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Besides a fine structure, the levels of ~-mesic atoms formed with nuclei of nonzero spin 
also have a hyperfine structure. The muon depolarization will be affected if the hyperfine 
splitting of the weakly excited levels is large in comparison with their width. The magni
tude of the effect is estimated for the case in which the nuclear spin is %. If the hyperfine 
splitting of the lower excited levels is large in comparison with their width, the polariza
tion of a muon in the K shell should be approximately% that of the case with zero nuclear 
spin. If, on the other hand, the level width considerably exceeds the hyperfine splitting, the 
hyperfine structure will involve only the K shell and the polarization will decrease to % 
that of the case with zero nuclear spin. 

1. INTRODUCTION 

biE question of the depolarization of ~- mesons 
in the formation of ~-mesic atoms has been con
sidered for spin-zero nuclei by severalauthors.[H] 
A nonzero spin of the nucleus leads to a hyperfine 
structure in the mesic-atom levels and to an addi
tional depolarization of the muons. t.iberall [5] and 
Lubkin [G] estimated this additional depolarization 
by taking into account only the hyperfine splitting 
of the ground-state level 1s. Actually, when the 
nuclear spin is different from zero, depolarization 
also occurs in the excited levels, owing to the in
teraction between the muons and the magnetic mo
ment of the nucleus. This is due to the fact that 
the hyperfine splitting of weakly excited levels in 
the ~-mesic atoms is comparable in most cases 
with the width of the levels and sometimes even 
considerably exceeds it. We shall therefore con
sider here the depolarization of the muons with 
allowance for this effect. 

The chief role in the depolarization of the ~
meson in the formation of ~-mesic atoms is played 
by the spin-orbit interaction. Of importance here 
is the ratio between the level width and the fine
structure splitting. The radiative width is always 
small in comparison with the fine-structure split
ting, but in the strongly excited upper levels, the 
probability of Auger transitions is very large and 
the total width is greater than the fine-structure 
splitting. It can be assumed that the depolarization 
does not occur until the muon reaches the level 

whose fine-structure splitting is comparable to or 
larger than the Auger width. For the lower levels 
we can assume the level width to be small in com
parison with the fine structure. This means that 
the time spent by the muon in the levels is suffi
cient for the reversal of the spin under the action 
of the spin-orbit interaction, as a result of which 
the muon is depolarized. 

If the nucleus has a nonzero spin, then below 
some level the hyperfine-structure interaction be
gins to have an influence on the muon polarization. 
This effect becomes appreci;1ble when the level 
width is comparable to the hyperfine splitting. For 
nuclei of not very large Z (for example, P 31 , 

which was investigated in [T]) the hyperfine splitting 
is, on the average, of the same order as the radia
tive width. Consequently, the influence of the hy
perfine structure becomes evident in the lower 
levels, where the probability of Auger transitions 
is small. Hence there exists an intermediate group 
of levels for which the total width is much less than 
the fine-structure, but larger than the hyperfine
structure splitting. 

Hence the entire process of a cascade transition 
to the K shell from highly excited states can be 
split into three stages: in the first stage the width 
of the level occupied by the muon, owing to the 
Auger effect, is larger than the fine-structure 
splitting; in the second stage the width is smaller 
than the fine-structure splitting, but greater than 
the hyperfine splitting; in the third stage it is com
parable to the hyperfine splitting. In the first stage 

1347 



1348 A. P. BUKHVOSTOV and I. M. SMUSHKEVICH 

practically no depolarization occurs; in the second 
stage, depolarization takes place as a result of the 
spin-orbit interaction; in the third stage it also 
occurs as a result of the hyperfine interaction be
tween the magnetic moments of the muon and the 
nucleus. The separation into the second and third 
stages was introduced here to facilitate a qualita
tive explanation of the process. Actually, to esti
mate the depolarization we simultaneously consider 
the fine and hyperfine structure splitting. 

In order to illustrate the relation between the 
fine-structure splitting and the level width, we 
have shown in the table the values of the quantities 
wfT and WhT ( Wf and Wh are the values of the 
fine and hyperfine splitting, and T is the lifetime 
of the given level) for different states of the 11-
mesic atom P31 with a principal quantum number 
n = 5. Also shown are the probability for Auger 
transitions r a and the total probability for transi
tions from the given level r = 1/ T in units of 
1015 sec - 1• In order to find the probability of radi
ative transitions we used Table 15 of [S] and calcu
lated the probability for Auger transitions by mul
tiplying the probability for radiative transitions by 
the conversion coefficient for the corresponding 
transition in a nucleus of charge Z - 1 = 14. It is 
seen from the table that the conditions WfT » 1 
and wh T < 1, which should hold in the third stage, 
are already fulfilled for the levels with n = 5, ex
cept for the s and p levels. We note that the width 
of the p level has a basically radiative character 
and the main contribution to the width comes from 
the probability of a transition to the K shell. But 
the ratio of the hyperfine splitting to the radiative 
width depends weakly on the principal quantum 
number. Hence, for all p levels of a given mesic 
atom (in any case, for levels that are not very 
high), wh T is approximately constant. 

Thus we shall assume that in the initial state 
the muon is in a level whose fine splitting is small 
in comparison to the width. The polarization which 
occurs in this state will be preserved throughout 
the entire first stage, where the width is larger 
than the fine-structure splitting. 

... Width, 

"'" 1015 sec-1 ........ (j .;: !! \r =1/T 
o>.f't' O)·h" /3 

,Sm r, 

5S•;'1 0.028 0.16 - 26 0.26 0.26 
5p•;, }0.43 0.64 73 2.17 -0.20 0.31 5{1';, o:86 0.56 
5d•;, )0.15 0.46 34 0, 72 -0.23 0.27 5d•;, 0.46 0.60 
5f•;, )0.076 0.60 13 0.25 -0.31 0.23 5{•;, 0.19 0.64 
5g•;, }0.045 0.90 5 0.10 -0.33 0.22 5go;, '0,08 o:66 

At the end of the first stage the muon drops to 
a level whose fine-structure splitting is large in 
comparison to the width, and this condition is 
maintained for all subsequent levels occupied by 
the muon. This second stage has already been con
sidered in detail. [4] For large orbital angular mo
menta l, which apparently occur most frequently, 
the probabilities of states with total angular mo
menta j = l +% and j = l - 1/ 2 are approximately 
the same, and the muon polarization in each of 
them is about %. We assume that l remains large 
for the entire second stage. Then the muons will 
undergo a transition, with a probability close to 
unity, from states with j = l +% to states with 
h = Z1 + 1/ 2 and from states with j = l - % to states 
with h = Z1 - %. where Z1 = l - 1. In transitions 
of the first type the muon polarization does not 
change and in transitions of the second type it ac
quires a factor ( j + 1) j 1/j ( h + 1 ); if l is still 
large at the end of the second stage, we can neglect 
the difference between this factor and unity. It 
thus follows that at the end of the second stage the 
muon polarization in each of the fine-structure 
states can also be taken equal to "')-'3• 

In the third stage the hyperfine structure will 
have an appreciable influence on the muon polari
zation. The following sections of this article will 
be devoted to an analysis of this influence for the 
special case of a nuclear spin I = %. 

A study of the process of muon depolarization 
in capture by nuclei with spins I > % requires 
calculations of much greater complexity. 

The basic results obtained in the present work 
reduce to the following. 

For nuclei with I =% the 1s level to which the 
muon drops as a result of all the transitions con
sists, as is known, of two sublevels of hyperfine 
structure with a total angular momentum F equal 
to zero and unity; the separation between the sub
levels is much greater than ti/T11, where T11 is 
the muon lifetime. It is natural to expect, and this 
will also be shown below, that the probability of 
dropping to one of these sublevels is proportional 
to the statistical weight. In the state with F = 0 
the muon polarization is zero, and therefore the 
average spin of the muon in the K shell is %of 
the average value of the spin in the state with 
F=l. 

We denote by {3 the ratio of the muon polariza
tion in the K shell to the polarization at the end of 
the second stage. If the muon is in a state with 
j = l + % at the end of the second stage, then we 
have {3 = % in the absence of hyperfine splitting of 
the excited levels and {3 R~ % for very strong split
ting. If the muon was in a state with j = l -1'2 at 
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the beginning of the third stage, then the influence 
of the hyperfine splitting of the excited levels will 
be more important. If there is no hyperfine split
ting of the excited levels (3 ::::; 0, and if the splitting 
is large (3 ::::; -1f3, i.e., in this case there is a spin 
flip. If we take the average over the states j = l 
± % at the beginning of the third stage, we obtain 
a value of ~ %2 for the ratio of the final polariza
tion to the initial polarization in the absence of 
hyperfine splitting in the upper levels and ~111 8 for 
strong hyperfine splitting. These results will be 
discussed in more detail in the following sections. 
In order to illustrate the results of the calculations, 
the values of (3 are given in the table for transi
tions from different states with a principal quantum 
number n = 5 for the J.t-mesic atom P 31 • The last 
column of the table gives the quantity 

-- l 1+1 
~ = 21 + 1 ~I-'/• + 21 + 1 ~I+'J, ' 

2. DERIVATION OF BASIC FORMULAS 

Since the hyperfine splitting of the J.t-mesic 
atom levels is small, we include these levels in 
one group. We denote such groups by the letters 
A, B, C, ... , M, N and the sublevels of each of 
these groups by the indices Oi, (3, "}', ••• , J.l, v. 
Then we readily obtain in the usual way [9] the 
formula relating the matrix densities p(f) and p 
in the final and initial states: 

where 

(1) 

(2) 

Here Ha;B is the matrix element for a transition 
of the system from a state a to a state (3 with the 
emission of a quantum or Auger electron; T A• 
TB, ... are the lifetimes of the levels A, B, ... ; 
w(3(3' = ( Ef3 - E(3' )/li, and Ef3 and E(3' are the en
ergies of the sublevels (3 and (3' referring to one 
group B; the symbol S denotes the summation 
over different cascades; Wn is the probability for 
the n-th cascade and Nn is a normalizing factor 
determined from the condition Sp p(fn) = 1. In (2) 
the summation includes all possible states of the 
emitted quanta and Auger electrons. 

The 11-meson lifetime Til is much greater than 
li/ ~E. where ~E is the hyperfine splitting of the 
ground state level. Hence, in averaging the matrix 

p(f) over the time, the elements for which Wvv' 
;.< 0 vanish, owing to the factor exp ( -iwvv't ). 
Consequently, for the matrix p(F) averaged over 
the time we can write 

p(F) = S Wnp<Fn); 
n 

~ Hila.H;,W .) 
' ' · ~ 1 + iro (t P"'x' ' 

aa' o:a. A 

where the symbol D means that in the matrix in 
the parenthesis the elements connecting states 
with different energies are assumed to vanish 
(i.e., those for which ww, ;.< 0 ). 

(3) 

(4) 

The levels A, B, C, . . . occupied by the 11 
meson are characterized by a principal quantum 
number n, an orbital angular momentum l, and a 
quantum number j ( j = 1 + 8, where 8 is the muon 
spin), and the sublevels a, (3, ')1, ••• differ in the 
values of the total angular momentum F and its 
projection M ( F = j + I, where I is the spin of the 
nucleus). The symbol D thus signifies the separa
tion of the matrix elements which are diagonal in 
the F representation. 

We limit ourselves to the consideration of the 
case I = 1/ 2 and write the general expression for 
the density matrix p corresponding to a group of 
states with given values of n, l, and j. This ex
pression should be linear in n, where n is a unit 
vector in the direction of the initial polarization 
of the muon. Using also the condition that p is 
Hermitian and invariant, we obtain 

p = N ( 1 + a1jl + n {a2j + aal + a4 [jl] 

+a. (i (jl) + (jl) j-} j (j + l),I)} ). (5) 

where the coefficients ai are real. The normaliza
tion condition Sp p = 1 gives N = ( 2j + 1 ) - 1 x 
( 2I + 1) - 1• We shall consider the density matrix 
p given in the f()rm (5) and calculate the matrix 
p(Fn) from formula (4). To do this, we first con
sider in (4) one of the terms in the sum over n 
corresponding to a given cascade and we carry out 
the summation over aa': 

PW• = ~ H ila.H;'WPa.<>! / ( 1 + iroa.a.•T A). 
as. 

(6) 

It will be convenient to represent the matrix 
' Pa.a.' , 

Pa.a.' = 1 + iro"a.'T: A = Pew' --;- 'l'Ja.a.', 

(7) 
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in a form similar to (5). For this purpose we 
provisionally denote states with F = j + Y2 and 
F = j - % by the subscripts 1 and 2, respectively; 
then w12 = -w21 = w; omitting the subscript in TA, 

we have 

fJn = fJ22 = 0; 
iu:rr w2t'2 iwt' 

fJ12 = - 1 + iwt' P12 = - 1 + w•t'• P12 - 1 + w•t'• P12• 

iwt' w2t'2 iwt' 
fJ21 = 1 _ iwt' P21 = - 1 + w2t'2 P21 + 1 + w2t'2 P21> 

i.e., 
002"'2 , io:rr , 

f) = - 1 + w"T2 f) + 1 + w2t'2 f) ; 

fJ' = p -D (p), (8) 

Here D denotes the separation of the diagonal 
parts in the F representation and P is the opera
tor with matrix elements Ptt = -P22 = 1, P12 = P21 
= 0; it is readily seen that 

p = (4jl + 1)/(2j + 1) (9) 

is such an operator. 
In order to separate the diagonal part from (5) 

we note that the operators ji and j + I = F are 
diagonal in the F representation, while [ ji] 
= i ( j ( ji) - ( ji) j) contains no diagonal elements 
in the F representation. Moreover, we have 

D (') = i (j + 1) + F (F + 1)- 3/ 4 F 
I 2F (F + 1) 

_ [_31_ i + 1 + 2il + 2 (i + 1) i- 2il] F 
- 2j + 1 2j + 1 2j + '1 2j + 1 

= C2i! 1)2 !j (j + 1)-jl] (j +I) 

= j- (2i! 1)2 [j(jl)-1-(jl)j + j -2j (i+ J )I], 

D [j (jl)l = D [(jl) j] 

= F (F + 1)- j (j + 1)- 3 / 4 F (F + 1) + j (j + 1)- 3/ 4 F 
2 2F (F + 1) 

= + [j (jl) + (jl) j 1 + 2 (2/+ 1)2 [j (ji) 

+ (jl) j + j -2j (j + 1) 1). (10) 

In these formulas we have used the relations 

With the aid of (5), (8), (9), and (10) we obtain 

where a0 = a 2 - a 3 + (1/6) a5 ( 2j + 3) (2j - 1 ), and 
finally, owing to (8) and (7), we have 

N-1p' = 1 + b1jl + n {b2j + bal + b4 [jl] 

+ bs [Hjl) + (jl) j - ~ i (j + 1)1]}; (13) 

4 j (j + 1) Wt' ( 2a0wt' ) 
ba = aa + 3 2j + 1 1 + w•t'• a4 + 2j + 1 , 

1 Wt' ( 2~wt') 
b6 = a6 -- 2i -I- J 1 + w2t'2 a4 + 2j + 1 • 

For convenience we introduce the notation: 

A = (j + I) (2i2~ 1 - ia4), 
1 

X=--· 
1 + iwt'' 

then formulas (12) can be rewritten in the form 

(14) 

(15) 

ReA (1 - x) Im Ax 
b2 = G2 - (j + 1) (2j + 1) , b4 = - j + 1 , 

- 4 j 
ba- aa + 32i+ 1 ReA (1- x), 

ReA (1-x) 
bs = as - (j + 1) (2i + 1). (16) 

We now carry out the summation in (6). To do 
this we note that the matrix elements of the differ
ent operators occurring in formula (13) between 
states with different f.l and A ( /J and A are the 
projections of j and I) have the following form 
(the subscripts of the vectors denote the cyclical 
coordinates -1, 0, 1: 

<~-tA-111 ~-t'A.'> = c'\""~'-·c'l:u·, <J-LA.Ij,! ~-t'A.'> = !j (j + l)l'1'li~.~.·C}~·lt. 
<~-tA. 11, 1 ~-t' A.'> = r 1 < 1 + 1) 1'1' c'\"""".c~~-Ii, 

<J-LA.\ Mk + ikh- ~· i U + I) lltk I J-L'A.'> 

= + r IOi u + 1) (2i -1) (2i + 3)J'1·c~iikkcf~·2i+kc'\A).', 
(17) 

where C are the Clebsch-Gordan coefficients. 
Moreover, the matrix elements of the operators 
HLN and HtN ( L-th and N-th multipole moment 
of the transition and its projection) depend on f.l 

and A in the following way: 

<. '''\H+ I' ·,·> Q*.. ch""l 
, • 2ao • • • • • . . l!l"' LN hll-1"'1 = uJ.'\ 11'-'LN 

fJ = G4D [JIJ + (2 j + 1)2 n IJ (JI) + (JI) J + J - 2] (J + 1) 1], . , , . , 
( J, p, /J , A, A refer to the level A; Jt, f.lt, f.lt• At, 

"= ~ 1. ('I)+ ('I).+ . _ 2 . (' + 1) 11 2i~ 1.1 ;>..f. refer to the level B), where the coefficient Q 
fJ 2i + 1 ° 1 J 1 l 1 1 1 - 2j + 1 ° 1 ], does not depend on the projection of the angular 

(12) momenta and can therefore appear only in the 
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form of an unessential multiplicative factor in 
front of the entire matrix, owing to the need for 
normalization. Since the probability of dipole 
transitions is very large, we can set L equal to 
unity (apart from the transition 2s - 1s, for 
which the polarization does not change). We carry 
out the summation over N in formula (6). 

In the calculation of p<1l we can carry out the 
summation over F, replace M by the summation 
over IJ.A and use Racah's method.[to] The matrix 
p <1> will then be represented in the form (5) with 
the coefficients at 1>, which are related in the fol
lowing way to the coefficients bi appearing in the 
matrix p': 

ai1> _ u~1 ) _ ail) _ [i (j + 1) (2j + 1) (2j. + 1) ]'/, W ( ..... 1 L) (- 1 )-j-f,+L+t 
b1 - bz - b4 - h (h + 1) JJ]I]I, 

h (j. + 1) + j (j + 1)- L (L + 1) 
2j. (it+ 1) 

(Il =b. [i (j + 1) (2j + 1) (2j + 3) (2j -1) (2j. + 1) ]'/, W( ... .. 2L) (-1)-i-ft+L 
as , idh + 1) (2h + 3) (2h -1) _ JJJI]I, 

= b {2 [it(it + 1) + j (j + 1) - L (L + 1) ]2 + (it - j)2 (it + j + 1 )2 - L2 (L + 1)• 
5 2h (it+ 1) (2it + 3) (2h- 1) 

(2L•+2L+3)[j,(j.+1)+i{i+1)-L(L+1)) } 
2it (j. + 1) (2h + 3) (2ir -1) ' 

where W are the Racah coefficients. 
According to (4), we should find the sum 

p(2l = "BH .. ff,Hh·PW· I (1 + iwr;w-rB), 
(;(;' 

which will be characterized by the coefficients 
ai2) expressed through a~1) in a similar way, etc. 
After carrying out the last summation, we should 
separate from the obtained matrix the part diago
nal in the F representation, as a result of which 
we obtain the final density matrix p~Fn) = D ( p (fn) ). 
This last operation is not difficult to perform if 
we note that, according to (7), p' = D ( p) for w T 

= oo. Thus representing p(fn) in the form (5) with 
the coefficients a!fn), we find from formulas (14) 

the coefficients b1fn); in them we set WT = oo and 
obtain the corresponding coefficients afn of the 
matrix p<Fn). 1 

We note, moreover, that j = % in the lowest 
level (of the K shell) and therefore some ofthefive 
coefficients of the final density matrix prove to be 
unimportant. As a matter of fact, it is not difficult 
to show that for j = % we have j ( jl) + ( jl) j 
+ (%) j ( j + 1) I = 0. Since from formula (14) it 
follows for wT = 0 and j = Y2 that b4 = 0, b 2 = b3 

= % ( a 2 + a 3 ), then the final density matrix p (F n) 
will be characterized by two coefficients afn and 
afn = afn. Of course, the same will hold for the 
matrix p(F), for which, according to (3), a£ 
= 6wna£n. Therefore 

n 

p(Fl = ~ (1 +afjl + a[nF) = 7[(1 +fa[ -t-a[nF)P+ 

+ (1-! a[+ a[nF)P_) = + p+ (I+ f lfnF)P+-t-p_P_. 

(19) 

(18) 

Here P + = % ( 3 + 4jl ) and P _ = % ( 1 - 4jl ) are 
the operators of the projection on states with 
F = 1 and F = 0, while P + and P _ are the proba
bilities of the corresponding states: 

P+=f(1+f-af), p_=f-(1-faf). (20) 

The parameter ;\F = (%)a{/( 1 +%at) is equal 
to the polarization of the muon in the triplet state 
of the K shell. 

In a state corresponding to the beginning of the 
second stage, when the interaction leading to the 
hyperfine splitting is still very small, the density 
matrix is equal to the direct product of the muon 
density matrix in a level with given values of n, 
l, j [!1] and the unpolarized nucleus: 

- 1 (1 .:.L ~. ) p - 2 (2j + 1) I j + 1 ]O • (21) 

The following values of the coefficients ai corre
spond to this state, which we shall call the initial 
state: 

a1 = aa = GA. = as = 0, a2 = ao = 3')..,((j + 1); (22) 

the parameter ;\ is related to the mean value of 
the spin < s > in this state by the expression 

<s) = A.n [j (j + 1)- l (l + 1) + 3/41/2 (j + 1) (23) 

From formulas (16) and (18) it is seen that the 
coefficient a1 = b1 remains equal to zero in all the 
subsequent states, too. Consequently, af = 0, 
P+ = %. and p_ = %. In this way we arrive at the 
natural result that the probabilities of tne muon 
dropping to the K-shell levels with F = 1 and 
F = 0 are proportional to their statistical weights. 
As a result, for the characteristics of the polar
ized state of the p-mesic atom in the K shell it 
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is sufficient to know one coefficient af, which is 
connected with the mean value of the muon spin in 
the K shell < sK> by the relation 

<sx> = Sp p<F> s = +afn. (24) 

Taking into account (23), we obtain for the depolar
ization coefficient f3K = < SKn> I< sn>: 

af i+1 af 
f3x = 21.. i (j + 1) -t (l + 1) + 3f4 = 2x-

{ 
1, 

X -(i+1)/j, (25) 

It is obvious that 

(26) 
n 

where f3n is the depolarization coefficient corre
sponding to a given cascade and the summation is 
carried out over the entire cascade beginning with 
the initial level. 

3. ESTIMATE OF THE DEPOLARIZATION AND 
DISCUSSION OF RESULTS 

We now determine the change in the polariza
tion in any cascade as the muon goes from the 
initial state to the K shell. Let the muon be 
initially in a level with the angular momenta l and 
j = l + Y2• From such a state a transition is possi
ble to a state with l 1 = l - 1 and h = l - % or to 
a state with l 1 = l + 1 and h = l + 1/ 2 or l + %. 
Transitions with an increase in l ( l 1 = l + 1) are 
unlikely, as is seen, e.g., from Table 15 in [sJ, and 
we shall therefore neglect them (except for transi
tions from s states). 

If we insert h = j - 1 into formulas (18), they 
then take the form 

a <t> - b i + 1 aa<t> = ba. a<t> - b i + 1 2-2i. 4-4j. 

a (l) = b (j + 1) (2j + 3) 
5 5 j (2j + 1) 

(27) 

Here the quantity 

(. 2a<t> ) 
A<t> = j 2i ~ 1- iait> ' 

a<t> = a<t> - a<l) + _!_ a<t> (2j - 3) (2j + I) 
0 2 3 6 5 

can, after some calculations in which we take (15) 
and (16) into account, be expressed in terms of A 
as 

A0 > = Ax + 2y/(4j2 - 1), 

y = 2a2 (j + 1)- aa -}a5 (j + 1) (2j + 3). (28) 

Constructing the expression yO) = 2a~t)j - a~1) 
- %a~1) j ( 2j + 1 ), we can prove with the aid of 

formulas (16), (15) and (27) that y (1) = y. Hence 
if the transitions occur only with a decrease in j, 
then it is sufficient to calculate y once in the 
initial state, after which we can find the quantity 
A (i) by applying formula (28) the required number 
of times. 

It is seen from formulas (16) and (18) that in 
each transition a3 changes by the quantity 
(% ) j ( 2j + 1 ) - 1 Re A ( 1 - x). Hence in the final 
state 

f 0 

F - + 4 ~ It R A(i) (1 ) a3 - aa 3 ~ ~ e . - x1 , 
i=O J, T 

A(l+t) = A (i) X·+ ~ 
l 4i7-1 • (29) 

where the sum runs over all intermediate levels 
in the given cascade transition and i = 0 corre
sponds to h = j. In these formulas referring to a 
given cascade, we omit for simplicity the sub
script that labels the different cascades. In the 
final state Xf = 0, jf = 1/ 2• 

According to formulas (22), (15), and (28), we 
have in the initial state 

A = 6A/(2j + 1), r = 61.. (30) 

Formulas (21.l and (30) enable us to determine the 
coefficient a3 for a given cascade transition and, 
together with this, the depolarization from (25). 

We shall consider by way of example the de
polarization in two extreme cases: 1) all Xi = 1, 
except for Xf, i.e., the hyperfine splitting is small 
in comparison to the width of the levels every
where except for the K shell; 2) Xi = 0 for all 
lower excited levels important for depolarization, 
i.e., the hyperfine splitting is larger than the level 
width. 

In the first case, formula (28) gives 

A(2) 61.. 
= Zj _ 3 etc. 

AU>= 31., (31) 

and formula (29) reduces to af = ( % ) Re A (f) = A., 
since from (25) we have {3 = % (for j = l + % ). 
Since this occurs for all important cascades, then, 
according to (26), f3K = %. This result should also 
have been expected, for under these conditions the 
depolarization occurs only as a result of the hy
perfine splitting in the K shell. If x is close to 
unity, but not exactly equal to it, then, if we neg
lect products with ( 1 - xi), we obtain the follow
ing formula: 

f-1 2. 1 
1 ~ J,-

[3 =7+ Re..:::,; (Z· .. 1)2 (I -xt). 
i=O J, T 

(32) 
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In the second case (Xi = 0 ), we have 

(i) 12A. 
A = 4 u, + 1)2- 1 ' 

(33) 

Here j corresponds to the highest level occupied 
in the given cascade for which Xi = 0 [the last 
expression in (33) is valid apart from terms of the 
order ( 2j + 1 )-4 ]. We thus see that af > ;>... As
suming that j is primarily large, we arrive at the 
conclusion that ~f Rl 4;>../3. Consequently, accord
ing to (25), {3 (.::j % and is approximately the same 
for all cascades; hence f3K (.::j %. Thus, in the 
second case (strong hyperfine splitting), the de
polarization in the transition from states with 
j = l + % proves to be about % that of the first 
case (absence of hyperfine structure everywhere 
but in the last level ) . 

This result can be explained physically as fol
lows: In the presence of hyperfine structure, the 
muon polarizes the nucleus during the transitions 
between excited levels. Hence, the muon is al
ready considerably polarized just before the trans
ition to the K shell, which contributes to the 
preservation of the muon polarization. When the 
hyperfine splitting at the upper levels is small the 
muon polarizes the nucleon only in the K shell, 
as a result of which it loses half its polarization. 

If, assuming the Xi small, we neglect their 
products we obtain for {3 the formula 

1 [ n2 2 6j + 1 
~ =z- 3-6-T·(2i+1J3 

( 
8x f-l 16x1 ) ] 

- R~ (2i -1) (2i + 1)2 + ~~ (2i; ~ 1) (2i1 + 1)2 (2i1 + 3) • 

(34) 

We now consider transitions from states with 
j = l - %. If we neglect transitions with an increase 
in l, then the possible transitions -here are either 
j1 = j - 1 or j1 = j, where their relative probabil
ities are ( j + 1 )( 2j - 1 )/j ( 2j + 1) and 1/j ( 2j + 1 ). 
For transitions of the first type, formulas (27) are 
valid, while for transitions of the second type we 
have the formulas 

(1)- b j(j+1)-1 
ll2 - 2 j(j + 1) • 

(1) j (j + 1) -1 
a4 = b4 j(j + 1) , 

(1) - b j (j + 1)- 3 
ao - o i (i + 1) • (35) 

We now consider all cascades beginning with a 
given initial state (in which j = 1 - %) and in-

volving levels of given n and 1. In each transition 
of these cascades, j decreases by unity until it 
attains the value jr at which a transition would 
occur without a change in j. The relative proba
bility of such a cascade is 

j + 1 1 
w, = 2. + 1 . (. + 1) I I r I r. 

(36) 

When all Xi are close to unity, we obtain for 
such a cascade 

F-f..R{j,(i,+i)-1[1 ~ 2 .(-) 
as- e i,(i,+1) -,~(2i,+1)2(1-x,.) 

f-1 2 (2 · ·- 1) J ' 4 · + ~ (2j\1)2 (1-xJ+>) + ~ (2j ;1)2 (1-x~->) }. 
i=r+1 i · i=O i 

(37) 
where we have neglected terms containing the 
factor ( 1 - Xi). When Xi « 1 for all Xi we obtain 
neglecting products of x, 

p_ {2 2j,(i,+1)-1 [ 4(4i,+1) J 
as- A.Re 3 j,(i,+1) - 1 -3(i,+1)(2i,+1)2 

r-l 16x~-) 8(4i,+1) (-) 

X~~ (2j1 -1)(2i1 +1)2(2i;+3) -3(i,+1)(2i,+1)'x, 

+ 16 x<+> 
ir (2j,-1)(2i,+ 1)' T+l 

j,(i,+1)-1 

i,(i,+1). 

f-1 16x<+> } 

X . ~ (2j1-1) (2i;~ 1)2 (2it+ 3) . 
t=T+2 

(38) 

In formulas (37) and (38) we denote by x{ +) and x{-) 
. 1 1 

the quantities 1/( 1 + iwT) for levels with h = li 
+ % and ji = li - %. respectively. 

Taking into account (25), (26), and (36), we ob
tain, after approximate summation over r, 

2(i+1)• 110-n2 1 
-3K = - j (2j + 1) Re L-4- - 4 (j + 1) 

l-1 6" + 1 

+ ~ 6(i-/;) (2i-+1) (J-x~->) 
i=O ' ' 

l-1 2" --1 

+ ~ 2".(~~-+1)• (1-x~+l >], 
i=1 I, I, 

l-x1~1; 

l-2 xH 

- ;~o i1 <i1 +1)(2j1 +1)(2i1 +3) 

l-2 4x(+l 

- -~ 3 (j. + 1)(2j. -1) 1(2j. + 1)2 (2j. + 3) J' l=l l /. l l 

(39) 

X;~J. 
(40) 

From formula (39) it is seen that when Xi (.::j 1 the 
depolarization coefficient is f3K (.::j 0, i.e., in this 
case there is almost complete depolarization. If 
Xi « 1, then, as seen from (40), f3K. (.::j % for large 
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initial j, which indicates a spin flip of the muon. 
Averaging with equal probabilities expression (39) 
and the corresponding expression (32) for the case 
with j = l + %. we obtain "for j » 1 

i-l . 
- 1 [ "' 6]; + 1 ( -f3x = TRe 1- .~ 3(i-+1J (~i-+iJ 1-x} >) 

t=O l l 

1-x;~l. (41) 

Similar averaging of expressions (40) and (34) 
for the case Xi « 1 leads to the following result 
for j » 1 

r~K = _..!:._ 0 e [1 + _..!:._ xH-...!... x<+> ,- 6 I\. 3 f-1 8 f-1 

f-2 3x\-) 

+ i~ i; u, + 1) (2j; + 1) (2i; + 3) 

f-2 8 (6i; + 5) x~+) J 
-~0 U;+1)(2j,--1)(2i,-+1)2 (2i,+3) ' 

X;~ I. (42) 

In the summations in (42) the coefficients of xi 
decrease rapidly with ji, so that for small Xi we 
can limit ourselves to the terms with Xf_ 1: 

- 1 •. 1 1 J i3x=-c- Re ll +- x<-> -- x<+> 6 3 f-1 8 f-1 (x, ~ 1). (43) 

As regards the case Xi ~ 1, we cannot carry out 
such an operation in formula (41), since the corre
sponding coefficients in the summations decrease 
more slowly. We can only note that the limiting 
value of i3K for Xi- 1 is %. Denoting the polari
zation of the muon in the K shell by A.K ( A.K 
= ,BKA.) and taking A. ~ 1/ 3, we have 

for x; = I, u:rr = 0; 

for Xi~ I, Wl'~ 1. (44) 

The second formula of (44) contains the quantities 
( wr)a/2 and ( wrh;2 for the levels p3; 2 and Pt;2, 
for which, as we have already noted, wr weakly 
depends on the principal quantum number. For 
wr » 1, we obtain A.K = 1/ 18 • 

The experimental data for the depolarization of 
muons on nuclei with spin I = t;2 change only for 
P 31, for which the mean value of the muon polari
zation in the K shell is A.K = 3 (0.025 ± 0.005).[7] 

For the levels 3Pt;2• 3pa;2• 3d3; 2• and 3d5; 2 the 
values of WhT are equal to 3.15, 1.26, 2.27, and 
1.45, respectively. We therefore have here the 

intermediate case [ ( wh T )eff ~ 1], and conse
quently we should expect a value between 1ft 2 and 
%.a for the muon polarization in the K shell AK
This is in agreement with the experimental data 
cited above. 

In conclusion, we shall comment on the Z-de
pendence of the final polarization of the muon AK
For hyperfine splitting we have Wh ~ Z3' while for 
the radiative width we have r r ~ Z4• Hence for 
the lower levels of the heavy elements the effec
tive value of ww is small. Consequently (if we 
disregard the possibility of a very large nuclear 
magnetic moment), in the formation of tt-mesic 
atoms with nuclei of spin 1/ 2 and Z much larger 
than for phosphorus, AK should be close to %2 
= 0.083. 

For the lowest levels of the tt-mesic atoms 
formed with light nuclei with I = %. where the 
main contribution to the width also comes from 
the radiative transitions, we have Wh T » 1. But 
for such mesic atoms the Auger transitions are al
ready important for weakly excited levels. Hence, 
although we can also expect A.x to decrease with 
decreasing Z, it will apparently not attain the 
lower limit 1/ 18 = 0.056 found here for the lightest 
nuclei. 
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