A POSSIBLE MODEL OF Λ -PARTICLE PRODUCTION IN HIGH ENERGY πN COLLISIONS

WANG JUNG and HU SHIH-KO

Joint Institute for Nuclear Research

Submitted to JETP editor June 22, 1961

J. Exptl. Theoret. Phys. (U.S.S.R.) 41, 1868-1869 (December, 1961)

A possible model of Λ -particle production in high energy πN -collisions, suggested by D. I. Blokhintsev and Wang Jung, is considered. The polarization and the distribution of transverse momentum of the Λ particles, and also the percentage of particles emitted in the forward direction in the center-of-mass system are calculated. It is shown that the model is in agreement with the available experimental data.

SOLOV'EV and Wang Kang-ch'ang et al.[1-3] have recently measured the transverse momentum and angular distribution of Λ particles produced in high-energy πN -collisions (momentum of the incident π meson \approx 7 Bev/c), and have observed longitudinal polarization of the Λ -particle. In this article we shall show that all characteristic features of Λ -particle production in high-energy πN collisions are in agreement with the model proposed by Blokhintsev and Wang Jung.^[4] This model has two essential features: 1) the pole term corresponding to the diagram shown in the accompanying figure gives the dominant contribution; 2) the (ANK) vertex part takes the form $1 \pm \gamma_5$ (this model does not assume parity conservation in strong interactions^[5]).

Aside from conservation of energy-momentum and strangeness, there are no other restrictions on the multiplicity of particles which may be produced jointly with the Λ . The theoretical results discussed here, as well as the corresponding experimental results, are almost independent of this multiplicity.

The following results were obtained from this model:

1) The optimum transverse momentum of the Λ particle ($\approx 400 \text{ Mev/c}$) is almost independent of the energy of the incident π meson.

2) In the center-of-mass system, approximately 13.7% of the Λ particles are emitted in the forward direction.

These are precisely the characteristic kinematical features of Λ -particle production experiments (^[2] and also private communication from M. I. Solov'ev). Furthermore, according to this model it is possible to predict the following:

3) The Λ particles are polarized in the laboratory system; the direction of the polarization

vector coincides with the direction of the momentum of the Λ , i.e., they are longitudinally polarized. Furthermore, the degree of polarization is

$$\overline{P} = \begin{cases} + v/c & \text{for } 1 - \gamma_5 \\ - v/c & \text{for } 1 - \gamma_5 \end{cases}$$

where v denotes the velocity of the Λ particle in the laboratory system.

For Λ decay the asymmetry parameter is $\alpha \approx -0.85$.^[6]

Theoretical values of $\alpha \overline{P}$ are given in the table. We see that this model agrees with the experimental results^[3] in so far as the cases with $p_{\Lambda} \leq 1200 \text{ Mev/c}$ are concerned, if the vertex part takes the form $1 + \gamma_5$.

As far as cases with $p_{\Lambda} > 1200$ Mev/c are concerned, no experimental data have been obtained because certain difficulties of a kinematical nature arise in connection with the identification of the Λ particle.^[3] But momenta in the range p_{Λ} > 1200 Mev/c in the laboratory system correspond to larger angles (with respect to the backward direction) and smaller momenta of the Λ particle

p _∧ in Mev/c (lab system)	$\alpha \overline{P}$ (for 1 + γ_{s})	$\alpha \mathbf{P}$ (for 1- γ_5)
$\sim 200 \\ \sim 600 \\ \sim 1000 \\ \sim 1300$	-0.15 -0.40 -0.57 -0.65	+0.15 +0.40 +0.57 +0.65

in the center-of-mass system, and in accordance with the proposed model the relative number of cases in this range is considerably smaller than for $p_{\Lambda} < 1200$ Mev/c, i.e., it is probable that only a few of the 29 unidentified cases can be Λ particles. Thus the model with vertex part $1 + \gamma_5$ is probably still in agreement with the polarization experiments, even in the region $p_{\Lambda} > 1200$ Mev/c.

The authors thank D. I. Blokhintsev for his valuable comments, and also thank V. S. Barashenkov, M. I. Solov'ev and Hsien Ting-ch'ang for useful discussions.

¹ M. I. Solov'ev, Proceedings of the 1960 Annual International Conference on High Energy Physics at Rochester (Interscience Publishers, New York, 1960), p. 388.

²Wang, Wang, Veksler, Vrana, Ting, Ivanov,

Kladnitskaya, Kuznetsov, Nguyen, Nikitin, Solov'ev, and Cheng, JETP 40, 464 (1961), Soviet Phys. JETP 13, 323 (1961).

³Wang, Wang, Veksler, Vrana, Ting, Ivanov, Kim, Kladnitskaya, Kuznetsov, Nguyen, Nikitin, Solov'ev, Khofmokl', and Ch'eng, JETP **39**, 1854 (1960), Soviet Phys. JETP **12**, 1292 (1961).

⁴Blokhintsev and Wang, Nuclear Phys. **22**, 410 (1961).

⁵ V. G. Solov'ev, JETP **36**, 628 (1959), Soviet Phys. JETP **9**, 436 (1959).

⁶D. A. Glaser, Proceedings of the 1958 Annual International Conference on High Energy Physics at CERN (CERN, Geneva, 1958), p. 265.

Translated by H. H. Nickle 317