 
[in accordance with Eq. (21)], and use for the S 
matrix the formula 

00 

S (oo) = T exp {- i ~ H (x; cr) dx}. (27) 
-00 

The expression (21), however, is not the most con
venient definition of D'&(3< x - y ) from the point of 
view of the S-matrix apparatus. On the other hand, 
if we wish to use the definition (20), we have to go 
over from D~~v ( x - y) to D~f3( x - y) by Eq. (26), 
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which automatically brings us from Eq. (27) to Eq. 
(22). 

Thus the possibility in principle which Matthews 
has indicated for eliminating the nonphysical de
pendence on the shape of the intermediate surfaces 
for theories with derivative couplings can be con
nected with the possibility of giving different defi
nitions* of D~,e( x - y) and with the fact that the 
apparatus of the Tomonaga-Schwinger equation 
leads in the most natural way to the definition (21). 
Furthermore one can use for the S matrix either 
a formula of the type (27) or one of the type (22); 
one need only remember that actually different 
[in the part with D~,e(x- y)] definitions of the 
T-product are used in these formulas. We empha
size that with this approach to the problem there 
is a natural unity between the cases of a Lagran
gian with derivatives and a Lagrangian containing 
a vector field. In both cases one can get an S 
matrix which has physical meaning by defining the 
second derivative of Dc(x- y) in a suitable way. 

4. THE INTEGRABILITY CONDITION IN THE 
BOGOL YUBOV METHOD 

As is clear from Sec. 3, for the construction 
•of the S matrix by the Bogolyubov method it is 
not necessary that the condition (3) be satisfied; it 
suffices for the weaker condition (18) to hold. In 
this method, however, there exists a Schrooinger 
equation as well as an S matrix. Here we shall 
examine in detail what the situation is as to satisfy
ing the integrability condition for this equation and 
for the Tomonaga-Schwinger equation obtained from 
it by passage to the limit. 

The integrability condition for the variational 
Schrodinger equation is of the form 

i bH (x;g) I flg (y) - i bH (y; g) I fl,I (x) 

+ [H (x; g), H (y; g)l cc 0 

for x-y or x = y, (28) 

and in its form is reminiscent of the condition (3), 
which, as is well known, is violated at the point 
x = y for H(x; a)= -L(x) if the Lagrangian con
tains a coupling involving derivatives. 

In our present case, when we use the definition 
of H( x; g) by Eq. (13) and the fact that S( g) is 

*The arbitrariness in the definition of the T-product which 
we have indicated leads to an additional arbitrariness [t•] in 
the definition Of the interpolating field [u] (for a given S ma
trix); this arbitrariness is of the following character: in the 
definition of a vector interpolating field there is an additional 
arbitrariness as compared with the case of a scalar field, 
owing to the fact that we can have different definitions of 
D~,a(x- y) with the same S matrix. 

unitary, the condition (28) takes the form 

62S (/l) + 6•s (g) + . . 
6g (y) 6g (x) S (g) + 6g ( ) 6gly) S (g)- [H (x, g), H (y, g)) 

+!H(x;g), H(y;g)J=O for x-y or x'=Y· 

(29) 

In the expression (29) the commutators cancel and 
the equality of the second variational derivatives 
of S( g ) at the point x = y does not arouse any 
doubts. 

Thus the integrability condition of the variational 
Schrodinger equation is satisfied automatically for 
any theory and does not depend at all on the value 
of the commutator [ H( x; g), H( y; g)] (which in 
second order is [ L( x ), L( y )] at the point x -= y. 
There is nothing surprising in this result, since 
we did not obtain the expression for the generalized 
Hamiltonian from any sort of collateral arguments, 
but essentially from the physically meaningful 
solution of the equation (12). 

The question of what happens to the integrability 
condition for g- ea calls for closer examination 
in view of the singular character of the approach 
to the limit. This is true especially because if we 
approach Eq. (l6) uncritically we would have to 
admit that for all theories except the Hurst-Thir
ring field the integrability condition is violated in 
the limit. 

Nevertheless, we are enabled to clear up this 
question by the analysis of the structure of the S 
matrix for theories with derivative couplings which 
we made in Sec. 3. We merely note that every 
ordinary product or T-product can be represented 
by an expression of the form 

T (L (x) L (y)) = : L (x) L (y) : 

. aL (x) aL (y) . 1 De + · a<p (x) a<p (y) · -i (x- Y) + · · · 

Therefore if the Lagrangian involves a derivative 
coupling, then according to Eqs. (13) and (15) the 
Hamiltonian will contain, along with other terms 
which are linear in the contractions, a term of the 
type: 

00 

11H (x; a) = -Jim ~ dxO dyg' (Ta- x0) 
g-+9G -oo 

(T 0) • aL (x} aL (y} {D-e ( ) X g -y : cxfl X -y 
" . a (a<p I ax") a (a<p I al ) 

- D~ll (x - y)}. (30) 

By the arguments which lead to Eq. (16) this term 
is to be regarded as equal to zero, since it does 
not depend at all on the order in which the limits 
are taken. If, however, we recall that in the 
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Bogolyubov method S( g) depends on the Lagrangian 
and consequently D~13( x - y) is defined by Eq. 
(20), then it is clear that to obtain .6.H( x; a) we 
must go over to ffgf{<x- y) by Eq. (26). We then 
have 

00 

11H (x; a) = - lim ~ dx0 dyg' (To - x0) 

g-+9a_oo 

x (T _ u) . aL (x) aL (y) 
g " y . a (a<p 1 axr:~.) a (a<p I ay~) 

- nr:~.nll{J (x-y)}. (31) 

Here the first term in the curly brackets goes to 
zero in the limit, and the second term gives the 
nonvanishing contribution 

11H (x· a)--_!_· [n aL(x) J [n aL (x) J (32) 
' - 2 . 4 a (a<p 1 axr:~.) ll a (a<p 1 axil) 

which assures that the integrability condition of 
the Tomonaga-Schwinger equation is satisfied both 
for the bare Lagrangian and for the counter-terms 
of arbitrary order, since in the Bogolyubov method 
what one has as L( x) is the effective Lagrangian 
L( x; 1 ). In second order in scalar electrodynam
ics 

11H (x; a) = e2 : <p• (x) <p (x) lnr:~.Ar:~. (x)J2 :, 

which corresponds to the well known usual expres
sion. 

Combining the results of Sees. 2 and 4, we can 
write (if we drop "surface-diverging" counter
terms) the expression for H(x; a) which follows 
from the Bogolyubov method: 

H (x; a) == - L (x; 1) 

1 [ aL(x; 1) J [ aL(x;1) J. (33) + 2 : na a (a<p 1 axr:~.) nil a (a<p I axil) .. 

Thus a formula of the type of Eq. (9) arises 
legitimately in this method. 

It is also not hard to understand that with this 
way of obtaining the Hamiltonian no terms of 
fourth or higher order in the number of normals 
can arise, since when there is one derivative in 
the Lagrangian such terms will correspond to un
connected diagrams, which do not contribute to the 
Hamiltonian, [H] and when the Lagrangian contains 
products of derivatives some of the normals that 
appear will have to be identical, and therefore be
cause ( na )2 = 1 these terms also will not have 
more than two normals. Thus in any renormaliz
able theory a formula of the type of Eq. (33) gives 
an expression which is exhaustive from this point 
of view; this is in agreement with the mathematical 
treatment carried out by Nishijima. [16] 

Thus in this method (if we disregard the 
problem of "surface divergences") both the gen
eralized Hamiltonian H( x; g) and the physical 
Hamiltonian H( x; a) obtained from it in the limit 
g- ea satisfy the corresponding integrability 
conditions for any renormalizable theory. This re
sult is all the more attractive because the inte
grability condition is important not only mathe
matically but also physically. In particular, for 
theories with derivative couplings it is only when 
this condition [16] is satisfied that the energy-mo
mentum conservation law holds. 

5. SOME FEATURES OF THE CONSTRUCTION 
OF THE S MATRIX FOR SCALAR ELECTRO
DYNAMICS 

As is well known,[17•18J the Klein-Gordon and 
Duffin-Kemmer formalisms can be used with equal 
success in the construction of the S matrix for 
scalar electrodynamics by the Dyson method. In 
particular, the proof of renormalizability has been 
given in both formalisms. In doing this in the 
Dyson method one starts from the interaction 
Hamiltonian, which in one formalism has the form 
(7) and in the other the form 

HD-K (x; a) = - ie : \ji (x) r r~.'¢ (x) Ar:l. (x) : 

- e1m-1 : 1ii-(x) T' arll'¢ (x) Ar:~. (x) All (x) : 

+ e2m-1 : ;jJ (x) rarr; [nsr5 ] 2'¢ (x) Ar:~. (x) Ar; (x): (34) 

where r a are the Duffin-Kemmer matrices, and 
then in obtaining the S matrix one goes over to 
the Lagrangian, of the form (6) or the form 

L0-K(x) = ie: \ji (x) ra'¢ (x) Aa (x) :. (35) 

As can be seen from a comparison of the for
mulas (7)-(34) and (6)-(35), in going from the 
Hamiltonian to the Lagrangian in the Dyson method 
one eliminates not only the terms quadratic in the 
normals, but also, in the Duffin-Kemmer formal
ism, all the terms quadratic in the charge, while 
in the Klein-Gordon formalism the term e2: 

cp*(x)cp(x)A~(x): remains. As was shown above, 
the possibility of eliminating from the S matrix 
the terms that depend quadratically on the normals 
is due to the fact that there is an extra finite arbi
trariness in the definition of the T-product. In all 
probability the possibility of eliminating the other 
term of order e 2 in the Duffin-Kemmer formalism 
is due to this same circumstance. 

It is clear from the foregoing that one of the 
advantages of the construction of the S matrix by 
the Bogolyubov method is that in this method the 
situation with the terms quadratically dependent 
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on the normals is much simpler. Up to this time, 
however, the S matrix for scalar electrodynamics 
has been obtained by the Bogolyubov method only 
in the Duffin-Kemmer formalism [19]; one can as
cribe this in particular to the fact that L D-K( x ), 
unlike LK-G( x ), contains only a term linear in 
the charge. In the Bogolyubov method this is of 
importance in the use of the correspondence argu
ments, which allow us to have only a first-order 
term in the bare Lagrangian. 

Nevertheless, a careful analysis shows that the 
S matrix for scalar electrodynamics can also be 
constructed in the Klein-Gordon formalism by the 
Bogolyubov method. In fact, following the course 
of the arguments given in [11], we find from corre
spondence considerations that 

a a • ) S1 (x) = - e : (qt (x) ~ - ~ q> (x) A a (x) :, ax ax (36) 

because we can include in S1 ( x) only terms linear 
in g( x ). If, however, we continue with the con
struction of the S matrix, we can arrive at the 
usual formula. Namely, in second order we have 

S2 (x, y) = e2T [: (q>• (x) ~- aq>• q> (x)) A a (x) : axa axa 

X : ( IP• (y) :~- :'1'; q> (y) J All (y) :] , (37) 
y y ' 

and S2( x, y ) is defined everywhere except at the 
point x = y. This indefiniteness in the T-product 
enables us not only to make S2( x, y) an integrable 
generalized function, but also to secure the gauge 
invariance of the matrix S( 1 ). 

In Sec. 3 we pointed out the existence of a finite 
arbitrariness in the definition of D~,a(x - y) with 
a fixed definition of D0 (x- y). In particular, we 
can add to the definition (20), which was adopted in 
WJ, a term gaf3o(x- y). This definition of 
D~,B( x - y) has the result of bringing out from the 
diagram that describes the meson Compton effect 
in second order a term 

00 

e2 ~ dxdyg (x) g (y) : q>• (x) q> (y) Aa (x) A11 (y) : gall{) (x - y) 
-oo 

00 

= e2 ~ dxg2 (x) : q>" (x) q> (x) A~ (x) :. (38) 

We can return to the previous definition of 
D~,B( x - y ), which is more convenient for the fur
ther calculations, and include the term (38) in the 
effective interaction Lagrangian, which to second 
order takes the form 

L (x; g) = ie: (1P•?a~- a'l'; q> (x)) Aa (x) : + e2 : q>• (x) q> ax ax 
00 

X (x) A~ (x) : g (x) + 2
1
1 ~ A2 (x, y) g (!)) dy. (39) 

-00 

A peculiarity of the counterterm e 2: cp*( x) cp( x) 
x Ah< x) : g( x) is that its appearance is associated 
not with the problem of securing the finiteness of 
the S matrix, but with that of securing its gauge 
invariance. Thus the requirement of gauge invari
ance [at least for S( 1 )] must be included from the 
very beginning among the fundamental require
ments imposed on the scattering matrix. 

At first glance it may seem that there is a 
great difference between the processes of con
structing the S matrix by the Bogolyubov method 
in the different formalisms of scalar electrody
namics, since in the Klein-Gordon formalism we 
have to redefine the T-product in order to secure 
the gauge invariance of the S matrix, whereas in 
the Duffin-Kemmer formalism it is secured auto
matically, as it were. The difference, however, is 
an apparent one. Actually the appearance of the 
term e2: cp*( x) cp ( x) Ah ( x ): when we go from the 
Duffin-Kemmer formalism to the Klein-Gordon 
formalism is due to the fact that in the definition 
of the chronological contraction of lj! ( x) operators 
in the momentum representation there is a term 
m-1Y, where Y is a combination of ra matrices. 
This term is a typically quasi-local one and can 
be eliminated from the definition of the contraction 
if we ignore the requirements of gauge invariance. 

Thus in the Klein-Gordon formalism we can use 
for the S matrix, besides formulas of the forms 
of Eqs. (27) and (22), the expression 

00 

S = T exp { i ~ L' (x) dx}, (40) 
-oo 

where 

L' (x) = ie: (IP• (x) ~- aq>• q> (x)) Aa (x): . (41) axa axa 

Thus there are no essential differences between 
the Klein-Gordon and Duffin-Kemmer formalisms 
in the construction of the S matrix either by the 
Dyson method or by the Bogolyubov method. 

As for the Schrodinger equation, independently 
of whether we assign the additional term indicated 
here to the Lagrangian or to the T-product, in the 
limit g- Ba we get a Hamiltonian which agrees 
with the usual Hamiltonian of scalar electrodynam
ics. In the former case this term appears by the 
same arguments as the usual counterterms. In the 
latter case it arises in the Hamiltonian in the same 
way as the terms that depend quadratically on the 
normals. 

Finally, it must be pointed out that the treat
ment given in Sees. 4 and 5 requires that we 
make one addition to the apparatus of local dy
namical variables introduced by Bogolyubov and 
Shirkov. [11] One of the important requirements of 
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this apparatus is that in the limit g- 0 the quan
tities B( x; g) must become identical with the cor
responding expressions B( x) of the free-field 
theory. If we apply this requirement to H( x; g) 
for the scalar electrodynamics, then in the limit 
g- 0 this expression goes over into L' (x) [cf. 
Eq. (41)], which is neither the Hamiltonian nor 
even the Lagrangian of the free fields. The same 
difficulty is found with the corresponding current. 
A way out of this situation can be found by requir
ing that in the limit g - 0 a quantity B( x; g) is 
to agree with only the part of the corresponding 
free-field quantity that is linear in the charge. 

6. CONCLUSION 

Thus we have shown that if we leave to one side 
the problem of "surface divergences" the Bogoly
ubov method applied to any renormalizable theory 
gives in a legitimate way an expression for H( x; a) 
of the form (33) which satisfies the integrability 
condition for the Tomonaga-Schwinger equation. 
Since this Hamiltonian includes the usual counter
terms, the solution of this equation will give an 
expression for the S matrix which is free from 
"ultraviolet" divergences. Thus the derivation of 
H( x; a) by the Bogolyubov method can be regarded 
as a third method for obtaining the interaction 
Hamiltonian in quantum field theory, and the most 
natural of the existing methods. It is also quite 
clear how in this method one can eliminate the 
terms that depend quadratically on the normals 
from the S matrix obtained by the solution of the 
Tomonaga-Schwinger equation. 

As for the problem of "surface divergences," 
a consistent treatment of this will in all probability 
require the use of a more rigorous mathematical 
apparatus of the type of the new R operation. [11] 

Only such an approach to the problem will make it 
possible to decide finally whether it is of mathe
matical or physical origin, since there also exists 
the opinion [2oJ that there is no S matrix which has 
physical meaning. It is a matter of very great in
terest to settle this problem, since it arises both 
in the Bogolyubov method and in the Dyson me
thod. [12] Furthermore, if the problem of "surface 
divergences" can be positively solved, we shall 
for the first time have to do with a Hamiltonian 
which will lead through the solution of the Tomo
naga-Schwinger equation to an expression for the 
matrix S( a) which is free from both ordinary 
divergences and "surface divergences." 

It must be emphasized, however, that even in 
this case new difficulties of a "surface" character 
can arise in the construction of the apparatus of 

local dynamical variables by means of the matrix 
S( a) (for example, in the construction of the ex
pression for the interpolating field [15J). 

Finally, if the Hamiltonian so obtained is used 
not for the derivation of the S matrix, but in some 
other apparatus, then the regularizing masses 
which it contains can lead to expressions which 
are infinite in the usual sense of the word. There
fore along with the solution to the problem of 
"surface divergences" one must look for a new 
and mathematically more rigorous approach to the 
entire set of questions associated with the 
Schrodinger equation and the apparatus of local 
dynamical variables. 

In conclusion I express my deep gratitude to 
B. V. Medvedev for his constant interest in this 
work and a number of helpful comments. I also 
express my gratitude to D. V. Shirkov and D. A. 
Slavnov for a fruitful discussion. 

Note added in proof (November 19, 1961). We must empha
size that our use of the notation D~Jx- y) in Eq. (21) is of 
a somewhat conditional character, because if taken too liter
ally it could even lead to such an absurd result as <Dx- m2 ) 

x oc(x) = 0. Indeed, in Eqs. (20) and (21) we have written 

different definitions of the contraction T ( acp acp ) , wh1ch 
axa ay/3 

are used in the Bogolyubov and Dyson methodsJ respectively. 
Furthermore, although the definition (21) follows directly from 
the intuitive meaning of the T-product for x f, y, the definition 
(20), for which the equation 

holds right down to x = y, is more convenient. The same can 
be said about the notation i5~~(x- y) in Eq. (25). 
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